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Abstract. We study a two-level multiview learning with more than two views
under the PAC-Bayesian framework. This approach, sometimes referred as late
fusion, consists in learning sequentially multiple view-specific classifiers at the first
level, and then combining these view-specific classifiers at the second level. Our
main theoretical result is a generalization bound on the risk of the majority vote
which exhibits a term of diversity in the predictions of the view-specific classifiers.
From this result it comes out that controlling the trade-off between diversity and
accuracy is a key element for multiview learning, which complements other results
in multiview learning. Finally, we experiment our principle on multiview datasets
extracted from the Reuters RCV1/RCV2 collection.

Keywords: PAC-Bayesian Theory, Multiview Learning

1 Introduction

With the ever-increasing observations produced by more than one source, multiview
learning has been expanding over the past decade, spurred by the seminal work of Blum
and Mitchell [4] on co-training. Most of the existing methods try to combine multimodal
information, either by directly merging the views or by combining models learned from
the different views5 [28], in order to produce a model more reliable for the considered
task. Our goal is to propose a theoretically grounded criteria to “correctly” combine
the views. With this in mind we propose to study multiview learning through the PAC-
Bayesian framework (introduced in [21]) that allows to derive generalization bounds
for models that are expressed as a combination over a set of voters. When faced with
learning from one view, the PAC-Bayesian theory assumes a prior distribution over the
voters involved in the combination, and aims at learning—from the learning sample—
a posterior distribution that leads to a well-performing combination expressed as a

5 The fusion of descriptions, resp. of models, is sometimes called Early Fusion, resp. Late Fusion.
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Fig. 1. Example of the multiview distributions hierarchy with 3 views. For all views v ∈ {1, 2, 3},
we have a set of voters Hv = {hv

1 , . . . , h
v
nv} on which we consider prior Pv view-specific

distribution (in blue), and we consider a hyper-prior π distribution (in green) over the set of 3
views. The objective is to learn a posterior Qv (in red) view-specific distributions and a hyper-
posterior ρ distribution (in orange) leading to a good model. The length of a rectangle represents
the weight (or probability) assigned to a voter or a view.

weighted majority vote. In this paper we extend the PAC-Bayesian theory to multiview
with more than two views. Concretely, given a set of view-specific classifiers, we define
a hierarchy of posterior and prior distributions over the views, such that (i) for each view
v, we consider prior Pv and posterior Qv distributions over each view-specific voters’
set, and (ii) a prior π and a posterior ρ distribution over the set of views (see Figure 1),
respectively called hyper-prior and hyper-posterior6. In this way, our proposed approach
encompasses the one of Amini et al. [1] that considered uniform distribution to combine
the view-specific classifiers’ predictions. Moreover, compared to the PAC-Bayesian
work of Sun et al. [29], we are interested here to the more general and natural case of
multiview learning with more than two views. Note also that Lecué and Rigollet [18]
proposed a non-PAC-Bayesian theoretical analysis of a combination of voters (called
Q-Aggregation) that is able to take into account a prior and a posterior distribution but
in a single-view setting.

Our theoretical study also includes a notion of disagreement between all the voters,
allowing to take into account a notion of diversity between them which is known as a key
element in multiview learning [1, 6, 13, 20]. Finally, we empirically evaluate a two-level
learning approach on the Reuters RCV1/RCV2 corpus to show that our analysis is sound.

In the next section, we recall the general PAC-Bayesian setup, and present PAC-
Bayesian expectation bounds—while most of the usual PAC-Bayesian bounds are proba-

6 Our notion of hyper-prior and hyper-posterior distributions is different than the one proposed
for lifelong learning [25], where they basically consider hyper-prior and hyper-posterior over
the set of possible priors: The prior distribution P over the voters’ set is viewed as a random
variable.
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bilistic bounds. In Section 3, we then discuss the problem of multiview learning, adapting
the PAC-Bayesian expectation bounds to the specificity of the two-level multiview ap-
proach. In Section 4, we discuss the relation between our analysis and previous works.
Before concluding in Section 6, we present experimental results obtained on a collection
of the Reuters RCV1/RCV2 corpus in Section 5.

2 The Single-View PAC-Bayesian Theorem

In this section, we state a new general mono-view PAC-Bayesian theorem, inspired by
the work of Germain et al. [10], that we extend to multiview learning in Section 3.

2.1 Notations and Setting

We consider binary classification tasks on data drawn from a fixed yet unknown distribu-
tion D over X × Y , where X ⊆ Rd is a d-dimensional input space and Y = {−1,+1}
the label/output set. A learning algorithm is provided with a training sample of m exam-
ples denoted by S = {(xi, yi)}mi=1 ∈ (X×Y)m, that is assumed to be independently and
identically distributed (i.i.d.) according toD. The notationDm stands for the distribution
of such a m-sample, and DX for the marginal distribution on X . We consider a setH of
classifiers or voters such that ∀h ∈ H, h : X → Y . In addition, PAC-Bayesian approach
requires a prior distribution P overH that models a priori belief on the voters fromH
before the observation of the learning sample S. Given S ∼ Dm, the learner objective is
then to find a posterior distributionQ overH leading to an accurateQ-weighted majority
vote BQ(x) defined as

BQ(x) = sign

[
E
h∼Q

h(x)

]
.

In other words, one wants to learn Q overH such that it minimizes the true risk RD(BQ)
of BQ(x):

RD(BQ) = E
(x,y)∼D

1[BQ(x) 6=y] ,

where 1[π] = 1 if predicate π holds, and 0 otherwise. However, a PAC-Bayesian
generalization bound does not directly focus on the risk of the deterministic Q-weighted
majority vote BQ. Instead, it upper-bounds the risk of the stochastic Gibbs classifier GQ,
which predicts the label of an example x by drawing h fromH according to the posterior
distributionQ and predicts h(x). Therefore, the true riskRD(GQ) of the Gibbs classifier
on a data distribution D, and its empirical risk RS(GQ) estimated on a sample S ∼ Dm
are respectively given by

RD(GQ) = E
(x,y)∼D

E
h∼Q

1[h(x)6=y] , and RS(GQ) =
1

m

m∑
i=1

E
h∼Q

1[h(xi)6=yi] .

The above Gibbs classifier is closely related to theQ-weighted majority voteBQ. Indeed,
if BQ misclassifies x ∈ X , then at least half of the classifiers (under measure Q) make
an error on x. Therefore, we have

RD(BQ) ≤ 2RD(GQ). (1)
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Thus, an upper bound on RD(GQ) gives rise to an upper bound on RD(BQ). Other
tighter relations exist [10, 14, 16], such as the so-called C-Bound [14] that involves the
expected disagreement dD(Q) between all the pair of voters, and that can be expressed
as follows (when RD(GQ) ≤ 1

2 ):

RD(BQ) ≤ 1− (1− 2RD(GQ))
2

1− 2dD(Q)
, where dD(Q) = E

x∼DX
E

(h,h′)∼Q2
1[h(x) 6=h′(x)] .

(2)

Moreover, Germain et al. [10] have shown that the Gibbs classifier’s risk can be rewritten
in terms of dD(Q) and expected joint error eD(Q) between all the pair of voters as

RD(GQ) =
1

2
dD(Q) + eD(Q) , (3)

where eD(Q) = E
(x,y)∼D

E
(h,h′)∼Q2

1[h(x) 6=y] 1[h′(x)6=y] .

It is worth noting that from multiview learning standpoint where the notion of diver-
sity among voters is known to be important [1, 2, 13, 20, 29], Equations (2) and (3)
directly capture the trade-off between diversity and accuracy. Indeed, dD(Q) involves
the diversity between voters [23], while eD(Q) takes into account the errors. Note that
the principle of controlling the trade-off between diversity and accuracy through the
C-bound of Equation (2) has been exploited by Laviolette et al. [17] and Roy et al. [26]
to derive well-performing PAC-Bayesian algorithms that aims at minimizing it. For our
experiments in Section 5, we make use of CqBoost [26]—one of these algorithms—for
multiview learning.
Last but not least, PAC-Bayesian generalization bounds take into account the given
prior distribution P onH through the Kullback-Leibler divergence between the learned
posterior distribution Q and P :

KL(Q‖P ) = E
h∼Q

ln
Q(h)

P (h)
.

2.2 A New PAC-Bayesian Theorem as an Expected Risk Bound

In the following we introduce a new variation of the general PAC-Bayesian theorem of
Germain et al. [9, 10]; it takes the form of an upper bound on the “deviation” between
the true risk RD(GQ) and empirical risk RS(GQ) of the Gibbs classifier, according
to a convex function D:[0, 1]×[0, 1]→R. While most of the PAC-Bayesian bounds are
probabilistic bounds, we state here an expected risk bound. More specifically, Theo-
rem 1 below is a tool to upper-bound ES∼DmRD(GQS )—where QS is the posterior
distribution outputted by a given learning algorithm after observing the learning sample
S—while PAC-Bayes usually bounds RD(GQ) uniformly for all distribution Q, but with
high probability over the draw of S ∼ Dm. Since by definition posterior distributions are
data dependent, this different point of view on PAC-Bayesian analysis has the advantage
to involve an expectation over all the possible learning samples (of a given size) in
bounds itself.
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Theorem 1. For any distribution D on X × Y , for any set of voters H, for any prior
distribution P onH, for any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

RS(GQS ), E
S∼Dm

RD(GQS )
)

≤ 1

m

[
E

S∼Dm
KL(QS‖P ) + ln

(
E

S∼Dm
E
h∼P

emD(RS(h),RD(h))

)]
,

where RD(h) and RS(h) are respectively the true and the empirical risks of individual
voters.

Similarly to Germain et al. [9, 10], by selecting a well-suited deviation function D
and by upper-bounding ES EhemD(RS(h),RD(h)), we can prove the expected bound
counterparts of the classical PAC-Bayesian theorems of Catoni [5], McAllester [21],
Seeger [27]. The proof presented below borrows the straightforward proof technique of
Bégin et al. [3]. Interestingly, this approach highlights that the expectation bounds are
obtained simply by replacing the Markov inequality by the Jensen inequality (respectively
Theorems 5 and 6, in Appendix).

Proof of Theorem 1. The last three inequalities below are obtained by applying Jensen’s
inequality on the convex function D, the change of measure inequality [as stated by 3,
Lemma 3], and Jensen’s inequality on the concave function ln.

mD
(

E
S∼Dm

RS(GQS ), E
S∼Dm

RD(GQS )
)

=mD

(
E

S∼Dm
E

h∼QS
RS(h), E

S∼Dm
E

h∼QS
RD(h)

)
≤ E
S∼Dm

E
h∼QS

mD (RS(h), RD(h))

≤ E
S∼Dm

[
KL(QS‖P ) + ln

(
E
h∼P

emD(RS(h),RD(h))

)]
≤ E
S∼Dm

KL(QS‖P ) + ln

(
E

S∼Dm
E
h∼P

emD(RS(h),RD(h))

)
.

Since the C-bound of Equation (2) involves the expected disagreement dD(Q),
we also derive below the expected bound that upper-bounds the deviation between
ES∼Dm dS(QS) and ES∼Dm dD(QS) under a convex function D. Theorem 2 can be
seen as the expectation version of probabilistic bounds over dS(QS) proposed by Ger-
main et al. [10], Lacasse et al. [14].

Theorem 2. For any distribution D on X × Y , for any set of voters H, for any prior
distribution P onH, for any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

dS(QS), E
S∼Dm

dD(QS)
)

≤ 2

m

[
E

S∼Dm
KL(QS‖P ) + ln

√
E

S∼Dm
E

(h,h′)∼P 2
emD(dS(h,h′),dD(h,h′))

]
,

where dD(h, h′) = Ex∼DX 1[h(x)6=h′(x)] is the disagreement of voters h and h′ on the
distribution D, and dS(h, h′) is its empirical counterpart.
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Proof. First, we apply the exact same steps as in the proof of Theorem 1:

mD
(

E
S∼Dm

dS(QS), E
S∼Dm

dD(QS)
)

=mD

(
E

S∼Dm
E

(h,h′)∼Q2
S

dS(h, h
′), E

S∼Dm
E

(h,h′)∼Q2
S

dD(h, h
′)

)
...

≤ E
S∼Dm

KL(Q2
S‖P 2) + ln E

S∼Dm
E

(h,h′)∼P 2
emD(dS(h,h

′),dD(h,h′)).

Then, we use the fact that KL(Q2
S‖P 2) = 2KL(QS‖P ) [see 10, Theorem 25].

In the following we provide an extension of this PAC-Bayesian framework to multi-
view learning with more than two views.

3 Multiview PAC-Bayesian Approach

3.1 Notations and Setting

We consider binary classification problems where the multiview observations x =
(x1, . . . , xV ) belong to a multiview input set X = X1 × . . .×XV , where V ≥ 2 is
the number of views of not-necessarily the same dimension. We denote V the set of
the V views. In binary classification, we assume that examples are pairs (x, y), with
y ∈ Y = {−1,+1}, drawn according to an unknown distribution D over X × Y . To
model the two-level multiview approach, we follow the next setting. For each view
v ∈ V , we consider a view-specific setHv of voters h : Xv → Y , and a prior distribution
Pv onHv . Given a hyper-prior distribution π over the views V , and a multiview learning
sample S = {(xi, yi)}mi=1∼(D)m, our PAC-Bayesian learner objective is twofold: (i)
finding a posterior distribution Qv over Hv for all views v ∈ V; (ii) finding a hyper-
posterior distribution ρ on the set of views V . This hierarchy of distributions is illustrated
by Figure 1. The learned distributions express a multiview weighted majority vote BMV

ρ

defined as

BMV
ρ (x) = sign

[
E
v∼ρ

E
h∼Qv

h(xv)

]
.

Thus, the learner aims at constructing the posterior and hyper-posterior distributions that
minimize the true risk RD(BMV

ρ ) of the multiview weighted majority vote:

RD(B
MV
ρ ) = E

(x,y)∼D
1[BMV

ρ (x)6=y].

As pointed out in Section 2, the PAC-Bayesian approach deals with the risk of the
stochastic Gibbs classifier GMV

ρ defined as follows in our multiview setting, and that can
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be rewritten in terms of expected disagreement dMV
D (ρ) and expected joint error eMV

D (ρ):

RD(G
MV
ρ ) = E

(x,y)∼D
E
v∼ρ

E
h∼Qv

1[h(xv)6=y]

= 1
2 d

MV
D (ρ) + eMV

D (ρ) , (4)
where dMV

D (ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv) 6=h′(xv′ )],

and eMV
D (ρ) = E

(x,y)∼D
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv) 6=y]1[h′(xv′ )6=y].

Obviously, the empirical counterpart of the Gibbs classifier’s risk RD(GMV
ρ ) is

RS(G
MV
ρ ) =

1

m

m∑
i=1

E
v∼ρ

E
h∼Qv

1[h(xvi ) 6=yi]

=
1

2
dMV
S (ρ) + eMV

S (ρ) ,

where dMV
S (ρ) and eMV

S (ρ) are respectively the empirical estimations of dMV
D (ρ) and eMV

D (ρ)
on the learning sample S. As in the single-view PAC-Bayesian setting, the multiview
weighted majority voteBMV

ρ is closely related to the stochastic multiview Gibbs classifier
GMV
ρ , and a generalization bound for GMV

ρ gives rise to a generalization bound for BMV
ρ .

Indeed, it is easy to show that RD(BMV
ρ ) ≤ 2RD(G

MV
ρ ), meaning that an upper bound

over RD(GMV
ρ ) gives an upper bound for the majority vote. Moreover the C-Bound of

Equation (2) can be extended to our multiview setting by Lemma 1 below. Equation (5) is
a straightforward generalization of the single-view C-bound of Equation (2). Afterward,
Equation (6) is obtained by rewriting RD(GMV

ρ ) as the ρ-average of the risk associated to
each view, and lower-bounding dMV

D (ρ) by the ρ-average of the disagreement associated
to each view.

Lemma 1. Let V ≥ 2 be the number of views. For all posterior {Qv}Vv=1 and hyper-
posterior ρ distribution, if RD(GMV

ρ ) < 1
2 , then we have

RD(B
MV
ρ ) ≤ 1−

(
1− 2RD(G

MV
ρ )
)2

1− 2dMV
D (ρ)

(5)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

. (6)

Proof. Equation (5) follows from the Cantelli-Chebyshev’s inequality (Theorem 7, in
Appendix). To prove Equation (6), we first notice that in the binary setting where
y ∈ {−1, 1} and h : X → {−1, 1}, we have 1[h(xv)6=y] =

1
2 (1− y h(x

v)), and

RD(G
MV
ρ ) = E

(x,y)∼D
E
v∼ρ

E
h∼Qv

1[h(xv) 6=y]

=
1

2

(
1− E

(x,y)∼D
E
v∼ρ

E
h∼Qv

y h(xv)

)
= E

v∼ρ
RD(GQv ) .
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Moreover, we have

dMV
D (ρ) = E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv) 6=h′(xv′ )]

=
1

2

(
1− E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h∼Qv′

h(xv)× h′(xv
′
)

)
=

1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)

]2)
.

From Jensen’s inequality (Theorem 6, in Appendix) it comes

dMV
D (ρ) ≥ 1

2

(
1− E

x∼DX
E
v∼ρ

[
E

h∼Qv
h(xv)

]2)
= E

v∼ρ

[
1

2

(
1− E

x∼DX

[
E

h∼Qv
h(xv)

]2)]
= E

v∼ρ
dD(Qv) .

By replacing RD(GMV
ρ ) and dMV

D (ρ) in Equation (5), we obtain

1−
(
1− 2RD(G

MV
ρ )
)2

1− 2dMV
D (ρ)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

.

Similarly than for the mono-view setting, Equations (4) and (5) suggest that a good
trade-off between the risk of the Gibbs classifier GMV

ρ and the disagreement dMV
D (ρ)

between pairs of voters will lead to a well-performing majority vote. Equation (6)
exhibits the role of diversity among the views thanks to the disagreement’s expectation
over the views Ev∼ρ dD(Qv).

3.2 General Multiview PAC-Bayesian Theorems

Now we state our general PAC-Bayesian theorem suitable for the above multiview
learning setting with a two-level hierarchy of distributions over views (or voters). A key
step in PAC-Bayesian proofs is the use of a change of measure inequality [22], based on
the Donsker-Varadhan inequality [8]. Lemma 2 below extends this tool to our multiview
setting.

Lemma 2. For any set of priors {Pv}Vv=1 and any set of posteriors {Qv}Vv=1, for any
hyper-prior distribution π on views V and hyper-posterior distribution ρ on V , and for
any measurable function φ : Hv → R, we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π) + ln

(
E
v∼π

E
h∼Pv

eφ(h)
)
.
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Proof. We have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

E
h∼Qv

ln eφ(h)

= E
v∼ρ

E
h∼Qv

ln

(
Qv(h)

Pv(h)

Pv(h)

Qv(h)
eφ(h)

)
= E

v∼ρ

[
E

h∼Qv
ln

(
Qv(h)

Pv(h)

)
+ E
h∼Qv

ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

According to the Kullback-Leibler definition, we have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

[
KL(Qv‖Pv) + E

h∼Qv
ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

By applying Jensen’s inequality (Theorem 6, in Appendix) on the concave function ln,
we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

[
KL(Qv‖Pv) + ln

(
E

h∼Pv
eφ(h)

)]
= E

v∼ρ
KL(Qv‖Pv) + E

v∼ρ
ln

(
ρ(v)

π(v)

π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
= E

v∼ρ
KL(Qv‖Pv) + KL(ρ‖π) + E

v∼ρ
ln

(
π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
.

Finally, we apply again the Jensen inequality (Theorem 6) on ln to obtain the lemma.

Based on Lemma 2, the following theorem can be seen as a generalization of
Theorem 1 to multiview. Note that we still rely on a general convex function D : [0, 1]×
[0, 1]→ R, that measures the “deviation” between the empirical disagreement/joint error
and the true risk of the Gibbs classifier.

Theorem 3. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for
any set of prior distributions {Pv}Vv=1, for any hyper-prior distribution π over V , for
any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

1
2 E
S∼Dm

dMV
S (ρS)+ E

S∼Dm
eMV
S (ρS), E

S∼Dm
RD(G

MV
ρS )
)
≤ 1

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv)

+ E
S∼Dm

KL(ρS‖π) + ln

(
E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)]
.

Proof. We follow the same steps as in Theorem 1 proof.

mD
(

E
S∼Dm

RS(G
MV
ρS ), E

S∼Dm
RD(G

MV
ρS )
)

=mD
(

E
S∼Dm

E
v∼ρS

E
h∼Qv,S

RS(h), E
S∼Dm

E
v∼ρS

E
h∼Qv,S

RD(h)
)

≤ E
S∼Dm

E
v∼ρS

E
h∼Qv,S

mD (RS(h), RD(h))

≤ E
S∼Dm

[
E

v∼ρS
KL(Qv,S‖Pv) + KL(ρS‖π) + ln

(
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)]
,
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where the last inequality is obtained using Lemma 2. After distributing the expectation
of S ∼ Dm, the final statement follows from Jensen’s inequality (Theorem 6)

E
S∼Dm

ln

(
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)
≤ ln

(
E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h))

)
,

and from Equation (3): RS(GMV
ρS ) =

1
2d

MV
S (ρS) + eMV

S (ρS).

It is interesting to compare this generalization bound to Theorem 1. The main differ-
ence relies on the introduction of view-specific prior and posterior distributions, which
mainly leads to an additional term Ev∼ρKL(Qv‖Pv), expressed as the expectation of
the view-specific Kullback-Leibler divergence term over the views V according to the
hyper-posterior distribution ρ. We also introduce the empirical disagreement allowing us
to directly highlight the presence of the diversity between voters and between views. As
Theorem 1, Theorem 3 provides a tool to derive PAC-Bayesian generalization bounds for
a multiview supervised learning setting. Indeed, by making use of the same trick as Ger-
main et al. [9, 10], the generalization bounds can be derived from Theorem 3 by choosing
a suitable convex function D and upper-bounding ES Ev Eh emD(RS(h),RD(h)). We pro-
vide an example of such a specialization in Section 3.3, by following McAllester’s [21]
point of view. Note that we provide the specialization to the two other classical PAC-
Bayesian approaches of Catoni [5], Langford [15], Seeger [27] in our research re-
port Goyal et al. [11, Section 3.3.].

Following the same approach, we can obtain a mutiview bound for the expected
disagreement.

Theorem 4. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for
any set of prior distributions {Pv}Vv=1, for any hyper-prior distribution π over V , for
any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

dMV
S (ρS), E

S∼Dm
dMV
D (ρS)

)
≤ 2

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv) + E

S∼Dm
KL(ρS‖π)

+ ln
√

E
S∼Dm

E
(h,h′)∼P 2

emD(dS(h,h′),dD(h,h′))

]
.

Proof. The result is obtained straightforwardly by following the proof steps of Theo-
rem 3, using the disagreement instead of the Gibbs risk. Then, similarly at what we
have done to obtain Theorem 2, we substitute KL(Q2

v,S‖P 2
v ) by 2KL(Qv,S‖Pv), and

KL(ρ2S‖π2) by 2KL(ρS‖π).

3.3 Specialization of our Theorem to the McAllester’s Approach

We derive here the specialization of our multiview PAC-Bayesian theorem to the
McAllester [22]’s point of view. To do so, we follow the same principle as Germain et al.
[9, 10] to obtain Corollary 1.
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Corollary 1. Let V ≥ 2 be the number of views. For any distribution D on X × Y , for
any set of prior distributions {Pv}Vv=1, for any hyper-prior distribution π over V , we
have

E
S∼Dm

RD(G
MV
ρS ) ≤

1

2
E

S∼Dm
dMV
S (ρS) + E

S∼Dm
eMV
S (ρS) +√√√√ E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv) + E

S∼Dm
KL(ρS‖π) + ln 2

√
m
δ

2m
.

Proof. To prove the above result, we apply Theorem 3 with D(a, b) = 2(a− b)2, and
we upper-bound E

S∼Dm
E
v∼π

E
h∼Pv

emD(RS(h),RD(h)). According to Pinsker’s inequality,

we have D(a, b) ≤ kl(a, b) = a ln a
b + (1− a) ln 1−a

1−b . Then by considering RS(h) as
a random variable which follows a binomial distribution of m trials with a probability of
success R(h), we obtain

E
S∼Dm

E
v∼π

E
h∼Pv

emD(RS(h),RD(h)) ≤ E
S∼Dm

E
v∼π

E
h∼Pv

em kl(RS(h),RD(h))

= E
v∼π

E
h∼Pv

E
S∼Dm

[
RS(h)

RD(h)

]mRS(h) [ 1−RS(h)
1−RD(h)

]m(1−RS(h))

= E
v∼π

E
h∼Pv

m∑
k=0

Pr
S∼Dm

[
RS(h) =

k
m

] [ k/m

RD(h)

]k [
1− k/m
1−RD(h)

]m−k
=

m∑
k=0

(
m

k

)[
k

m

]k [
1− k

m

]m−k
≤ 2
√
m.

4 Discussion on Related Work

In this section, we discuss two related theoretical studies of multiview learning related to
the notion of Gibbs classifier.

Amini et al. [1] proposed a Rademacher analysis of the risk of the stochastic Gibbs
classifier over the view-specific models (for more than two views) where the distribution
over the views is restricted to the uniform distribution. In their work, each view-specific

model is found by minimizing the empirical risk: h∗v = argmin
h∈Hv

1

m

∑
(x,y)∈S

1[h(xv) 6=y].

The prediction for a multiview example x is then based over the stochastic Gibbs
classifier defined according to the uniform distribution, i.e., ∀v ∈ V, ρ(v) = 1

V . The
risk of the multiview classifier Gibbs is hence given by

RD(G
MV
ρ=1/V ) = E

(x,y)∼D

1

V

V∑
v=1

1[h∗v(x
v) 6=y].
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Table 1. Accuracy and F1-score averages for all the classes over 20 random sets. Note that
the results are obtained for different sizes m of the learning sample and are averaged over the
six one-vs-all classification problems. Along the columns, best results are in bold. ↓ indicates
statistically significantly worse performance than the best result, according to Wilcoxon rank sum
test (p < 0.02) [19].

Strategy
m = 150 m = 200 m = 250 m = 300

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
Monov .8516±.0031↓ .1863±.0299↓ .8424±.0272↓ .3056±.0233↓ .8691±.0017↓ .3352±.0164↓ .8770±.0018↓ .4103±.0158↓

ConcatSVM .8507±.0051↓ .1577±.0403↓ .8615±.0018↓ .2505±.0182↓ .8674±.0026↓ .3006±.0267↓ .8746±.0022↓ .3647±.0258↓

AggregP .8521±.0041↓ .1810±.0305↓ .8420±.0385↓ .2852±.0339↓ .8676±.0023↓ .3027±.0234↓ .8774±.0021↓ .3945±.0185↓
AggregL .8507±.0043↓ .1653±.0336↓ .8477±.0377↓ .2806±.0244↓ .8682±.0022↓ .3116±.0210↓ .8773±.0024↓ .3943±.0204↓

FusionallSVM .8568±.0087↓ .3899±.0789↓ .8527±.0406↓ .5027±.0780 .8490±.0716↓ .5399±.0585 .8422±.0526↓ .5779±.0422
FusionallCq .8692±.0059 .4298±.0570 .8768±.0082 .5066±.0402 .8846 ±.0047 .5365±.0371 .8881± .0060 .5705±.0286

Moreover, Sun et al. [29] proposed a PAC-Bayesian analysis for multiview learning
over the concatenation of the views, where the number of views is set to two, and deduced
a SVM-like learning algorithm from this framework. The key idea of their approach is
to define a prior distribution that promotes similar classification among the two views,
and the notion of diversity among the views is handled by a different strategy than ours.
We believe that the two approaches are complementary, as in the general case of more
than two views that we consider in our work, we can also use a similar informative prior
as the one proposed by Sun et al. [29] for learning.

5 Experiments

In this section, we present experiments to highlight the usefulness of our theoretical
analysis by following a two-level hierarchy strategy. To do so, we learn a multiview
model in two stages by following a classifier late fusion approach [28] (sometimes
referred as stacking [30]). Concretely, we first learn view-specific classifiers for each
view at the base level of the hierarchy. Each view-specific classifier is expressed as
a majority vote of kernel functions. Then, we learn weighted combination based on
predictions of view-specific classifiers. It is worth noting that this is the procedure
followed by Morvant et al. [23] in a PAC-Bayesian fashion, but without any theoretical
justifications and in a ranking setting.

We consider a publicly available multilingual multiview text categorization corpus
extracted from the Reuters RCV1/RCV2 corpus [1]7, which contains more than 110, 000
documents from five different languages (English, German, French, Italian, Spanish)
distributed over six classes. To transform the dataset into a binary classification task, we
consider six one-versus-all classification problems: For each class, we learn a multiview
binary classification model by considering all documents from that class as positive
examples and all others as negative examples. We then split the dataset into training and
testing sets: we reserve a test sample containing 30% of total documents. In order to

7 https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+
Multilingual,+Multiview+Text+Categorization+Test+collection
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highlight the benefits of the information brought by multiple views, we train the models
with small learning sets by randomly choosing the learning sample S from the remaining
set of the documents; the number of learning examples m considered are: 150, 200,
250 and 300. For each fusion-based approach, we split the learning sample S into two
parts: S1 for learning the view-specific classifier at the first level and S2 for learning
the final multiview model at the second level; such that |S1| = 3

5m and |S2| = 2
5m

(with m = |S|). In addition, the reported results are averaged on 20 runs of experiments,
each run being done with a new random learning sample. Since the classes are highly
unbalanced, we report in Table 1 the accuracy along with the F1-measure, which is the
harmonic average of precision and recall, computed on the test sample.

To assess that multiview learning with late fusion makes sense for our task, we
consider as baselines the four following one-step learning algorithms (provided with the
learning sample S). First, we learn a view-specific model on each view and report, as
Monov, their average performance. We also follow an early fusion procedure, referred
as ConcatSVM, consisting of learning one single model using SVM [7] over the simple
concatenation of the features of five views. Moreover, we look at two simple voters’
combinations, respectively denoted by AggregP and AggregL, for which the weights
associated with each view follow the uniform distribution. Concretely, AggregP, respec-
tively AggregL, combines the real-valued prediction, respectively the labels, returned
by the view-specific classifiers. In other words, we have

AggregP(x) = 1
5

∑5
v=1 h

v(xv) , and AggregL(x) = 1
5

∑5
v=1 sign [h

v(xv)] ,

with hv(xv) the real-valued prediction of the view-specific classifier learned on view v.
We compare the above one-step methods to the two following late fusion approaches

that only differ at the second level. Concretely, at the first level we construct from S1

different view-specific majority vote expressed as linear SVM models8 with different
hyperparameter C values (12 values between 10−8 and 103): We do not perform cross-
validation at the first level. This has the advantage to (i) lighten the first level learning
process, since we do not need to validate models, and (ii) to potentially increase the
expressivity of the final model.

At the second level, as it is often done for late fusion, we learn from S2 the final
weighted combination over the view specific voters using a RBF kernel. The methods
referred as FusionallSVM, respectively FusionallCq , make use of SVM, respectively the
PAC-Bayesian algorithm CqBoost [26]. Note that, as recalled in Section 2, CqBoost is
an algorithm that tends to minimize the C-Bound of Equation (2): it directly captures a
trade-off between accuracy and disagreement.

We follow a 5-fold cross-validation procedure for selecting the hyperparameters of
each learning algorithm. For Monov, ConcatSVM, AggregP and AggregL the hyper-
parameter C is chosen over a set of 12 values between 10−8 and 103. For FusionallSVM

and FusionallCq the hyperparameter γ of the RBF kernel is chosen over 9 values be-
tween 10−6 and 102. For FusionallSVM, the hyperparameter C is chosen over a set of 12
values between 10−8 and 103. For FusionallCq , the hyperparameter µ is chosen over a
set of 8 values between 10−8 and 10−1. Note that we made use of the scikit-learn [24]
implementation for learning our SVM models.

8 We use linear SVM model as it is usually done for text classification tasks [e.g., 12].



14 PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach

First of all, from Table 1, the two-step approaches provide the best results on average.
Secondly, according to a Wilcoxon rank sum test [19] with p < 0.02, the PAC-Bayesian
late fusion based approach FusionallCq is significantly the best method—in terms of
accuracy, and except for the smallest learning sample size (m = 150), FusionallCq

and FusionallSVM produce models with similar F1-measure. We can also remark that
FusionallCq is more “stable” than FusionallSVM according to the standard deviation val-
ues. These results confirm the potential of using PAC-Bayesian approaches for multiview
learning where we can control a trade-off between accuracy and diversity among voters.

6 Conclusion and Future Work

In this paper, we proposed a first PAC-Bayesian analysis of weighted majority vote
classifiers for multiview learning when observations are described by more than two
views. Our analysis is based on a hierarchy of distributions, i.e. weights, over the views
and voters: (i) for each view v a posterior and prior distributions over the view-specific
voter’s set, and (ii) a hyper-posterior and hyper-prior distribution over the set of views. We
derived a general PAC-Bayesian theorem tailored for this setting, that can be specialized
to any convex function to compare the empirical and true risks of the stochastic Gibbs
classifier associated with the weighted majority vote. We also presented a similar theorem
for the expected disagreement, a notion that turns out to be crucial in multiview learning.
Moreover, while usual PAC-Bayesian analyses are expressed as probabilistic bounds
over the random choice of the learning sample, we presented here bounds in expectation
over the data, which is very interesting from a PAC-Bayesian standpoint where the
posterior distribution is data dependent. According to the distributions’ hierarchy, we
evaluated a simple two-step learning algorithm (based on late fusion) on a multiview
benchmark. We compared the accuracies while using SVM and the PAC-Bayesian
algorithm CqBoost for weighting the view-specific classifiers. The latter revealed itself
as a better strategy, as it deals nicely with accuracy and the disagreement trade-off
promoted by our PAC-Bayesian analysis of the multiview hierarchical approach.

We believe that our theoretical and empirical results are a first step toward the goal
of theoretically understanding the multiview learning issue through the PAC-Bayesian
point of view, and toward the objective of deriving new multiview learning algorithms.
It gives rise to exciting perspectives. Among them, we would like to specialize our
result to linear classifiers for which PAC-Bayesian approaches are known to lead to
tight bounds and efficient learning algorithms [9]. This clearly opens the door to derive
theoretically founded algorithms for multiview learning. Another possible algorithmic
direction is to take into account a second statistical moment information to link it
explicitly to important properties between views, such as diversity or agreement [1, 13].
A first direction is to deal with our multiview PAC-Bayesian C-Bound of Lemma 1—
that already takes into account such a notion of diversity [23]—in order to derive an
algorithm as done in a mono-view setting by Laviolette et al. [17], Roy et al. [26].
Another perspective is to extend our bounds to diversity-dependent priors, similarly to
the approach used by Sun et al. [29], but for more than two views. This would allow to
additionally consider an a priori knowledge on the diversity. Moreover, we would like to
explore the semi-supervised multiview learning where one has access to unlabeled data
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Su = {xj}muj=1 along with labeled data Sl = {(xi, yi)}mli=1 during training. Indeed, an
interesting behaviour of our theorem is that it can be easily extended to this situation:
the bound will be a concatenation of a bound over 1

2d
MV
Su

(ρ) (depending on mu) and a
bound over eMV

Sl
(ρ) (depending on ms). The main difference with the supervised bound

is that the Kullback-Leibler divergence will be multiplied by a factor 2.

Appendix—Mathematical Tools

Theorem 5 (Markov’s ineq.). For any random variable X s.t. E(|X|) = µ, for any
a>0, we have P(|X| ≥ a) ≤ µ

a
.

Theorem 6 (Jensen’s ineq.). For any random variable X , for any concave function g,
we have g(E[X]) ≥ E[g(X)].

Theorem 7 (Cantelli-Chebyshev ineq.). For any random variable X s.t. E(X) = µ

and Var(X) = σ2, and for any a>0, we have P(X − µ ≥ a) ≤ σ2

σ2+a2 .
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