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Abstract. Beyond the Factorial Analysis o f Correspondences, the paper presents a new 
method o f data analysis: the Biproportional Factorial Analysis. In the Factorial Analysis o f 
Correspondences, the matrix to be diagonalised is the product o f the two matrices o f profiles, 
row and columns: this matrix is not symmetrical. In the Biproportional Factorial Analysis, the 
matrix to be diagonalised is the symmetrical product o f an intermediate matrix over itself; 
this intermediate matrix is calculated as the biproportion o f the data matrix over normalised 
margins. This provides a full symmetry between rows and columns. After recalling the 
Factorial Analysis o f Correspondences, the paper recall what it is biproportion and then 
presents the Biproportional Factorial Analysis and discuss it, 

Keywords. Biproportion, R A S , Factorial Analysis. 

1 . R E C A L L : T H E F A C T O R I A L A N A L Y S I S O F 

C O R R E S P O N D E N C E S 

In the factorial analysis methods, like the Factorial Analysis o f Correspondences, the data 
table N is a contingency table, with dimensions (n,m). In the space o f (when points are 
rows), to eliminate the effect o f the size o f the margins, the terms Ni}. o f the rows o f this 

matrix are divided by the margins o f the rows NL giving XRi/ = — , that is to say i f NR is 

the diagonal matrix o f the terms NL, X R = N~l N (this matrix is called the matrix o f row 
profiles). The row margins o f X R are unitary. The distance between two points is calculated 

N... N.„. N 
using the £ metric, multiplying the squares o f the differences —— — by — ~ : i f N c is the 

Nr Nir Nj 
- i N 

diagonal matrix o f the terms N f , the metric is M R = /V N c . Data are weighted by — - , that 
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the terms NMJ , the metric is M R = A r N c \ Data are weighted by ^ , that is to say P R = 

Thus, the matrix to be diagonalised to obtain the principal factors v is 
M R X R P R X R = N' N R N . To obtain the principal components c (the projection o f the n 
individuals upon the m principal axis), we calculate c - X R v . 

At this point, the method is similar to the simple Principal Components Analysis Method. 
However, it is not necessary to have centred data 2 . Suppose that data are not centred. The 
vector o f coordinates o f the gravity center o f the set o f points X R = N R N, weighted by 

(NJN\ (\\ 

P R = ^ , is g R = X ^ P R l = - l - N R

1 N N R l - , where 1 is the sum vector: 1: 1 

The variance matrix o f the points is V = X R P R X R - g g'. Then 
M R X R P R X R = M R V + M R g g ' 

= > g ' M R X R P R X R = g ' M R V + g ' M R g g ' 

As the vector Og is orthogonal to the set o f points, it is a principal axis: g is eigenvector o f the 
matrix M R V , with the eigenvalue A = 0: M R V = 0 . Then 

g ' M R X i P R X R = 0+||g||^g' = g'. The diagonaKsation o f M R X R P R X R = N^1 N' N R N 

provides a first trivial eigenvalue equal to 1. 

The same dual calculus can be made in the space o f 9 ? n (when points are columns), the terms 
N}J o f the columns o f this matrix are divided by the margins o f the columns JV ; giving 

margins o f X c are unitary. The metric is M c = Af N R . The distances are weighted by 
N , 

P c - . T o found the principal factors, the matrix to be diagonalised is 

M c X c P c X ^ = N R N N c

x N' . Eigenvalues are the same than in the preceding case. 

Note that Factorial Analysis o f Correspondences looks like a particular case o f the general 
Principal Components Analysis (with metric not unitary and with weights). Also, the matrix to 
be diagonalised is the product o f the two matrices o f profiles. 

XCi. = , or X c = N N C

! (this matrix is called the matrix o f column profiles). The column 

2 . T H E B I P R O P O R T I O N A L F A C T O R I A L A N A L Y S I S 

The starting problem o f Correspondence Analysis appears to give unitary margins to the data 
table N, alternatively to rows and to columns. The result depends on that fact: the 
correspondence between these double result is studied. However, when the row margins are 
equal (unitary), they are not equal (unitary) in columns, and reciprocally. As there is duality 

2 W e follow here [ SAPORTA pp. 200-204 j . 



between these double results, in fact they brings the same information seen on a different point. 
The information obtained when row and column margins are simultaneously equal could be 
interesting and it eliminates simultaneously the effect o f the size o f the margins o f rows and 
columns. Then it looks to be interesting to give the same margins to rows and the same margins 
to columns simultaneously, that is to say to give such margins to N using a biproportion and 
then to make a "Correspondence-like Analysis". 

2.1. Recall: biproportion 

A biproportion o f a matrix N on the margins o f a matrix L is the matrix X = A N B . 

n m 

Note that margins respects a global equilibrium: ^ /. = ^ / . . 
i=l ;=1 

Different algorithms may be used to calculate A and B . For example: 

/ h 

a = , V / and 6 , = ^ , V / 

j=l i=l 

[ A = EMag(A*) IB = Diag(fi*) 

0 1 ' J A* = [DiagfNB*)]" 1 L R 1 ^ jfi* = [Diag(N' A*)]"' L c 1 

where Diag is the matrix operation who transforms a vector into a diagonal matrix 3 , L R is the 
diagonal matrix o f the terms /,._ and L c is the diagonal matrix o f the terms / • . 

This algorithm is convergent, the solution o f is unique. Moreover, we proved that, whatever be 
the algorithm, the result is the same: biproportion is so unique than proportion is [ de 
M E S N A R D ] . 

Remark: to apply a biproportion, data must not be negative, what excludes centred data: it is not 
a problem because diagonalisation may be done over not centred data, as shown. 

2.2. The new method 

1) First step. There are two cases. 

a) The data matrix is square (n,n). We calculate a biproportion o f the matrix N on any matrix L 
with unitary margins, that is to say, we calculate a matrix X = A N B , where, 

A = Diag(A*) J B = Diag(B*) 

A* = [Diag(N B*)]" 1 1 a n [ B * = [Diag(N' A*)]"' 1 

3 This compact and easy-to-read writing is not efficient in computing: one must use a special algorithm 
to inverse diagonal matrices without using the standard matrix inversion routine. 



b) The data matrix is rectangular (n,m). W e calculate a biproportion o f the matrix N on any 
matrix L with unitary margins in one side and with equal margins in the other side. Suppose 

"l/m l/m] 
that m < n (without loss o f generality); then L is a constant matrix: L -

l/m .. l/m 
and 

L R = 1 and L c 

( n/rn^ 

\nlmJ 

n — 1. We are obliged to do so to respect the global equilibrium 
m 

] T lu = ] T / ; • However, the important is that each rows have the same margins and each 

columns have the same margins, and not a unitary value o f margins (multiplying every margins 
by £ multiplies by k1 the eigenvalues o f the diagonalised matrix 4 ) . 

Then, we calculate a matrix X = A N B , where, 

A = Diag(A*) 

A ^ [ D i a g ( N B * ) f l 1 B * ^ [ D i a g ( N ' A * ) f l 

B = D i a g ( B * ) 

Besides, it is equivalent to get L 

1 .. 1 

1 .. 1 

then L R = m 1 and L c = n 1 . Thus, 

A = Diag(A*) 
and 

fB = Diag(B*) 

A* = m [Diag(N B*) ]" 1 1 J B * = /?[Diag(N' A*) 

There is a quasi normalisation simultaneously in rows and columns. 

2 ) Second step. W e diagonalise the matrix X ' X in the space o f 9 i m (or X X ' in the space o f 

9 T : classically, first eigenvalues are the same in one case and in the another case). A trivial 

eigenvalue is found: X = — , associated to the eigenvector g, the gravity center . Consider the 
m 

Yl 
gravity center: g - X ' l . With the chosen margins, we get g = — l ( ) . Then 

m 
X ' X g = X ' | ^ X l ( M j ) — X ' If d = — g ; thus X = — with g as eigenvector. 

It is possible to go back to the original data. Classically, the reconstruction o f the matrix X from 
the eigenvalues and the eigenvectors remains possible. And it is possible to retrieve the matrix N 
from the matrix X , making a biproportion o f X on the margins o f N. So, the only condition is to 
know the margins o f N. 

4 See later. 



2.3. About metric and weights 

Here, we use a simple Euclidean distance ( M = 
metric: 

I ) . There are two cases if we apply another 

• The metric is used before applying biproportion. A theorem o f invariance shows that this 
transformation (premultiply or postmultiply N by a diagonal matrix) ) does not affects the 
result o f biproportion [ de M E S N A R D ] : 

if Y = N M V 2 , then X * = A* Y B* = A* N M 1 / 2 B* = A N B, 

with A - A* and B = M V 2 B* . 

For the same reason, there is no need to weight data before applying biproportion. 

• The metric is used after applying biproportion, or data are weighted after applying 
biproportion. The matrix to be diagionalised i s M X ' P X . 

It is not logical to weight after applying biproportion because biproportion on N replaces the 
weighting on either rows or columns o f N : every rows takes the same importance, every 
columns takes the same importance. 

To use a non unitary metric is more logical. However, the £ metric used by Factorial 
Analysis o f Correspondences is a little artificial. An argument is that unitary distance 
between rows (reciprocally columns) gives more importance to the bigger columns 
(reciprocally rows). Another and good argument is the "distributional invariance" o f the j? 
metric. Biproportion allows to take into account the first argument but not the second: i f this 
"distributional invariance" is essential, then one must get the £ metric. 

2.4. Advantages and disadvantages of the new method 

1. In Biproportional factorial Analysis, there is only one matrix X to calculate the symmetric 
matrix X ' X to be diagonalised. In the Factorial Analysis o f Correspondences, there are two 
matrices X R = N R N and X c = N N C

! , and no symmetry. 

In the biproportional factorial analysis, there is not such a strict duality (the classical duality 
between 9 ? w and SSKN remains), but there is an absolute symmetry between rows and 
columns. The new method does not requires to study correspondences: its interpretation is 
simple as in Principal Components Analysis. 

There is no need to weight the distances in the Biproportional Factorial Analysis: this 
operation looks a little artificial even if it is absolutely necessary in the Factorial Analysis o f 
Correspondences to obtain a strict duality o f the analysis between rows and columns, called 
"correspondence". In the Factorial Analysis o f Correspondences, the formulas 
X R M R X'R P R - N R N N ^ 1 N ' and X R M R X ^ P R = N R N N ^ 1 N' show that the AT. are 
normalised one time in rows and one time in columns, that is to say, divided by NL in one 
case and by Ntj in one another case. In the Biproportional Factorial Analysis, data are 
simultaneously (quasi) normalised in rows and columns. 



2 . With this new method, we shall lost the "distributional invariance" characterising the 
metric: if we replace two rows or columns by only one, we must recalculate the 
biproportion. It will be a disadvantage. However, we shall get a better analyse o f data, 
because o f the absolute symmetry between rows and columns. 

3 . A N N E X E 

3.1. The diagonalisation in factorial analysis 

When data are centred, minimising the sum o f squares o f Euclidean distance is equivalent to 
maximise the sum o f projections o f points along the axis o f regression. Generally, in the space 
o f 5RW, i f X is the matrix o f data, and if u is the unitary vector supported by this axis (with m 
elements), X u is the projection o f the points along the axis. Then, we must solve, 

r 

M a x ( X u ) ( X u ) = u ' X ' X u , under constraint: u' u = 1 . 

The Lagrangian is L- u ' X ' X u - l ( l - u ' u ) = 0 

Deriving the Lagrangian with respect o f u and X , we obtain: 

du 

ÔX 

= x ' X u - ; i u = o 

= l - u ' u = 0 

The second equation verifies the constraint, and the first equation provides: X ' X u = i u . >î is 
the eigenvalue and u is the eigenvector associated to it. As we maximise, we select eigenvalues 
Xfrom the greater to the smaller. The associated eigenvector gives the direction o f the axis. The 
cosine o f the angle between a variable Xt and the axis is the correlation coefficient for this 
variable. 



3.2. Example 

We shall construct a small example with a 7x5 matrix. 

N = 

1 2 4 5 3 
4 2 2 4 6 
12 3 12 18 6 
24 12 12 32 16 
25 10 5 45 35 
5 8 4 9 12 
3 16 21 7 18 

In5R5 

3.2.i. Factorial Analysis of Correspondences 

0.21329 0.11024 0.12259 0.32892 0.22495 
0.15393 0.16267 0.17716 0.25543 0.25082 
0.15120 0.15649 0.21711 0.25162 0.22359 
0.20283 0.11281 0.12581 0.32780 0.23075 
0.17340 0.13847 0.13974 0.28844 0.25995 

M R X ^ P R X R = N ^ 1 N ' N R

1 N : 

Eigenvalues are ( 1 0 = 1 is trivial): \ = 0.127, 1 2 = 0.04271, A3 = 0.00766, XA 

The axis explain respectively 70.2%, 23.6%, 4.2%, 1.9% . 

Principal factors are: 

0.00344. 

'-0.40835^ r-0.27837"! f 0.54197 > '-0.50683^ 
0.48708 0.36322 0.68898 0.57534 
0.69063 -0.63762 > V 3 = -0.26857 > V 4 = -0.22489 

-0.34242 -0.15080 -0.26594 0.47044 

k 0.04223 ; 

^ 0.60106 j 
, -0.29785J , -0.37445, 

Principal components are: 

( 0.11620 > f 0.07022 > '-0.09184^ ( 0.06488 ̂  
-0.02190 -0.07449 0.00877 -0.09396 
-0.02081 0.17667 -0.02405 -0.01634 
-0.06197 » V 2 = 0.05398 0.04975 . V 4 = 0.01150 
-0.13179 -0.06447 -0.02747 0.00019 
0.05375 -0.12682 0.03104 0.02394 

,0.29900 J ^-0.02077, ^-0.00328, ^-0.00746, 



FAC] 

0,2 

0,1 

-0,1 

o 

O 
o 

I 

o 
o 

I I I 
o 

o 

-0,2 -0,1 0 0,1 0,2 0,3 0,4 

Axis 1 

3.2.2. Biproportional Factorial analysis 

0.08019 0.19818 0.31807 0.23728 0.16628' 
0.26723 0.16510 0.13249 0.15814 0.27704 
0.28299 0.08742 0.28061 0.25120 0.09779 
0.29732 0.18369 0.14741 0.23459 0.13699 
0.26843 0.13267 0.05323 0.28593 0.25973 
0.15398 0.30442 0.12215 0.16402 0.25542 
0.04985 0.32853 0.34604 0.06884 0.20674 

In 9 e? 5 (rows are points): 

X ' X = 

0.34458 0.23823 0.23450 0.30756 0.27513' 
0.23823 0.32612 0.29445 0.24866 0.29254 
0.23450 0.29445 0.35669 0.26057 0.25379 
0.30756 0.24866 0.26057 0.31284 0.27036 
0.27513 0.29254 0.25379 0.27036 0.30817 



Eigenvalues are (¿0 = 1.4 is trivial): / ^ = 0 . 1 5 0 5 2 , X1 = 0 . 0 7 2 5 2 , A 3 = 0 . 0 1 5 8 7 , 

A4 = 0 . 0 0 9 4 8 . The axis explain respectively 6 5 . 6 % , 29 .2%, 6.4%, 3 . 8 % . The last third axis are 

stronger than in Factorial Analysis o f Correspondences. 

Principal factors are: 

r - 0 . 6 1 5 6 6 " | ' - 0 . 1 2 2 6 0 " | ' - 0 . 6 3 5 9 2 " ! r 0 . 0 3 9 3 3 "l 

0 . 4 2 5 9 1 0 . 4 5 0 8 4 - 0 . 1 4 5 9 3 0 . 6 2 7 7 3 

0 . 5 6 3 4 0 0 . 6 1 9 9 3 > V 3 = - 0 . 1 2 9 1 0 > V 4 = - 0 . 2 8 5 6 4 

- 0 . 3 4 8 5 9 - 0 . 2 7 5 3 7 0 . 7 2 2 6 2 0 . 2 8 3 6 7 

^ -0 .02507J ^ 0 . 5 6 7 0 6 J v 0 . 1 8 8 3 2 J ^ - 0 . 6 6 5 0 9 , 

Principal components are: 

( 0 . 1 2 7 3 6 > 0 . 0 8 8 7 2 > f 0 . 0 8 1 8 0 "l ' - 0 . 0 0 6 5 8 " \ 

- 0 . 0 8 1 6 3 - 0 . 0 7 3 0 9 - 0 . 0 4 4 6 9 - 0 . 0 6 3 1 0 

- 0 . 0 6 8 9 1 0 . 1 8 2 9 6 - 0 . 0 2 9 0 0 - 0 . 0 0 7 9 3 

- 0 . 1 0 6 9 7 > V2 = 0 . 0 3 1 9 4 - 0 . 0 3 9 5 8 » V4 = 0 . 0 6 0 3 3 

- 0 . 1 8 4 9 5 - 0 . 0 6 2 4 5 0 . 0 5 8 6 0 - 0 . 0 1 3 0 0 

0 . 0 4 0 1 0 - 0 . 1 4 2 3 2 0 . 0 0 8 5 1 0 . 0 3 8 9 1 

^ 0 .27501 , v - 0 . 0 2 5 7 6J ^ - 0 . 0 3 5 6 4J k - 0 . 0 0 8 6 2 ; 

('.; INIST =1 

In this example, results are enough close to those o f Correspondence Analysis. 
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