Challenges to Support Scalable Software
Composition

Benjamin Benni, Sébastien Mosser and Michel Riveill

{benni,mosser,riveill}@i3s.unice.fr

Université Cote d’Azur, CNRS, 13S, France

Abstract. Software systems became so complex that the need to decom-
pose them into simpler, more manageable pieces became crucial. Because
of this, one has to compose every isolated pieces to build the expected sys-
tem. Thus, composition is a mechanism used in many different domains
developed from scratch through custom composition operators. There-
fore, nowadays composition use-cases are developed in isolation from
each other and do not reuse common mechanisms nor common abstrac-
tions. Do these composition mechanisms and operators can be shared
and reused across (other) domains? Is there any common abstractions
behind the composition in itself? This Ph.D. thesis, started in 2016, ex-
plores different composition examples, taken from real-life use-cases, to
explore these questions.

1 Introduction

Ultra large-scale systems are the new de-facto standard for software develop-
pers [3]. Those systems are so complex that the need to focus on specific parts
becomes crucial. When facing such complexity, the approach remains the same:
one has to cut a large problem into smaller ones until each sub-problem is known
to be solvable. Then, one has to compose every sub-solution to obtain the com-
plete, full and sound problem solution. Even though the composition paradigm
is used in many different domains, this composition process is developed and
implemented each time in a domain-specific way.

2 Background and Challenges

In order to stress out the scaling issues that the composition faces, we draw a
parallel between composition and cloud computing. In cloud computing, a sys-
tem must scale according to two dimensions: horizontally and vertically. The
ability of a system to accept new machines to face and absorb a large set of
client-requests is called the horizontal scaling. The vertical scaling is the abil-
ity to make a specific machine grow (in terms of memory, processing power,
or space disk) to locally absorb a peak of load without interfering with other
parts of the system. With respect to composition paradigm, horizontal scaling
represents the ability to support the definition of new composition operators

in many different domains. Composition vertical scaling is represented by the
ability for a application domain to reuse pre-defined abstractions, speeding up
its development.

Two different approaches exist to support the implementation of software
composition operators: a generic one, and domain-specific solutions. Both ap-
proaches do not scale for different reasons.

On one hand, the generic approach scales horizontally: by definition every
domain can adopt it. However, it does not scale vertically since it usually involves
non-polynomial algorithms that do not scale given the size of current real-life
industrial use cases. For example, any model can be represented as a graph.
When composing two models (i.e merging two graphs), one must check if there
are identical nodes between the two input models. Checking if a model (i.e. a
graph) is a subset of another one, is a sub-graph isomorphism problem, triggering
scalability issue related to the model size.

On the other hand, a domain-specific solution uses tailored-made or heuristic
based algorithms [5], [2] to scale vertically. When using such a solution, adding
a new domain is not possible, and reuse is not common, thus this approach does
not scale horizontally in terms of development and maintenance costs.

To quickly integrate composition operators of new domains, we need to heav-
ily reuse previous efforts and share common composition-based components.
Thus, we need to support domain-specific composition operators that scales in
terms of development cost and response time (c1); and to be able to ease the
addition of new application domains without interfering with other composition
use-cases (¢2). In the next section we will present two domains that use com-
position mechanisms. We will show the commonalities that can emerge when
studying composition.

3 Explored Application Domains

M4S (for Modeling for Scaling) is a research project that aims at maintaining an
international network of experts, from different communities, working with or
defining software composition operators. In this section, we take two domains,
part of the outcome of the M4S project: (i) building of artefacts in container-
based applications and (ii) interactions in anti-pattern fixes. We deliberately
took two examples as distant as possible from each other to underline that
composition operators are not domain-dependent.

Docker is the industrial de-facto standard for software and service deploy-
ment. It is a platform that allows one to ship and run a custom service through
the use of images and containers. An extension mechanism allows developers
to extend a black-box artefact from another one. Conflicts can occur with such
black-box extension, leading to anti-patterns or unexpected behaviors. For ex-
ample, a developer can install the python executable in its 3.5 version, while its
parent artefact relies on the incompatible 2.7 version. This version incompati-
bility leads the parent artefact to fail, leading to continuous deployment error.

Android is a mobile operating system that runs on more than 1.5 billion
of devices. This popularity arouses mobile-app developers attractiveness, thus
generates a growing number of Android applications with an important need
to shorten time-to-market. In this context, anti-patterns can occur and can be
harmful to the final application. Anti-patterns are bad practices that affect main-
tenance, evolution, or power-consumption of a software. They can be automat-
ically detected [4], finally producing a set of fixes to correct them. Fach fix,
correcting a specific anti-pattern, modify a portion of code. Fixes may be not
independents as multiple anti-patterns can be detected at the very same place
in the source code. In order to avoid non-deterministic correction, one needs to
detect such concurrent modifications and to analyse fixes application.

In both example depicted above, an interference detection mechanism and
a tracing system, among other things, would be useful. Both examples need to
check interferences either between software installations or anti-patterns fixes.
In case of detected conflict, a tracing system may be used to trace the original
issue, (e.g. the two Docker artefacts installing incompatible software versions).
Currently, these two needs would be implemented in isolation in two completely
different domains and no sharing nor common abstraction would have emerged.

4 A Framework Approach

We have shown that at least two common needs emerged: interference detection
and error tracing. The core idea of this Ph.D. thesis is to allow domain-experts
to share development efforts by formally defining abstract components they can
reuse, aligned to common needs in composition domain. This contribution targets
developers of systems using composition operators (e.g. Docker or Android) and
not the final user (i.e. developer actually using Docker or Android application).

The examples of composition given in the previous section are fully domain-
specific, all the operations and abstractions are strongly linked to the targeted
domain. In the given examples, interference detection and tracing system would
be two domain-agnostic reusable off-the-shelf components that developers of
Docker or Android platforms could use to support their work and help them focus
on their domain of expertise (Fig.1). Such component-based approach needs to
be based on common abstractions. These abstractions should represent either a
Docker composition, an anti-pattern fixes or any other composition operator.

Docker is based on a sequence of operations that must be executed to build
and run an artefact. Fixing an anti-pattern means to apply a sequence of actions
to repair the initial source code. Thus, a common abstraction, i.e. a pivot-model,
can emerge. We propose to use action-based modeling and reasoning techniques
as pivot model. Action-based model, illustrated in Fig. 2, replaces any model (in
the broadest sense of the term) by a sequence of actions that allows one to build
it [1]. Scaling is supported, among other things, by incremental checking and
parallelization allowed by action-based reasoning. Therefore, we can abstract
docker extension mechanism and anti-patterns fixes as actions, and base the
interference and tracing operators on it.

¢GGC.

Formal Execution Checker
Model Engine

] reuse

cecocec oo
.& Docker Android

Fig. 1. Framework approach with reusable components

createState("A")

createState("B")
o e} = setInitial("A")

link("A", "B", "c")

setFinal("B")

Fig. 2. Action-Based pivot model

Such component-based approach will allow one that wants to work with

composition (e.g. developers of Docker or Android platforms) to easily reuse
previous work. Thus, this approach match the horizontal and vertical scaling
requirements. Because action-based model is known to scale well [1], using it as
pivot-model will also support the vertical scaling requirement.

References

1]

Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting model
inconsistency through operation-based model construction. In Proceedings of the
30th International Conference on Software Engineering, ICSE 08, pages 511-520,
New York, NY, USA, 2008. ACM.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. Fine-grained and accurate source code differencing. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE 14, pages 313-324, New York, NY, USA, 2014. ACM.

Richard P. Gabriel, Linda Northrop, Douglas C. Schmidt, and Kevin Sullivan.
Ultra-large-scale systems. In Companion to the 21st ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages, and Applications, OOPSLA
’06, pages 632-634, New York, NY, USA, 2006. ACM.

Geoffrey Hecht, Romain Rouvoy, Naouel Moha, and Laurence Duchien. Detecting
Antipatterns in Android Apps. Research Report RR-8693, INRIA Lille ; INRIA,
March 2015.

Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refac-
toring uml models. In Proceedings of the 4th International Conference on
The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
«UML» ’01, pages 134-148, London, UK, UK, 2001. Springer-Verlag.

Scaling software composition

Benjamin benni www.i3s.unice.fr/~benni benni@i3s.unice.fr Summer 2017

Background

Utra Large o e ~ 7 | "
Segle Svaterms K ° AR T/ Different compositions
Y *llel) [=lle = AN) Domain-specific
Divide to conquer \ (1) muRn compaositions
Decompose to] e Common mechanisms
handle oe® I\ 4 reversed_ data 12) Common needs
How common are s there any common s there any common
P composition mechanisms” abstraction? operation?
£ - docker Use-cases an>3015
Composition . .
operator Fix anti-pattern #1 Fix anti-pattern #2 Fix anti-pattern #3
Python 2.7 E
E K E = complexity and concems spilit over services E E s detect interferences between fixes i
| " E = developper focus on her senvice E 4+ -+ ? i . avoid colisions i
extends ! = image as a black-box : : | | | :
! ! S . : n ' = avoid creation of new antl-patterns !
| 1= reuse only by extending existing image | . |
Python 8.5 ! | : + + ! = re-order the sequence of patch !
~ | = anti-pattems or unexpected ! : | | | o :
i ehavioUr Can 6eoUr i n n ? i = statical analysis of fix definition E
Challenges
Pivot model

¢GC .

Formal Execution Checker
Model Engine

" Fix anti-pattern #1

reuse

ceccce &@@A@

IIII 0

CreateState(“A”) From(®...”) DeleteStatement(“...”)
CreateState(“B”) Inst.all(“BIue”) CreateStatement(“.)
AddLink(“A”, “B”, “c”) Provides(“Red”) Link(“...”, “...”)
Setlnitial(“A”) w
setFinal(“B”)

Related work

Ultra-Large-Scale Systems: The Software Challenge of the Future — 2006 report.Sponsored by the United States Department of Defense

Impact on
Operation-based merging - Ernst Lippe and Norbert van Oosterom. 1992. In Proceedings of the fifth ACM SIGSOFT symposium on , p ,
Software development environments (SDE 5). ACM, New York, NY, USA vertical Scallng

Detecting model inconsistency through operation-based model construction - Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom |mcer abstractlons
Mens. 2008. In Proceedings of the 30th international conference on Software engineering (ICSE '08). ACM, New York, NY, USA, 511-520. INnfer common

operator

L aboratoire 13s, Université Cote d' Azur

Directed by Michel Rivell
Supenvised by Sebastien Mosser

UNIVERSITE :sa%:
COTE D'’AZUR "-%-:-

sophia antipolis

