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Residual-based contacts estimation for humanoid robots

Fabrizio Flacco, Antonio Paolillo, Abderrahmane Kheddar

Abstract— The residual method for detecting contacts is a
promising approach to allow physical interaction tasks with
humanoid robots. Nevertheless, the classical formulation, as
developed for fixed-base robots, cannot be directly applied to
floating-base systems. This paper presents a novel formulation
of the residual based on the floating-base dynamics modeling
of humanoids. This leads to the definition of the internal and
external residual. The first estimates the joints effort due to
the external perturbation acting on the robot. The latter is
an estimation of the external forces acting on the floating-
base of the robot. The potential of the method is shown
proposing a simple internal residual-based reaction strategy,
and a procedure for estimating the contact point that combines
both the internal and external residuals.

I. INTRODUCTION

Humanoids must be embedded with capabilities of multi-
contact interaction with their environment or with the human.
Indeed, to operate in confined spaces, it is necessary to relay
on multi-contact motion and detect unexpected and undesired
contacts on the robot originated from the environment or the
colocated workers. Motion planning, with knowledge of the
robot dynamics, the environment model, and the contacts,
gives the nominal plan to accomplish the desired task, e.g.
open doors [1], climb stairs or ladders [2], move across
uneven terrain [3], etc.

Visual techniques to evaluate the appearance of the envi-
ronment improved substantially, e.g. positioning and clas-
sification of objects [4], identification of possible contact
points [3], localization of the robot [5] and mapping of
the environment [6]– thanks to the development of new
affordable and effective sensors, such as RGB-D technology.

Meanwhile, the estimation of the interaction forces be-
tween the humanoid robot and its surrounding, as well as
the identification of how these forces affect the robot internal
(joint level) and external (floating-base level) motions, relay
on embedded force/torque (F/T) sensors, or on whole-body
tactile sensing technologies that are still not yet readily
available [7] for a whole-body coverage under humanoid
constraints. F/T sensors measurements –that are found only
at terminal points (feet or wrists), include (interfere with)
the forward links load. In such cases, the interaction forces
acting on the robot can be indirectly reconstructed, e.g. by
looking at the equilibrium status of the robot [8].
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Fig. 1. Residual computation for humanoid robots. (a) Using a classical
dynamic model, the effort due to an external force is unload to the ground
through the 6-D virtual joints composing the floating-base. (b) The use of a
floating-base dynamic model, more appropriate to the nature of humanoids,
allows to correctly compute the joint effort due to the external perturbation.

The measurement of the perturbation on the internal and
external state of the robot is of crucial importance for achiev-
ing physical interaction tasks. In fact, these information can
be used to (i) detect if the contact point is slipping, (ii) detect
unforeseen collisions and react to them, (iii) to evaluate the
dynamic characteristic of a contact, (iv) etc.

In this work we estimate the joint level effects due to exter-
nal forces using proprioceptive sensors only: the momentum-
based residual [9], that we name classical residual. This
technique, initially developed for fixed-base manipulators,
is outlined in II-B. In Sec. II-C, we show that its use for
humanoid robots is not proper (see Fig. 1).

Our main contributions are: a novel internal residual that
estimates correctly the effect of external forces at the joint
level and its computation algorithms, which outperform that
of the classical residual (Sec. III); a new external residual
that estimates the effect of the sum of all external forces
on the motion of the floating-base (Sec. V); the techniques
for merging the internal and external residual to estimate
the external contact forces (Sec. V) and even the location
when there is a single contact point (Sec. VI); an application
using the internal residual as feedback in a joint admittance
controller to comply with an external perturbation (Sec. IV).

Throughout the manuscript, we present a series of Matlab
simulation results using the dynamic model of a 34 degree of
freedom robot HRP-4. We use the Spatial Vector and Rigid-



Body Dynamics library1. The simulated low-level torque
control is composed by gravity compensation plus a PD
control of the joint positioning error. Contacts with the
ground are simulated as a simple spring-damper system.

II. BACKGROUND

A. Spatial algebra
We briefly recall spatial vector algebra and notation. The

reader may refer to [10], [11] and [12] for more details.
Consider the i-th (rigid) link of the robot kinematic chain:

We can express its motion and the force that acts on it
with the so-called spatial motion and force vectors, that
are elements of two dual vector spaces, M6 and F 6. With
reference to Fig. 2, v ∈ M6 and f ∈ F 6 represent the
spatial velocity of the body and the spatial force acting on
it. It is convenient to express the coordinate vector of a spatial
vector. For example, iv ∈ R6 and if ∈ R6 are the coordinate
vectors representing v and f in Fi, the i-th link reference
frame attached to the i-th joint. The vector iv collects the
angular and linear velocity around and along the axes of the
frame Fi. Similarly, if is filled with the moment and the
force acting on the body, and expressed with respect to Fi.

The coordinate vectors can be easily transformed from a
frame FA to a frame FB :

Bv = BXA
Av, and Bf = BX∗

A
Af . (1)

By virtue of the duality existing between the motion and
force vector spaces, it is BX∗

A = BX−T
A . The transform

matrix can be expressed as follows:

BXA =

[
BEA 0

−tAB × BEA
BEA

]
(2)

where BEA is the rotation matrix from FA to FB , and tAB×
is the skew symmetric matrix associated to the position
vector of the origin of FB in FA; 0 is a 3× 3 zero matrix2.

Finally, the spatial inertia I of the link is a 6×6 matrix that
includes information about the mass of the body, the position
of the center of mass expressed in Fi and the rotational
inertia around the center of mass. The spatial inertia can be
easily transformed from frame FA to FB :

BI =B X∗
A
AI AXB . (3)

The spatial inertia of two bodies i and j can be merged in a
composite rigid body, simply by summing their spatial inertia
expressed in a common frame AIc = AIi + AIj .

B. Residual estimator
The dynamic model of a rigid fixed-base robot is

H(q)q̈ + c(q, q̇) + g(q) = τ − τµ(q, q̇) + τ c, (4)

where H(q) is the robot inertia matrix, c(q, q̇) the centrifu-
gal and Coriolis term, and g(q) accounts for the gravity; q,
q̇ and q̈ are the vector of the n joint generalized coordinates
and its first and second time derivative, respectively3. τ are

1Online: royfeatherstone.org/spatial/v2/index.html
2We denote respectively with 1 and 0 the identity matrix and the zero

matrix –dimension has to be inferred from the context.
3In the rest of the paper we get rid of the dependence to the generalized

coordinates (e.g. H(q) → H) as much as possible.
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Fig. 2. Schematic representation of the i-th robot link and variables v (the
spatial velocity), f (spatial force), and I (spatial inertia matrix), expressed
w.r.t. the reference frame Fi, placed at the i-th joint.

the joint torques applied by the motors, τµ(q, q̇) is torques
due to friction and τ c represents those due to external contact
forces. Considering k external forces f c, with c = 1 . . . k,
their action on the joints is given by

τ c =

k∑
c=1

JTc f c . (5)

The n×m Jacobian Jc can be associated either to the contact
point (m = 3), at which the three-dimensional (3-D) contact
force f c acts, or to the body where the six-dimensional
(6-D) spatial force f c is applied (m = 6). In both cases,
the Jacobian matrix takes into account the kinematic chain
from the contact location to the robot base frame. Thus, the
external forces f c are expressed in the base frame.

If the robot has F/T sensors to measure some of the
external forces acting on the robot f c,F/T, it is possible to
divide τ c in a measured part τ̄ c and an unknown part τ̂ c

τ c = τ̄ c + τ̂ c =

k̄∑
c=1

JTc f c,F/T +

k̂∑
c=1

JTc f c , (6)

with k = k̄ + k̂.
The knowledge of the robot dynamic model, and the

measurement of q, q̇ and τm = τ − τµ + τ̄ c enables the
computation of the so-called classical residual vector [9]

r = Ki

[
Hq̇ −

∫ t

0

(τm +CT q̇ − g + r) ds

]
(7)

where Ki > 0 is the residual gain, andHq̇ is the generalized
angular momentum of the robot. The centrifugal and Coriolis
term has been factorized with the form c(q, q̇) = C(q, q̇)q̇,
that is built from Cristoffel symbols of second kind. By
evaluating the time derivative of r, and exploiting the well
known relation Ḣ = C + CT , it is straightforward to
show that the residual r is a filtered version of τ̂ c (ideally,
Ki → ∞ ⇒ r = τ̂ c) and can be used for estimating the
perturbation of the robot joints due to external forces. Using
the gain Ki it is possible to control the bandwidth of the
residual. With large Ki the signal will be more reactive, but
also more sensitive to noise. By lowering Ki, it is possible
to filter the noise, but the response will be slower. A discrete
time implementation of the residual is presented in [13]. The
factorized centrifugal and Coriolis term C can be computed
with a modified version of the Newton-Euler method [14].
Note however that the total computational complexity for
obtaining C is O(n2), since n instances of the Newton-Euler



routine needs to be called. Therefore, this procedure could
be time consuming for robots with a large number of joints.

The residual approach proved to be efficient with fixed-
base robots. Initially, it was proposed for detecting and
isolating actuators faults [15], then it was used for collision
detection and reaction [9], estimating the stiffness of variable
stiffness actuators [13] and the external forces [16].

C. The use of the classical residual with floating-base robots

When the robot does not have a fixed base, the dynamic
model (4) is still commonly used by considering six virtual
joints (three prismatic and three revolute) connected to a
point of the robot, called floating-base (FB). These virtual
joints allow taking into account the attitude of the robot with
respect to a virtual base (world) frame.

The virtual dynamic model is then described by

Hvq̈v +Cvq̇v + g(qv) = τ v − τ v,µ + τ c , (8)

where subscript v indicates the virtual base version of the
matrices and vectors characterizing the robot dynamics. In
this model, the n + 6 generalized coordinate vector qv is
composed by the 6 virtual joint coordinates qfb, and the
n robot joint coordinates q, i.e. qv =

(
qTfb qT

)T
. The

under-actuation of the floating-base is represented by having
zero motor torques associated to the virtual joints τ v =(
0T τT

)T
. The joint torque due to external contacts τ c

is split into measured τ̄ c and unknown τ̂ c torques as in (6).
The classical residual-based estimator of τ̂ c (7) can be

applied with the model (8) by adapting the matrices used
to the ones of the virtual floating-base model, e.g. Hvq̇v in
place of Hq̇. This estimated torque is similar to the fixed-
base case (6). In this case, the external force acting on the
contact point follows the kinematic chain to the FB; hence,
it is grounded to the virtual base frame.

Although the dynamic model (8) is consistent from an
external point-of-view, that is, it correctly models how the
robot behaves under the action of external forces, it is not
correct from an internal point-of-view. In fact, the perturba-
tions on the joints torque due to the external forces are not
considered in a proper way. For instance, assume an external
force acting on the right shoulder. According to this model,
the torque due to the external force (5) will have nonzero
values for those joints of the kinematic chain between the
shoulder and the FB, and zero values for the joints of the
legs. Clearly, this is not a realistic situation (see Fig. 1a). In
fact, the joint torque perturbations depend on the position of
the FB point, meaning that if it was positioned right on the
contact point, the force would be completely grounded to
the virtual joints, and no torques would be accounted for the
robot joints. Thus, the estimation computed with the classical
residual (7) is not able to perceive the effects of the external
forces at the joint level, and cannot be used in the same way
it is used for fixed-base manipulators.

To show this effect, we simulated a force applied on the
right shoulder of the HRP-4. The robot task is to maintain
the initial configuration. The external forces due to the
ground reactions, applied to the foot are measured using
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Fig. 3. Estimated joint force/torque due to the external contact (solid) and
real values (dashed). The six virtual joints (top), the right and left knees
pitch (middle up), the chest yaw (middle down) and norm of the error in
estimating the real toque due to the unknown external force (bottom).

F/T sensors, therefore assumed as known. Figure 3 shows
how the classical residual (7), applied on the model (8), is
not able to estimate the real joint torque due to the external
contact, that we obtained from the simulation (τ̂ c,real). In
fact, the classical residual estimates: torques/forces on the
virtual joints, which are senseless; no torques on the legs,
e.g at the knees pitch joints; wrong values for the joints
in the kinematic chain between the contact point and the
floating-base point, e.g. at the chest yaw joint.

III. A NOVEL RESIDUAL FOR HUMANOID ROBOTS

In the previous Section, we showed that the classical
residual estimator, based on the humanoid dynamic model
with virtual joints for the floating-base, fails to estimate the
internal joint torques due to external contacts. For overcom-
ing this problem we have to consider the under-actuated
nature of humanoid robots. To this end, we start from the
floating-base dynamic model described in [12] (p. 181),
which decouples the motion of the FB with the dynamic
of the robot joints[

Ic0 F

0 H fb

] [
a0

q̈

]
+

[
p̂c0
Cfb

]
=[

0
τ − τµ

]
+

k∑
c=1

[
1

J fb,T
c

]
0X∗

reff c

(9)

where we highlighted the contribution of the k external
forces f c, expressed in the world reference frame.

Let F0 be the frame attached to the FB, and a0 the accel-
eration of the FB. H fb = H − F T (Ic0)

−1
F is the floating

inertia matrix, with H the robot inertia matrix considering



Algorithm 1 Computing Ĉ and p̂c0

avp0 = −0ag
for i = 1 to n do

[XJ ,Si] = jcalc(jtype(i), qi)
vJ = Siq̇i
iXλ(i) = XJXT (i)
vi = iXλ(i)vλ(i) + vJ
avpi = iXλ(i)a

vp
λ(i) + vi × vJ

f i = Iia
vp
i + vi ×∗ Iivi

end for
f0 = I0a

vp
0 + v0 ×∗ I0vi

for i = n to 1 do
Ĉi = STi f i
fλ(i) = fλ(i) + iXT

λ(i)f i
end for
p̂c0 = f0

F0 as base, F is the 6 × n matrix whose columns are the
spatial forces required at the floating-base to support unit
acceleration about each joint variable and Ic0 is the composite
inertia of the whole robot. The 6-D vector p̂c0 is the spatial
bias force for the composite rigid body comprising the whole
floating-base system, and Cfb = Ĉ − F T (Ic0)

−1
p̂c0 is the

floating generalized bias force, with Ĉ joint level bias force4.
All spatial quantities are expressed in F0. For more details
on how this model is derived, please refer to [12].

The last part of the model (9) represents the action of
external forces that perturbs both the joints state and the
motion of the FB. The coordinate transformation 0X∗

ref is
used to transform external forces from the inertial reference
frame (world) to F0. The action of an external forces on the
joint is guided by the floating Jacobian transposed J fb,T

c =
JT0,c−F

T (Ic0)
−1, where J0,c is the n×m Jacobian of the

contact point (body) with respect to the F0.
As with the classical modeling, we can consider the joint

torque contribution of known external forces as follows

τ̄ c =

k̄∑
c=1

J fb,T
c

0X∗
reff c,F/T . (10)

To estimate the joint torques due to unknown external
contacts, we build a new residual using the second line in (9)

rint = Ki,int

[
H fbq̇ −

∫ t

0

(τm + Ḣ
fb
q̇ −Cfb + rint) ds

]
(11)

with Ki,int > 0. This residual is also a first order filter of the
joint torques due to external forces

rint ≈ τ̂ c = τ̂ c,real =

k̂∑
c=1

J fb,T
c

0X∗
reff c . (12)

Since this residual estimates the joint level effects of an
external force, we call it internal (floating-base) residual.

4The hat superscription indicates that the bias action of external forces
is not included, since we have expressed it separately.

Algorithm 2 Computing H , F , Ic0, Ḣ , Ḟ and İ
c

0

H = 0 , Ḣ = 0
for i = 1 to n do

[XJ ,Si] = jcalc(jtype(i), qi)
vJ = Siq̇i
iXλ(i) = XJXT (i)
iẊλ(i) = −vJ × iXλ(i)

Ici = Ii , İ
c

i = 0
end for
Ic0 = I0 , İ

c

0 = 0
for i = n to 1 do
Icλ(i) = Icλ(i) + iXT

λ(i) I
c
i
iXλ(i)

İ
c

λ(i) = İ
c

λ(i) + iXT
λ(i) İ

c

i
iXλ(i)+

iẊ
T

λ(i) I
c
i
iXλ(i) + iXT

λ(i) I
c
i
iẊλ(i)

F i = IciSi , Ḟ i = İ
c

iSi
Hii = STi F i , Ḣii = STi Ḟ i
j = i
while λ(j) 6= 0 do
Ḟ i = jXT

λ(j)Ḟ i + jẊ
T

λ(j)F i, F i = jXT
λ(j)F i

j = λ(j)
Hij = STi F i , Ḣij = STi Ḟ i
Hji = Hij , Ḣji = Ḣij

end while
Ḟ i = jXT

0 Ḟ i + jẊ
T

0 F i, F i = jXT
0 F i

end for

The time derivative of the floating-base inertia matrix Ḣ
fb

can be obtained analytically as

Ḣ
fb

= Ḣ − Ḟ T (Ic0)
−1
F − F T (Ic0)

−1
Ḟ−

F T
(
− (Ic0)

−1
İ
c

0 (Ic0)
−1
)
F .

(13)

Moreover, Ĉ and p̂c0 can be computed using the Algorithm 1,
and H , F , Ic0 and their time derivative using Algorithm 2,
which is an extension of the method proposed in [12]
(p. 183). In these algorithms, 0ag is the gravity acceleration
expressed in frame 0, λ(i) is the body index of the parent of
body i (0 ≤ λ(i) < i). jcalc(·) is a function that according
to the type of joint jtype(·) (e.g. revolute or prismatic)
returns the joint coordinate transform XJ (for revolute joint
it is a pure rotation of qi around the z-axis), and the joint
motion subspace vector Si that describe the motion axis of
the joint (for revolute joint Si = [ 0 0 1 0 0 0 ]

T ).
Summing up, the information needed to compute the

internal residual (11) are: joint generalized position q and
velocity q̇; FB rotation w.r.t the virtual base frame (for
computing 0ag) and FB velocity v0; joint motor torque
τ , joint friction torque τµ and joint torques due to known
external forces τ̄ c, for computing τm.

Thanks to Algorithms 1 and 2, the internal residual (11)
has a lower computational load w.r.t the classical residual (7).
In fact, the algorithm complexity is O(n). For instance, the
mean computational time to obtain the classical residual for
HRP-4 in the previous simulative example is 0.0795 s, while
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Fig. 4. Estimated joint torque due to the external force (solid) and real
values (dashed). The right and left knees pitch (top) and the chest yaw
(middle) and norm of the error in estimating the real toque (bottom).

it is 0.005 s for the internal residual, almost 16 times faster.
We simulated the same sinusoidal external force applied

on the right shoulder of the HRP-4 presented in the previous
section. Fig. 4 shows the estimated joint torques, using the
presented internal residual. The estimated torque at the knees
pitch and at the chest yaw joints are now correct, as well as
all the other joints (that we omit for lack of space). Note
that, compared to Fig. 3, the virtual joints are not presented
as their values are identically zero.

IV. AN APPLICATION OF THE INTERNAL RESIDUAL

The estimation of the joint torques due to external per-
turbation, as computed by the internal residual (11) can be
used in many ways, for example in the framework of physical
human-robot interaction. In order to show the potential and
the effectiveness of the proposed method, we propose a
possible application where HRP-4 is requested to move on
the direction of the external forces without knowing neither
their number, the contact points nor the force vector. For this
purpose, we implemented a simple joint admittance control
that generates the desired joint configuration as

q̇d = Kaτ̂ c,real , qd = q + q̇dT (14)

where Ka is a diagonal matrix of gains and T is the
simulation sampling time.

In this example, the robot stands at its position for 15 s;
at t = 5 s, we applied two downwards forces on the robot
shoulders, with a polynomial profile increasing till t = 8.5 s
and then decreasing till t = 12 s. The maximum value of the
forces was set to 5 N. As if a human push down the robot
expecting that the robot bends for a seating configuration.
We compared the results obtained by estimating τ̂ c,real with
r, as computed with (7), and rint, given by (11).

Fig. 5 shows snapshots of the simulation performing the
control with the classic residual, while Fig. 6 shows snap-
shots of the simulation obtained using the internal residual.
The entire motion can be seen in the accompanying video.

t = 4 s t = 6 s t = 11 s

Fig. 5. Reaction strategy to external perturbations using the classic residual:
simulation results. The joints effort due to the external forces (red lines) is
felt only at the pitch joint of the chest (gradually highlighted in red in
proportion to the effort). As a result, the admittance control acts only on
this joints, preventing an effective reaction strategy.

t = 4 s t = 6 s t = 11 s

Fig. 6. Reaction strategy to external perturbations using the internal
residual: simulation results. The joints effort due to the external forces (red
lines) is felt at all the involved joints of the kinematic chain (gradually
highlighted in red in proportion to the effort). The admittance control
implements a whole-body motion, ensuring an effective reaction strategy.

As explained in Sec. II-B, the classical residual does not
allow a whole-body reaction strategy, preventing a proper
robot behavior when trying to comply with external forces.
On the other side, the simulation that makes use of the
internal residual confirms the expectation of Sec. III. It
allows to perceive the effort due to the external force at
any interested joints of the robot. As a result, the robot can
comply with the perturbation with more degrees of freedom
and ensure a more effective reaction strategy.

V. EXTERNAL FORCE ESTIMATION

Now, we consider one of the most important use of the
residual: the estimation of the force applied on a contact
point. In [17] it is described how the residual r provides an
estimation of the k̂ unmeasured external forces f c from the
knowledge of the contact points location: f1

...
f k̂

 =
[
JT1 . . . JT

k̂

]#
r . (15)

Successively, how this estimation can be exploited in the
control is presented in [18]. The dynamic model of a floating-
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base robot with virtual joints (8) is not proper from an in-
ternal viewpoint (Sec. II-C), but the external behavior of the
robot is correctly modeled. This is similarly observed in the
estimation of the external forces. In fact, while the residual
estimator (7) is not able to represent properly the internal
torques, the estimated external forces using (15) are correct.
An example of the use of the classical residual for estimating
external forces on a humanoid robot is presented in [19],
where a particle filter takes advantage of the assumption of
the knowledge of the friction cone of the contact to estimate
the contact point and the applied force. Yet, we show that the
use of the floating-base dynamic model (9) is more flexible
because it allows to decouple the internal and external robot
behavior due to external forces. Thus, these information can
be used separately or combined for estimating the external
forces applied to the robot.

Considering the upper row of the decoupled dynamic
model (9), we have a relation between the robot motion and
the total external forces applied to the robot. Taking into
account this 6-D information, we can build a novel residual
that we call external (floating-base) residual:

rext = Ki,ext

[
Ic0v0 + F q̇ −∫ t

0

(İ
c

0v0 + Ḟ q̇ − p̂c0 + f̄ sum + rext) ds

] (16)

where Ki,a > 0 is a residual gain matrix, and f̄ sum =∑k̄
c=1

0X∗
reff c,F/T is the sum of all measured forces. Note

that all matrices to compute the external residual (16) are
obtained with Algorithms 1 and 2. Moreover, this residual is
much more reliable, since it does not need the measure of the
motors torque and the estimation of joints friction behavior,
which are usually more difficult to obtain. As previously, it
is simple to show that rext is a first order filter of the sum of
all unknown external forces applied on the robot (expressed

0 1 2 3 4 5

-4

-2

0

2

4

fo
rc
e
[N

]

0 1 2 3 4 5

Time [s]

0

0.02

0.04

‖r
e
f
E

0
r
e
x
t,
f
−
f
1
‖

Fig. 8. External force due to a single external contact (top): estimated
(solid) and real values (dashed). Norm of the estimation error (bottom)

in F0 frame)

rext ≈
k̂∑
c=1

0X∗
reff c . (17)

Using the external residual on the example initially pro-
posed in Sec. II-C, where a single sinusoidal force is applied
to the right shoulder, we obtained the estimation of the force
(expressed in the floating-base frame) as shown in Fig. 7.

With this new tool, if one need to know just the resultant
of all external forces applied to the robot, e.g. for push
recovering, you can use it directly. If we assume to have a
single unmeasured 3-D force f1 applied to one contact point,
whose position p1 is known/detected, its estimation is given
directly by the last three components of rext opportunely
rotated. In fact, it is

rext =

[
rext,m
rext,f

]
≈ 0X∗

ref

[
p1 × f1

f1

]
(18)

thus,

f1 ≈ refE0rext,f . (19)

Figure 8 shows the reconstructed external force applied to
the robot shoulders in the previous example.

When two or more unmeasured 3-D forces are applied to
known robot points, the external residual has to be combined
with the internal residual for estimating the forces. The most
straightforward method is to use pseudo-inversion f̂1

...
f̂k

 =

[
1 . . . 1

J fb,T
1 . . . J fb,T

k

]#
refX∗

0

[
rext
rint

]
.

(20)
When the two residual are combined, we should be

aware that they use different sensor information, affected
by different source of noise. The quality of the internal
residual is mainly disturbed by the noise on the measure
of the motor torque and by the estimated values of the joint
friction, while the external sensor depends on the estimation
of the orientation and the spatial velocity of the floating-base.
Thus, we suggest to use different values for Ki,int and Ki,ext.
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Fig. 9. Estimation of the external force and the contact point. The external
residual estimates the contact force f1 and the line l1 where it lies on.
The intersections of l1 with the robot links localize the possible contact
points (a). These points are used to compute the Jacobian and, along with
f1, the hypothetic joint effort due to the external perturbation as it was
acting on those points (b), (c). The real contact point corresponds to the
one producing the joint efforts that matches with the internal residual.

VI. CONTACT POINTS DETECTION AND FUTURE WORKS

One of the more challenging issue is finding the contact
position where the external forces are applied, knowing just
the number of contact points, or even estimating it. State-of-
the-art methods are based on using external sensors, such as
tactile skin [20] or depth camera [16].

We explore the possibility to combine the internal and
external residual to estimate the position of unforeseen
contacts, without using any extra sensors. Meanwhile, we
present here how the new two residual can be combined for
estimating both the contact position and the applied force,
under the assumption of one single unforeseen contact. This
situation is the same proposed in the previous Section, with
the external residual estimates (18), but in this case the
contact position p1 is considered unknown. Note that eq. (19)
gives an estimation of the applied force, even if the contact
position is unknown. At this point, we consider

refrext =

[
refrext,m
refrext,f

]
= 0XT

refrext , (21)

where, trivially refrext,f = refE0rext,f ≈ f1. From the upper
row of (18), we know that the contact point lies on the line

l1 =
refrext,f × refrext,m

‖refrext,f‖2
+ l refrext,f , l ∈ R. (22)

This line is oriented as f1 and passes through p1.
Using a CAD representation of the robot, or a simpler

representation with primitive shapes, we can individuate all
possible contact points on the robot surface that intersect
line l1. Thus, for all of them we compute the joint torque
perturbation we would have observed if the force refrext,f had
applied on that point. By comparing those joint torques with
the internal residual rint, we can evaluate which among the
possible contact points is compatible with the estimated in-
ternal behavior, thus we can discriminate the correct contact
position. This procedure is illustrated in Fig. 9.

For the experimental validation of the presented method
on the real HRP-4, we plan to use the two residuals to refine

the parameters of the robot dynamic model. In fact, when no
unknown contact are present, the residuals give an estimation
of the discrepancy between the robot dynamics and the used
model. From another side, we plan to improve the estimation
of the position and velocity of the floating-base by fusing
IMU and visual information.
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[9] A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, “Col-
lision detection and safe reaction with the DLR-III lightweight robot
arm,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006,
pp. 1623–1630.

[10] R. Featherstone, “A Beginner’s Guide to 6-D Vectors (Part 1),” IEEE
Robotics Automation Magazine, vol. 17, no. 3, pp. 83–94, 2010.

[11] ——, “A Beginner’s Guide to 6-D Vectors (Part 2),” IEEE Robotics
Automation Magazine, vol. 17, no. 4, pp. 88–99, 2010.

[12] ——, Rigid Body Dynamics Algorithms. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2008.

[13] F. Flacco, A. De Luca, I. Sardellitti, and N. G. Tsagarakis, “On-
line estimation of variable stiffness in flexible robot joints,” The Int.
Journal of Robotics Research, vol. 31, no. 13, pp. 1556–1577, 2012.

[14] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision
detection and reaction,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2008, pp. 3299–3305.

[15] A. De Luca and R. Mattone, “Actuator failure detection and isolation
using generalized momenta,” in IEEE Int. Conf. on Robotics and
Automation, 2003, pp. 634–639.

[16] E. Magrini, F. Flacco, and A. De Luca, “Estimation of contact forces
using a virtual force sensor,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2014, pp. 2126–2133.

[17] A. De Luca and F. Flacco, “Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration,” in Proc. IEEE Int.
Conf. on Biomed. Robotics and Biomechatronics, 2012, pp. 288–295.

[18] E. Magrini, F. Flacco, and A. De Luca, “Control of generalized contact
motion and force in physical human-robot interaction,” in IEEE Int.
Conf. on Robotics and Automation, 2015, pp. 2298–2304.

[19] L. Manuelli and R. Tedrake. (submitted in 2016) Localizing external
contact using proprioceptive sensors: The contact particle filter.

[20] A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, and L. Villani, “A
conformable force/tactile skin for physical human–robot interaction,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 41–48, 2016.


