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Abstract. We consider a cumulative scheduling problem where a task
duration and resource consumption are not fixed. The consumption pro-
file of the task, which can vary continuously over time, is a decision vari-
able of the problem to be determined and a task is completed as soon
as the integration over its time window of a non-decreasing and con-
tinuous processing rate function of the consumption profile has reached
a predefined amount of energy. The goal is to find a feasible schedule,
which is an NP-hard problem. For the case where functions are concave
and piecewise linear, we present two propagation algorithms. The first
one is the adaptation to concave functions of the variant of the energetic
reasoning previously established for linear functions. Furthermore, a full
characterization of the relevant intervals for time-window adjustments
is provided. The second algorithm combines a flow-based checker with
time-bound adjustments derived from the time-table disjunctive reason-
ing for the cumulative constraint. Complementarity of the algorithms is
assessed via their integration in a hybrid branch-and-bound and compu-
tational experiments on small-size instances.

Keywords: continuous scheduling, continuous resources, concave piece-
wise linear functions, energy constraints, energetic reasoning

This paper deals with a scheduling problem involving a set of tasks and a
continuously-divisible renewable resource of limited capacity shared by the tasks.
We consider the case where tasks resource requirement is not fixed but is part
of the problem and has to be determined. Thus, the duration of a task is not
fixed either but is determined by the resource requirement function as the task is
finished once it has received a necessary amount of energy. Furthermore, we con-
sider that the total energy received by a task is not equal to the total amount of
the resource used by it. Instead we have processing rate (or efficiency) functions,
which translates the required resource amounts into energy.

We perform an analysis of the structural properties of the problem for concave
piecewise linear processing rate functions. To our knowledge, this variant of
the cumulative constraint has never been considered in the literature. We show
first that the resource demand profile of a task can be restricted to a piecewise
constant function with break points at the starts and ends of tasks. From these
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theoretical properties, we are able to compute the minimal resource consumption
of a task inside an interval in O(1) and we prove that the set of the relevant
intervals of polynomial size that was shown sufficient for energetic reasoning with
linear functions is also sufficient in our case. Furthermore, a full characterization
of relevant intervals for time-window adjustments is provided, completing the
work for linear function. We also define a new propagation algorithm together
with a satisfiability test, which relies on the time-table disjunctive reasoning for
the cumulative constraint [6] for the first one and on a flow-based linear program
for the latter one. Finally, complementarity of the algorithms is assessed via
their integration in a hybrid branch-and-bound and computational experiments
on small-size instances.

1 Problem statement, properties and context

In this section, we formally define the Continuous Energy-Constrained Schedul-
ing Problem (CECSP). Then, we present a foundry application in details and
finally, we exhibit some properties of the CECSP, which we will use throughout
the paper.

1.1 Problem definition

In the CECSP, a set of tasks A = {1, . . . , n} has to be scheduled using a con-
tinuous, cumulative and renewable resource of capacity B. The resource amount
that a task requires during its processing time is not fixed but instead the re-
source usage of a task i ∈ A is a function of time, bi(t), that must be determined
in a continuous time setting (t ∈ R+). Once the task is started and until its
finishing time, its resource usage is constrained to lie between a maximum and
a minimum requirement, bmaxi and bmini 6= 0, respectively1. In addition, when
a task uses a part of the resource, it receives a certain amount of energy and
we say that a task is finished when it has received an energy Wi. This energy
is computed using a continuous, non-decreasing, concave and piecewise linear
power processing rate function [3]:

fi :
[bmini , bmaxi ] −→ R

bi(t) −→ fi(bi(t))

Furthermore, each task has a release date ri and a deadline di, and has to be
fully executed in [ri, di].

The CECSP consists of finding, for each task, a start time sti ∈ [esti, lsti],
an end time eti ∈ [eeti, leti], and its resource usage bi(t) ∈ R+, ∀t ∈ R+ such
that:

ri ≤ sti < eti ≤ di ∀i ∈ A (1)

1 Although all results presented in this paper can be adapted when bmin
i = 0, for ease

of notation, we assume bmin
i 6= 0.
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bmin
i ≤ bi(t) ≤ bmax

i ∀i ∈ A, ∀t ∈ [sti, eti] (2)∫ eti

sti

fi(bi(t))dt = Wi ∀i ∈ A (3)∑
i∈A

bi(t) ≤ B ∀t (4)

Example 1. In the example of Fig. 1, the energy received by task 2 is equal to
(2× 3 + 1) + (2× 4 + 1) + (2× 4 + 1) = 25; the amount of resource consumed is
equal to 3 + 4 + 4 = 11.

i ri di Wi bmin
i bmax

i
fi(b)

1 0 2 6 3 3 b

2 1 5 25 2 4 2b+ 1

3 0 6 21.5 1 5 Fig. 1c

a: Instance data.

1

3

B = 5

2

b: A solution.

f3(b) =


2 · b+ 1 if b ∈ [1, 2[
b+ 3 if b ∈ [2, 3[
1/4 · b+ 21/4 if b ∈ [3, 5]

b

fi(b)

3

5
6

6.5

1 2 3 5

c: Function f3(b).

Fig. 1: An example of instance and corresponding solution of CECSP.

Throughout this paper, we will use the following expression for function fi (see
Figure 2):

fi(bi(t)) =


ai1 · bi(t) + ci1 if bi(t) ∈ [bmini , xi1[
ai2 · bi(t) + ci2 if bi(t) ∈ [xi1, x

i
2[

...
aiPi
· bi(t) + ciPi

if bi(t) ∈ [xiPi−1, b
max
i ]

with Pi being the number of pieces of fi and xip, p ∈ {1, . . . , Pi − 1} its break-
points.

1.2 Context

The CECSP comes from an industrial problem. This problem, presented in [1],
arises in a pipe-manufacturing plant and more precisely, the foundry where metal
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b

fi(b)

bmin
i xi

1 xi
2 xi

3 xi
4

bmax
i

a
i1
·
b
i (t)

+
c
i1

a
i2
·
b
i (t)

+
c
i2

a
i3
·
b
i (t)

+
c
i3

a
i4
·
b
i (t)

+
c
i4

a
i5
·
b
i (t)

+
c
i5

Fig. 2: Illustration of the notations for function fi with Pi = 5.

is melted in induction furnaces. In this department, melting and heating use a
huge amount of energy especially electricity. The expenses of the plant for elec-
tricity represent more than half of the annual energy costs. The cost of electricity
depends on the total energy consumed and on penalties for power overrun in ref-
erence to a subscribed maximal power. The goal is to minimize the energy bill.

The foundry has several production lines (furnaces) and each metal operation
has to be assigned to a furnace and scheduled within a time window. Further-
more, an operation has a variable duration that depends on the power given to
the furnace. Thus, the electrical power of the furnaces, which can be adjusted
at any time to avoid exceeding a maximum limit, can be seen as a continu-
ous function of time to be determined. However, the function must lie within
a limit (due to physical and operational considerations); thus, a minimum and
a maximum power level must be satisfied for the melting operation. A melting
job is composed of three sequential parts: loading, heating and unloading. The
duration of loading and unloading are known but heating duration has to be
determined. The heating operation can be stopped once the necessary energy
has been received.

To solve this problem, the authors suppose that jobs have a piecewise con-
stant consumption profile and define a two-step method. In the first step, schedul-
ing of jobs on the furnaces is performed, using a constraint programming model,
with fixed job durations. The task sequence and assignment are then used as
data in the second step and a MILP model is used to determine their consump-
tion profile and duration. The algorithm then returns to the first step with new
jobs durations and it stops when the objective function is no more improved.

Unfortunately, the initially considered energy model was not sufficient to
achieve a good energy consumption. Therefore, a new problem, which can be
used to determine task starting and finishing times as well as their consumption
profile was introduced in [1], the Energy Scheduling Problem (EnSP). Due to the
complexity of the problem, the proposed model considers a time discretization,
which can lead to suboptimal or infeasible solutions by over-constraining the
problem. Furthermore, efficiency functions were not considered. In a continuous
time setting but still without considering the efficiency functions, constraint
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propagation algorithms based on the energetic reasoning concept were proposed
in [2] for the CECSP, which is the continuous version of the EnSP.

Despite the fact that processing rate functions were not considered in these
papers, actual processing rate functions in scheduling problems that involve
energy-consuming tasks are intrinsically continuous and non-linear. As a typical
example, the non-linear function given in Fig. 3 gives the shape of the processing
rate function of a fuel cell [7]. An extension of the work of [2] to linear processing
rate functions as well as several solution methods was proposed in [12, 13].

1.3 Properties and remarks

In [12], the authors use linear functions to approximate real-world ones. Despite
the fact that there exist many real-world processing functions, which are con-
cave [8, 11], approximating a function by a concave piecewise linear one is always
at least as good as an approximation by a linear function (see Example 2 below).
Furthermore, the authors of [12] prove the NP-hardness of their problem using a
reduction from the cumulative problem. This proof is still valid in our case and
then the CECSP with concave functions is NP-hard.

Example 2. Consider the neither concave nor convex function described in Fig-
ure 3. We approximate the function from below (to obtain a relaxation) with
a linear function (left side of the figure) or with a concave piecewise linear one
(right side of the figure).

bmax
ibmin

i
b

f(b)

bmax
ibmin

i
b

f(b)

Fig. 3: Approximation from below of a processing rate function by a linear one
(left) and by a concave piecewise linear one (right).

Clearly, the approximation is tighter with the concave piecewise linear func-
tion. Note also that this result is also valid for approximation from above or at
the median point.

In order to define an efficient solution method for our problem, we prove
that if there exists a solution for the CECSP, then a solution where all resource
usage functions, bi(t), are piecewise constant exists. This is the statement of the
following theorem:
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Theorem 1. Let I be a feasible instance of CECSP, with non-decreasing, con-
cave piecewise linear functions fi. A solution such that, for all i ∈ A, bi(t) is
piecewise constant, exists. Furthermore, ∀i ∈ A the breakpoints of bi(t) can be
restricted to the start and end times of the tasks.

Let us assume a solution S with non-piecewise constant bi(t) exists. Then, S
can be transform into a new solution S′ with piecewise constant b′i(t), ∀i ∈ A.

Before proving Theorem 1, we prove that, if ∃[t1, t2] where bi(t) is not con-
stant, then bi(t) can be set to its mean value over [t1, t2]. Doing so, i will consume
the same resource quantity in [t1, t2] and will received more energy.

Lemma 1. Let biq =
∫ t2
t1
bi(t)dt

t2−t1 . Then, we have:∫ t2

t1

biqdt =

∫ t2

t1

bi(t)dt (5)

∫ t2

t1

fi(biq)dt ≥
∫ t2

t1

fi(bi(t))dt (6)

Proof. Equation (5) is trivially verified by replacing biq by its value. To prove
that equation (6) is satisfied, we can use the following theorem, due to Jensen [9].

Theorem 2 (Jensen). Let α(t) and g(t) be two integrable functions on [t1, t2]
such that α(t) ≥ 0, ∀t ∈ [t1, t2]. We have:

φ

(∫ t2
t1
α(t)g(t)dt∫ t2
t1
α(t)dt

)
≥
∫ t2
t1
α(t)φ(g(t))dt∫ t2
t1
α(t)dt

(7)

where φ is a continuous concave function in [ mint∈[t1,t2] g(t),maxt∈[t1,t2] g(t)].

Replacing φ(t) by fi(t), g(t) by bi(t) and α(t) by the constant function equal to
1 gives the desired result. �

Example 3. Consider a task i and the concave piecewise linear efficiency function
described in Example 1, f3(b).

Consider an interval [t1, t2 = t1 + 6] and functions:

bi(t) =

{
3 if t ∈ [t1, t1 + 3[
1 if t ∈ [t1 + 3, t2]

which yields fi(bi(t)) =

{
6 if t ∈ [t1, t1 + 3[
3 if t ∈ [t1 + 3, t2]

t

bi(t)

t1

i

t2

1

2

3

−→
t

bi(t)

t1

i

t2

1

2

3

Fig. 4: Illustration of Lemma 1.

Thus,
∫ t2
t1
bi(t)dt = 12 and

∫ t2
t1
fi(bi(t))dt = 27. Applying Lemma 1 we can

replace bi(t) by biq = 12/6 = 2 between t1 and t2, which yields fi(biq) = 5,∫ t2
t1
biqdt = 12 and

∫ t2
t1
fi(biq)dt = 30 ≥ 27.
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Proof (Theorem 1). Let S be a feasible solution of I and let (tq){q=1..Q} be the
increasing series of distinct start and end time values (Q ≤ 2n). S′ can be defined
as follows:

– b′i(t) =


bi0 if t ∈ [t0, t1]

...
bi(Q−1) if t ∈ [tQ−1, tQ]

with biq =

∫ tq+1
tq

bi(t)dt

tq+1−tq

– st′i = sti
– et′i = min(τ |

∫ τ
sti
fi(b

′
i(t))dt = Wi) and then b′i(t) = 0, ∀t > et′i

t1 t2 t3 t4 t

bi(t)

1

2
4

3

a: bi(t) is not piecewise
constant.

−→
t

bi(t)

1

2
4

3

t1 t2 t3 t4

b: bi(t) is set to its mean
value over [tq, tq+1].

−→
t

bi(t)

1

2
4

3

t1 t2 t3 t4

c: eti is adjusted, so each
task receives exactly Wi

units of energy.

Fig. 5: Construction of S′ from S.

S′ clearly verifies the energy constraints (3) since it is defined in this way. S′

also satisfies the time window constraints (1) since sti ≤ st′i and eti ≥ et′i.
In addition, as S is a feasible solution, we have ∀q ∈ {1, . . . , Q} and ∀t ∈ [tq, tq+1]:∑

i∈A bi(t) ≤ B ⇒
∑
i∈A

∫ tq+1

tq
bi(t)dt ≤ B(tq+1 − tq)

⇒
∑
i∈A b

′
i(t) ≤

∑
i∈A biq =

∑
i∈A

∫ tq+1
tq

bi(t)dt

tq+1−tq ≤ B
and S′ also verifies the resource capacity constraints (4).
Finally, we can show that S′ satisfies the resource requirement constraints (2)
in a similar way. �

An interesting remark can be made about Theorem 1. Actually, in order to
find a solution to CECSP, we only have to find, for each task, its start time
sti, its end time eti and the quantity of resource allocated to i between two
consecutive start/end times biq.

2 Time-Table based reasoning

In this section, we first describe an algorithm which allows us to detect some
infeasibilities and then, another algorithm performing time-bound adjustments
is presented. Both are based on the well-known Time-Table reasoning [10] but
the first one combines it with a flow-based algorithm, whereas the second one
is an adaptation of the Time-Table Disjunctive reasoning for the cumulative
constraints [6].
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The Time-Table reasoning is based on the following observation: if the earliest
end time eeti of a task i is higher than its latest start time lsti then i must be
in process during interval [lsti, eeti]; this interval is called the compulsory part
of i. For the CECSP, as the resource usage of i is not fixed, we can only deduce
that the task will consume at least bmini units of resource (see Figure 6).

eetiesti

partie
oblig.

bmax
i i

a: i starts as early as possible.

lsti leti

partie
oblig.

bmax
i i

b: i starts as late as possible.

lsti eeti

compuls.
part

ibmin
i

c: i has to be in process
within [lsti, eeti]

Fig. 6: Compulsory part of a task i.

Aggregating all compulsory parts, we can compute in O(n2) the minimum profile
of the resource, denoted by TT (t),∀t and use it to detect infeasibility and to
perform time-bound adjustments.

2.1 Time-Table Flow based reasoning

The first algorithm described in this paper embeds the concept of compulsory
part into a flow-based linear program. This linear program allows us to detect
some infeasibility. Indeed, if the program has no solution, then the considered
CECSP instance is infeasible.
To describe this program, let (tq)q∈Q be the increasing series of distinct variable
domain bounds, i.e. tq gather all distinct latest/earliest start/end times of all
tasks. Clearly, |Q| ≤ 4 · n. Then, ∀[tq, tq+1], let βiq (resp. wiq) represent the
quantity of consumed resource (resp. received energy) in this interval. Thus, the
following linear program can be used as a checker:∑

i∈A
βiq ≤ B(tq+1 − tq) ∀q ∈ Q (8)

βiq ≥ bmini (tq+1 − tq) ∀i ∈ A ;∀q ∈ Q | smaxi ≤ tq ≤ emini (9)

βiq ≤ bmaxi (tq+1 − tq) ∀i ∈ A ;∀q ∈ Q (10)

βiq = 0 ∀i ∈ A ;∀q ∈ Q | tq 6∈ [ri, di] (11)

wiq ≤ aipβiq + cip(tq+1 − tq) ∀i ∈ A ;∀q ∈ Q ;∀p ∈ {1, . . . , Pi} (12)

wiq ≤Mβiq ∀i ∈ A ;∀q ∈ Q (13)∑
q∈Q

wiq = Wi ∀i ∈ A (14)

βiq ≥ 0, wiq ≥ 0 ∀i ∈ A ;∀q ∈ Q (15)

where M is some large enough constant.
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The compulsory part constraints are expressed by constraints (9). Constraints (8)
model the resource capacity limitations. Constraints (10) impose that the max-
imum resource requirements are satisfied. Constraints (11) set the resource con-
sumption of task i in [tq, tq+1] to be equal to 0, if [tq, tq+1] 6⊆ [ri, di]. Con-
straints (12) together with constraints (13) ensure a correct resource conversion.
Indeed, as fi is concave and piecewise linear, the first constraints ensure that
wiq can take the value fi(

βiq

tq+1−tq ) · (tq+1− tq) whereas the second ones set wiq to

zero if βiq = 0. Finally, constraints (14) state that the tasks received the required
energy.
Note that this test ensures the same level of consistency than the Time-Table
Overload Check [16]. Indeed, it does the Overload Check at the same time as
the Time-Table. This is the same consistency check that performs Time-Table
Edge-Finding [15].
We now describe the adaptation of the Time-Table Disjunctive reasoning for the
cumulative constraint [6] to our problem. This reasoning will be used to perform
time-bound adjustments on the start and end time variables.

2.2 Time-Table Disjunctive reasoning

The idea of the Time-Table Disjunctive reasoning is to take advantage of the
minimum resource profile to detect disjunctive pairs of tasks, i.e. tasks that
cannot be processed in parallel, dynamically.
Indeed, the disjunctive reasoning only considers pairs of tasks that exceed the
capacity of the resource if they are scheduled in parallel, i.e. bmini + bminj > B.
However, tasks in A \ {i, j} may not leave B units of resource available during
the overlap of i and j.
Furthermore, if task i has no compulsory part then an additional filtering can
be done when starting a task j at estj would make it overlap i in every schedule.
This is due to the fact that j cannot contain a time interval that i must overlap.
Therefore, the authors in [6] defined the smallest interval overlapping i in every
solution, called the minimum overlapping interval and denoted by moii. For the
CECSP, this interval is exactly [esti, lsti] \ [esti, eeti[, i.e the smallest interval
containing [eeti, lsti] (cf. Fig. 7). Note that, if a task has a compulsory part,
then moii = ∅.

eeti lstiesti leti

moii

moiii

i

Fig. 7: Minimum overlapping interval.
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Let etmaxi = ri + Wi/fi(b
min
i ). Then, using the minimum resource profile to

compute the available resource and to search for disjunctive pairs of tasks, the
time-table disjunctive reasoning can be stated as follows:

Proposition 1. Let i 6= j be two tasks having no compulsory consumption and
such that bmini + bminj + mint∈moiiTT (t) > B. If moii ⊆ [estj , et

max
j ] we must

have eeti ≤ stj and so estj can be adjusted to eeti.

Example 4. Consider the example of Figure 8 adapted from [6]. Due to the
minimum profile, i and j cannot overlap and, since j cannot be scheduled before
i (moii ⊆ [estj , et

max
j ]), j has to be scheduled after and then we can set estj to

eeti.

moiii

j

B − TT (t)

estj etmax
j

eeti lsti

bmax
i

bmin
j

Fig. 8: Example of time-table disjunctive adjustments.

A symmetrical reasoning allows to make adjustment of letj . Furthermore, Propo-
sition 1 can easily be extended to the case where tasks i and j has no compulsory
consumption following the method presented in [6] for the cumulative constraint.

3 Energetic reasoning

In this section, we present the extension of the well-known energetic reasoning
to the CECSP with concave and piecewise linear processing rate functions. This
work extends the work of [13] for linear processing rate functions. The full char-
acterization of relevant intervals for the time-bound adjustments is also provided,
extending the result for the cumulative constraint [4]. This characterization was
not presented in [13].
First, we present the central idea of the reasoning and we use it to provide a
satisfiability test as well as time-bound adjustments. The second part of this
section will be dedicated to the characterization of relevant intervals.

3.1 Satisfiability test and time-bound adjustments

The idea of the energetic reasoning is to test whether the available resource
within an interval [t1, t2] is sufficient to provide the minimum resource quantity
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needed by each task i in this interval, denoted by β(i, t1, t2). If not, then the
corresponding instance of the CECSP is infeasible.

Theorem 3 ([5]). Let I be an instance of CECSP. If there exists (t1, t2) such
that B(t2 − t1)−

∑
i∈A β(i, t1, t2) < 0 then I is infeasible.

In order to compute the minimum resource consumption of task i in [t1, t2],
we first have to compute the minimum energy requirement of i in this inter-
val, denoted by w(i, t1, t2). This minimum requirement is obtained by schedul-
ing as much energy as possible outside the interval [t1, t2] while satisfying con-
straints (1)–(4). This always corresponds to a case where the activity is:

– left-shifted: the task starts at esti and is scheduled at its maximum require-
ment between esti and t1,

– right-shifted: the task ends at leti and is scheduled at its maximum require-
ment between t2 and leti,

– or both: when scheduling at minimum requirement inside [t1, t2] implies to
have a non-zero requirement both in [esti, t1] and in [t2, leti].

We denote by ωLS(i, t1, t2) (resp. ωRS(i, t1, t2)) the minimum energy requirement
of task i if it is shifted as early as possible in [t1, t2] (resp. as late as possible).
Since both cases are symmetric, we only describe the first one. Thus, ωLS(i, t1, t2)
is equal to:

expression condition Figure
0 t1 ≥ eeti ∨ t2 ≤ esti -

Wi t1 ≤ esti ∧ leti ≤ t2 -

Wi − fi(bmaxi )(t1 − esti) esti ≤ t1 ≤ eeti ∧ leti ≤ t2 8a

min

 Wi − fi(bmaxi )(t1 − esti),

max

{
Wi − fi(bmaxi )(t1 − esti + leti − t2)),

fi(b
min
i )(t2 − t1)

} esti ≤ t1 < t2 ≤ leti 8b

max

{
Wi − fi(bmaxi )(leti − t2)),

fi(b
min
i )(t2 − esti)

}
t1 ≤ esti ∧ t2 < leti 8c

The three last cases are illustrated in Figure 9. Thus, the minimum energy
requirement in [t1, t2] is:

w(i, t1, t2) = min
(
ωLS(i, t1, t2), ωRS(i, t1, t2)

)
(16)

esti eeti letit1 t2

bmin
i

bmax
i

a: as much energy as possible
is scheduled before t1.

esti letit1 t2

bmin
i

bmax
i

b: as much energy as possible
is scheduled before t1 and af-
ter t2.

esti letit1 t2

bmin
i

bmax
i

c: as much energy as possible
is scheduled after t2.
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Fig. 9: Computation of ωLS(i, t1, t2).

The minimum energy requirement is then used to compute the minimum resource
requirement. First, let I = [esti, leti] ∩ [t1, t2], then β(i, t1, t2) can be computed
by solving the following program:

minimize

∫
I

bi(t)dt (17)

subject to

∫
I

fi(bi(t))dt ≥ w(i, t1, t2) (18)

bi(t) ≥ bmini (19)

Indeed, the goal is to find the minimum resource quantity (equation (17)) i has
to consume in I to receive an energy w(i, t1, t2) (equation (18)). In addition, we
have to make sure that the minimum requirement constraints are satisfied by
the solution of the program (equation (19)).
Then, Lemma 1 can be used to simplify the program. Actually, the lemma applied
to the problem involving only task i implies a solution with constant bi(t), say
bi(t) = b̃i exists and then the program can be rewritten as follows:

minimize b̃i|I|
subject to fi(b̃i)|I| ≥ w(i, t1, t2)

b̃i ≥ bmini

Thus, we have two cases to consider: either the task can be scheduled at bmini

during the whole interval I or not. In the first case, we can remove the second
constraint and we obtain:

b̃i = min(b ∈ [0, bmaxi ] | fi(b) ≥ w(i, t1, t2)/|I|)
⇒ b̃i = f−1i (w(i, t1, t2)/|I|)

Since fi is concave and piecewise linear, f−1i can easily be computed2 and b̃i|I| =
f−1i (w(i, t1, t2)/|I|) · |I| = β(i, t1, t2) is equal to:

f−1i

(
w(i, t1, t2)

|I|

)
=



w(i,t1,t2)−ci0|I|
ai0|I| if w(i,t1,t2)

|I| ∈ [fi(b
min
i ), fi(γ

i
1)]

w(i,t1,t2)−ci1|I|
ai1|I| if w(i,t1,t2)

|I| ∈ [fi(γ
i
1), fi(γ

i
2)]

...
w(i,t1,t2)−ciPi

|I|
aiPi
|I| if w(i,t1,t2)

|I| ∈ [fi(γ
i
Pi

), fi(b
max
i )]

The second case corresponds to the case where executing the task at bmini during
the whole interval I give too much energy to the task, i.e. w(i, t1, t2) < |I| ·
fi(b

min
i ). In this case, β(i, t1, t2) is equal to bmini · w(i, t1, t2)/fi(b

min
i ).

2 Indeed, suppose that fi is constant in some pieces the first one being p ∈ {1, . . . , Pi},
which would cause problem to compute f−1

i . In that case, fi must be constant on
all pieces {p, . . . , Pi} due to concavity. It follows that bmax

i can be reduced to the
start of piece p.
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Finally, the expression of the minimum resource consumption is:

β(i, t1, t2) = max

{
bmin
i

w(i, t1, t2)

fi(bmin
i )

, max
p∈{1,...,Pi}

(
1

aip
(w(i, t1, t2)− |I|cip)

)}
(20)

Example 5. Consider the instance described in Example 1. In particular, we
compute w(i, t1, t2) and β(i, t1, t2) for task 3 and interval [0, 4] and [0, 6].
For interval [0, 6], we have w(3, 0, 6) = W3 = 21.5 since [est3, let3] ⊆ [t1, t2].
Then, the computation of β(3, 0, 6) falls into the case where w(3, 0, 6) ≥
f3(bmin3 ) · · · |I| = 18. Thus, w(3, 0, 6)/|I| = 21.5/6 ' 3.583 belonging to interval
[f3(1), f3(2)[= [2, 5[, we have (see Figure 9a):

β(3, 0, 6) =
w(3, 0, 6)− 1 · 6

2 · 6
· 6 =

21.5− 6

12
· 6 =

31

4

For interval [0, 4], we have w(3, 0, 4) = W3 − 2 · f3(bmax3 ) = 8.5. Here, the com-
putation of β(3, 0, 4) falls into the case where w(3, 0, 4) < f3(bmin3 ) · · · |I| = 12.
Thus, we have (see Figure 9b):

β(3, 0, 4) = bmin3 · w(3, 0, 4)

f3(bmin3 )
= 1 · 8.5

3
=

17

6

t1 t2

bmax
3

bmin
3 3

' 1.29

a: Computation of β(3, 0, 6).

t1 t2

bmax
3

bmin
3

' 1.17

3

b: Computation of β(3, 0, 4).

Fig. 10: Example of computation of β(i, t1, t2).

We now describe how this quantity is used to perform time-bound adjustments.
These adjustments are similar to the ones for linear functions described in [12],
so we just briefly present them.
We start by defining some notation. We denote by βLS(i, t1, t2) (respectively
βRS(i, t1, t2)) the minimal resource consumption corresponding to ωLS(i, t1, t2)
(resp. ωRS(i, t1, t2)).
We have:

βLS(i, t1, t2) = max

{
bmini

ωLS(i, t1, t2)

fi(bmini )
, max
p∈{1,...,Pi}

(
1

aip
(ωLS(i, t1, t2)− |I|cip)

)}
and a similar expression for βRS(i, t1, t2).
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Lemma 2. If t1 > ri and there exists [t1, t2] such that:∑
j∈A
j 6=i

β(j, t1, t2) + βRS(i, t1, t2)) > B(t2 − t1)

then,
lsti ≤ t1 − 1

bmax
i

(
∑
j∈A
j 6=i

β(j, t1, t2) + βRS(i, t1, t2)−B(t2 − t1)))

and, if bmini 6= 0,
leti ≤ t1 + 1

bmin
i

(B(t2 − t1)−
∑
j∈A
j 6=i

β(j, t1, t2))

Indeed, the only configuration for which task i starts after t1 and leading to
the minimum resource consumption inside [t1, t2] is if the task is right-shifted.
Therefore,

∑
j∈A; j 6=i β(j, t1, t2) + βRS(i, t1, t2) is the total minimum resource

consumption in [t1, t2] when task i starts after t1. Hence, if this quantity is greater
than the quantity of available resource in [t1, t2], i has to start before t1. Oth-

erwise
∑
j∈A; j 6=i β(j, t1, t2) +

∫ t2
t1
bi(t) ≥

∑
j∈A; j 6=i β(j, t1, t2) + βRS(i, t1, t2) ≥

B(t2 − t1).
Furthermore,

∑
j∈A; j 6=i β(t1, t2, j) + βRS(i, t1, t2) − B(t2 − t1) is the minimum

amount of resource that has to be allocated to i before t1. Hence, we can divide
this number by bmaxi to obtain a valid upper bound of the start time of i. Similar
arguments lead to the adjustment on leti. An example of such adjustments can
be found in [12].

3.2 Relevant intervals for the energetic reasoning

In [12], the authors present a full characterization of the relevant intervals for the
satisfiability test in the case where processing rate functions are linear. These
intervals are exactly the ones that are relevant for the case of concave piecewise
linear functions. Furthermore, as these intervals are included in the set of relevant
intervals for the time-bound adjustments, we only present the second results.
Recall that an adjustment can be performed on task i if B(t2 − t1)−∑
i 6=j β(j, t1, t2)− βRS(i, t1, t2) < 0. Thus, we are looking for all intervals [t1, t2]

such that the function B(t2 − t1)−
∑
i6=j β(j, t1, t2)− βRS(i, t1, t2) is negative.

Theorem 4 ([4]). B(t2 − t1)−
∑
i 6=j β(j, t1, t2)− βRS(i, t1, t2) is locally mini-

mum in interval [t1, t2] only if one of the four following conditions is satisfied:

∃(k, `),
δ+β(k, t1, t2)

δt1
<

δ−β(k, t1, t2)

δt1
∧

δ+β(`, t1, t2)

δt2
<

δ−β(`, t1, t2)

δt2
(21)

∃k,
δ+β(k, t1, t2)

δt1
<

δ−β(k, t1, t2)

δt1
∧ δ+βRS(i, t1, t2)

δt2
<
δ−βRS(i, t1, t2)

δt2
(22)

∃`, δ+βRS(i, t1, t2)

δt1
<
δ−βRS(i, t1, t2)

δt1
∧

δ+β(`, t1, t2)

δt2
<

δ−β(`, t1, t2)

δt2
(23)

δ+βRS(i, t1, t2)

δt1
<
δ−βRS(i, t1, t2)

δt1
∧ δ+βRS(i, t1, t2)

δt2
<
δ−βRS(i, t1, t2)

δt2
(24)
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with δ+f
δt2

(resp. δ−f
δt2

) the right (resp. left) derivative of f w.r.t. t2.

This theorem is then used to characterize, for a task i and a fixed t1, the value
of function t2 → β(i, t1, t2) or t2 → βRS(i, t1, t2) for which its left derivative is
greater than its right, and reciprocally for fixed t2. Then, the two results are
combined to obtain the list of relevant intervals [t1, t2].
Since there are many cases to consider, we only present how we obtain relevant
t2 for the case where Wi > fi(b

min
i )(leti − esti). The other cases to consider are

bmini = bmaxi (see [4]) and Wi ≤ fi(bmini )(leti − esti).
First, let H (resp. I ′) be the intersection point of line fi(b

min
i )(t2 − t1) = Wi −

(leti − t2)fi(b
max
i ) and fi(b

min
i )(t2 − t1) = Wi − (t1 − esti)fi(bmaxi ) (resp. Wi −

(t1 − esti + leti − t2)fi(b
max
i ) = fi(b

min
i )(t2 − t1) and t2 = di).

Also, let U(t1) (resp. D(t1)) be the point t2 such that fi(b
min
i )(t2 − t1) = Wi −

(t1 − esti)fi(bmaxi ) (resp. fi(b
min
i )(t2 − t1) = Wi − (leti − t2)fi(b

max
i )

Lemma 3. Let i be a task s.t. Wi > fi(b
min
i )(leti − esti). Then, for any fixed

t1, at most two intervals [t1, t2] satisfying the second condition of (21) exist and
at most two intervals [t1, t2] satisfying the second condition of (22) exist. These
intervals are described in Table 1.

function relevant intervals condition

β(i, t1, t2)

[t1, leti] if t1 ≤ esti
[t1, leti] and [t1, D(t1)] else if t1 ≤ I

′
t1

[t1, U(t1)] and [t1, D(t1)] else if t1 < lsti ∨ t1 < Ht1

[t1, leti + esti − t1] else if eeti < lsti ∧ t1 ≥ Ht1

[t1, U(t1)] else if lsti ≤ eeti ∧ t1 ≥ lsti
none else if t1 ≥ eeti

βRS(i, t1, t2)
[t1, leti] if t1 ≤ esti ∧ leti > t1 ≥ lsti

[t1, leti] and [t1, D(t1)] if t1 > esti ∧ t1 < lsti
none otherwise

Table 1: Relevant t2 for case Wi > fi(b
min
i )(leti − esti).

with Ht1 (resp. I ′t1) being the projection on the x-axis of point H (resp. I ′).

Proof. We only present how to obtain relevant t2 for the second line of Table 1.
The other cases can be obtained in a similar way. In order to prove the lemma,
we analyze the variation of t2 → β(i, t1, t2). Fig. 11 represents these variations.

where exprip = 1
aip

(Wi − fi(bmaxi )(leti − t2 + t1 − esti)− cip(t2 − t1)) The in-

tervals for which the left derivative is smaller than the right are [t1, leti] and
[t1, D(t1)]. Indeed, since fi is a concave piecewise linear function, we have

aip > aip+1 and cip < cip+1, and we have
δ−exprip

δt2
<

δ+exprip+1

δt2
�
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lsti D(t1) leti

0

b
m

i
n

i

f
i
(b

m
i
n

i
) (W

i −
f
i (b

m
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x

i
)(let

i −
t
2 ))

b
m

in
i

(t
2
−
t
1 )

ex
p
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ex
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i1

ex
p
r
i2

ex
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b
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i
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i
) (W

i −
f
i (b

m
a
x

i
)(t

1
−
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i ))

Fig. 11: Relevant intervals for case esti < t1 ≤ I ′t1 .

4 Computational Results

In this section, we start by presenting how we have conducted our experiments
on the algorithms stated in this paper. Then, we describe the results of these
experiments.
Our propagation algorithms and satisfiability tests were embedded in a hybrid
branch-and-bound combining branching scheme and mixed-integer linear pro-
gramming (MILP). This procedure is an adaptation of the one in [12] for linear
functions.

Hybrid branch-and-bound At first, a branch-and-bound algorithm is used
to reduce the size of possible start and end intervals (until their size is less than
a given ε > 0) and, then, an event-based MILP is used in order to find exact
task start and end times and to determine the quantity of resource allocated to
i between two consecutive events.
The branching procedure is as follows. At the beginning, a task can start (resp.
end) at any time sti ∈ [esti, lsti] (resp eti ∈ [eeti, leti]). The idea is, at each
node, to reduce the size of one of these intervals by creating two nodes splitting
the interval into two parts of equal size.
At each node, we apply one or both of the satisfiability tests described above and,
if the test does not fail, we perform the corresponding time-window adjustments.
We continue this procedure using a depth-first strategy until all intervals are
smaller than an ε. When it happens, the remaining solution space is searched
via the event-based MILP.
The MILP used in our algorithm is based on the on/off event-based formulation
for the CECSP with linear processing rate functions [12]. In this formulation,
an event corresponds either to a task start or a task end time. These events are
represented by a set of continuous variables te and E = {1, . . . , 2n} represents
the index set of these events. We use a binary variable zie to assign the different
event dates to the start and end times of the tasks. Indeed, zie is equal to 1 if
and only if task i is in process during interval [te, te+1]. Finally, two continuous
variables bie and wie are also defined. These variables stand for the quantity of
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resource used by task i and for the energy received by i between events te and
te+1. Since the event-based MILP used for our case is almost the same than
the one used for linear functions, we are not describing the model here. The
main difference lies in the constraints converting resource into energy. These
constraints were as follows in the previous model:

Wie ≤ aiBie + ci(te+1 − te) ∀i ∈ A ;∀e ∈ E

and are replaced by the following ones in the new model:

Wie ≤ aipBie + cip(te+1 − te) ∀i ∈ A ; ∀p ∈ Pi; ∀e ∈ E

Experiments The experiments are conducted on an Intel Core i7-4770 pro-
cessor with 4 cores and 8 gigabytes of RAM under the 64-bit Ubuntu 12.04
operating system. The hybrid branch-and-bound algorithm is coded in C++
and uses CPLEX 12.6 with 2 threads at each leaf.
The heuristic tested for choosing the variable on which the algorithm will branch
is the following one: we choose the variable corresponding to the smallest size
interval among all [esti, lsti] and [eeti, leti]. The parameter ε used in the exper-
iments is equal to 5 since this parameter value provides the best results for the
case of linear efficiency functions [12].
To generate instances with concave piecewise linear processing rate functions,
we use instances of [12] with identical functions. First, the instances were solved
using the time-indexed mixed integer linear program described in [12]. In this
formulation, the planning horizon is discretized in T time periods of size 1 and
a variable bit is used to represent the resource consumption of task i in period t.
The efficiency functions fi are generated by randomly selecting a number of
pieces Pi. The interval [bmini , bmaxi ] is then divided into Pi parts. For each piece p,
a random coefficient aip such that aip < aip−1 is generated and cip is computed to

ensure the continuity of the function. Finally, Wi is set to Wi =
∑T
t=1 fi(bit). We

repeat this process until we obtain 80 instances with 10 tasks and 140 instances
with 20 tasks.
Table 2 presents the results of the hybrid branch-and-bound with a time limit of
7200 seconds. The first row describes the results of the hybrid branch-and-bound
with the time-table flow based reasoning (TTFlow), the second row with the
energetic reasoning (ER), the third row with the time-table disjunctive reasoning
(TTDR) and the last row with both ER and TTFlow tests. For each row, the first
column presents the time needed to solve the instances, the second column shows
the time spent in the tree, the third column the percentage of solved instances,
the fourth column the number of solved MILPs (if the instance is solved), the
fifth column the number of explored nodes (if the instance is solved), and the
last column describes the percentage of “out of memory”.
We can see that the time-table flow and the time-table disjunctive reasoning
provide the best results. For the 10-task instances, the time-table flow solves the
instances faster but the time spent in the tree is higher than for the time-table
disjunctive reasoning while the number of nodes and MILP solved is equivalent
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#tasks reasoning total time(s) tree time(s) %solved #MILP #nodes %OOM

10

TTFlow 124.4 28.3 96.6 1 14.9 3.4
ER 1176 8.26 84.7 3346.6 6732.4 1.7

TTDR 244.3 4.80 96.6 1 14.9 3.4
ER + TTFlow 542.1 25.4 86.4 1 16.8 3.4

20

TTFlow 83.8 27.3 99.2 1.01 37.5 0.8
ER 4961.9 9.71 31.1 1.03 36.9 3.8

TTDR 79.1 22.6 99.2 1 37.0 0.8
ER + TTFlow 834.4 38.5 70.1 1.01 100.8 8.4

Table 2: Results of the hybrid branch-and-bound with ε = 5.

for both algorithms. For the 20-task instances, both algorithms achieved similar
performances both in terms of solving time and solved instances.
The energetic reasoning has the worst performances and the combination of
the time-table flow and the energetic reasoning improves significantly the per-
formances of the solution method in comparison with the use of the energetic
reasoning alone. However, the time-table flow and time-table disjunctive reason-
ing is better than these two algorithms.
Another remark we can do concerns the huge difference in terms of number of
MILPs and nodes between the resolution of the 10-task and 20-task instances
with the energetic reasoning. This can be explained by the small number of
solved instances for the 20-task instances. Indeed, the number of nodes/MILPs
in the table is associated only with solved instances.
In addition, we can see that most of the time is spent in the MILP resolution.
Therefore, improving the formulation is one of the main perspectives of this
work.

Conclusions

This paper presents the extension of the energetic reasoning and the time-table
disjunctive reasoning to the CECSP with concave and piecewise linear processing
rate functions. A full characterization of the relevant intervals on which the time-
bound adjustments of the energetic reasoning has to be applied is provided. Both
methods are then embedded in a hybrid branch-and-bound and tested on small-
size instances.
The interest of considering concave piecewise processing rate functions is shown
through examples and experiments. Furthermore, all the new results described
in this paper are still valid for linear functions.
For the perspectives, time has to be spent on the instance generation and on
the resolution of larger instances. One way of doing this will be by improving
the MILP. Also, the method can be improved by the use of dedicated branch-
ing heuristics. Finally, the consideration of objective functions is an important
perspective of this work.
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