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Beyond the Factorial Analysis of Correspondences, the paper presents a new method of data analysis: the Biproportional Factorial Analysis. In the Factorial Analysis of Correspondences, the matrix to be diagonalised is the product of the two matrices of profiles, row and columns: this matrix is not symmetrical. In the Biproportional Factorial Analysis, the matrix to be diagonalised is the symmetrical product of an intermediate matrix over itself; this intermediate matrix is calculated as the biproportion of the data matrix over normalised margins. This provides a full symmetry between rows and columns. After recalling the Factorial Analysis of Correspondences, the paper recall what it is biproportion and then presents the Biproportional Factorial Analysis and discuss it,

At this point, the method is similar to the simple Principal Components Analysis Method.

However, it is not necessary to have centred data2 . Suppose that data are not centred. The vector of coordinates of the gravity center of the set of points X R = N R N, weighted by (NJN\ (\\

P R =^, is g R =X^P R l = -l-N R 1 NN R l-
, where 1 is the sum vector: 1:

1 The variance matrix of the points is V = X R P R X R -g g'. Then M R X R P R X R = M R V + M R gg' =>g'M R X R P R X R = g'M R V + g'M R gg'
As the vector Og is orthogonal to the set of points, it is a principal axis: g is eigenvector of the matrix M R V, with the eigenvalue A = 0: Note that Factorial Analysis of Correspondences looks like a particular case of the general Principal Components Analysis (with metric not unitary and with weights). Also, the matrix to be diagonalised is the product of the two matrices of profiles.

M R V = 0. Then g'M R XiP R X R = 0+||g||^g' = g'. The diagonaKsation of M R X R P R X R = N^1 N' N R
X Ci . = , or X c = NN C ! (this matrix is called the matrix of column profiles). The column

THE BIPROPORTIONAL FACTORIAL ANALYSIS

The starting problem of Correspondence Analysis appears to give unitary margins to the data table N, alternatively to rows and to columns. The result depends on that fact: the correspondence between these double result is studied. However, when the row margins are equal (unitary), they are not equal (unitary) in columns, and reciprocally. As there is duality between these double results, in fact they brings the same information seen on a different point. The information obtained when row and column margins are simultaneously equal could be interesting and it eliminates simultaneously the effect of the size of the margins of rows and columns. Then it looks to be interesting to give the same margins to rows and the same margins to columns simultaneously, that is to say to give such margins to N using a biproportion and then to make a "Correspondence-like Analysis".

Recall: biproportion

A biproportion of a matrix N on the margins of a matrix L is the matrix X = A N B .

n m

Note that margins respects a global equilibrium: ^ /. = ^ /..

i=l ;=1

Different algorithms may be used to calculate A and B. For example:

/ h a = , V/ and 6, = ^ , V/ j=l i=l [A = EMag(A*) IB = Diag(fi*) 01 ' J A* = [DiagfNB*)]" 1 L R 1 ^ jfi* = [Diag(N' A*)]"' L c 1
where Diag is the matrix operation who transforms a vector into a diagonal matrix3 , L R is the diagonal matrix of the terms /,._ and L c is the diagonal matrix of the terms / • . This algorithm is convergent, the solution of is unique. Moreover, we proved that, whatever be the algorithm, the result is the same: biproportion is so unique than proportion is [ de MESNARD ].

Remark: to apply a biproportion, data must not be negative, what excludes centred data: it is not a problem because diagonalisation may be done over not centred data, as shown.

The new method

1) First step. There are two cases.

a) The data matrix is square (n,n). We calculate a biproportion of the matrix N on any matrix L with unitary margins, that is to say, we calculate a matrix It is possible to go back to the original data. Classically, the reconstruction of the matrix X from the eigenvalues and the eigenvectors remains possible. And it is possible to retrieve the matrix N from the matrix X, making a biproportion of X on the margins of N. So, the only condition is to know the margins of N.

About metric and weights

Here For the same reason, there is no need to weight data before applying biproportion.

•

The metric is used after applying biproportion, or data are weighted after applying biproportion. The matrix to be diagionalised isMX'PX .

It is not logical to weight after applying biproportion because biproportion on N replaces the weighting on either rows or columns of N : every rows takes the same importance, every columns takes the same importance.

To use a non unitary metric is more logical. However, the £ metric used by Factorial Analysis of Correspondences is a little artificial. An argument is that unitary distance between rows (reciprocally columns) gives more importance to the bigger columns (reciprocally rows). Another and good argument is the "distributional invariance" of the j? metric. Biproportion allows to take into account the first argument but not the second: if this "distributional invariance" is essential, then one must get the £ metric.

Advantages and disadvantages of the new method

1. In Biproportional factorial Analysis, there is only one matrix X to calculate the symmetric matrix X' X to be diagonalised. In the Factorial Analysis of Correspondences, there are two matrices X R = N R N and X c = NN C ! , and no symmetry.

In the biproportional factorial analysis, there is not such a strict duality (the classical duality between 9? w and SSK N remains), but there is an absolute symmetry between rows and 2. With this new method, we shall lost the "distributional invariance" characterising the metric: if we replace two rows or columns by only one, we must recalculate the biproportion. It will be a disadvantage. However, we shall get a better analyse of data, because of the absolute symmetry between rows and columns.

columns. The new method does not requires to study correspondences: its interpretation is simple as in Principal Components

ANNEXE

The diagonalisation in factorial analysis

When data are centred, minimising the sum of squares of Euclidean distance is equivalent to maximise the sum of projections of points along the axis of regression. Generally, in the space of 5R W , if X is the matrix of data, and if u is the unitary vector supported by this axis (with m elements), X u is the projection of the points along the axis. Then, we must solve, r Max(Xu) (Xu) = u'X'Xu , under constraint: u' u = 1 .

The Lagrangian is L-u'X'X u-l(l-u'u) = 0

Deriving the Lagrangian with respect of u and X , we obtain:

du ÔX = x'Xu-;iu = o = l-u'u = 0
The second equation verifies the constraint, and the first equation provides: X'Xu = iu. >î is the eigenvalue and u is the eigenvector associated to it. As we maximise, we select eigenvalues Xfrom the greater to the smaller. The associated eigenvector gives the direction of the axis. The cosine of the angle between a variable X t and the axis is the correlation coefficient for this variable.

Example

We shall construct a small example with a 7x5 matrix. 

  obtain the principal components c (the projection of the n individuals upon the m principal axis), we calculate c -X R v.

  calculus can be made in the space of 9? n (when points are columns), the terms N }J of the columns of this matrix are divided by the margins of the columns JV ; giving margins of X c are unitary. The metric is M c = Af N R . The distances are are the same than in the preceding case.

  data matrix is rectangular (n,m). We calculate a biproportion of the matrix N on any matrix L with unitary margins in one side and with equal margins in the other side. Suppose "l/m l/m] that m < n (without loss of generality); then L is a constant matrix: L -We are obliged to do so to respect the global equilibrium m ]T l u = ]T / ; • However, the important is that each rows have the same margins and each columns have the same margins, and not a unitary value of margins (multiplying every margins by £ multiplies by k 1 the eigenvalues of the diagonalised matrix 4 quasi normalisation simultaneously in rows and columns.2) Second step. We diagonalise the matrix X'X in the space of 9i m (or X X' in the space of 9T: classically, first eigenvalues are the same in one case and in the another case). A trivial eigenvalue is found: X = -, associated to the eigenvector g, the gravity center . If d = -g ; thus X = -with g as eigenvector.

  in rows and one time in columns, that is to say, divided by N L in one case and by N tj in one another case. In the Biproportional Factorial Analysis, data are simultaneously (quasi) normalised in rows and columns.

  =1In this example, results are enough close to those of Correspondence Analysis.

We follow here [ SAPORTA pp. 200-204 j.

This compact and easy-to-read writing is not efficient in computing: one must use a special algorithm to inverse diagonal matrices without using the standard matrix inversion routine.

See later.