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The atom with fine structure is widely studied in the area of nuclear physics, atomic physics and condensed matter physics. The traditional way to manipulate them relates to static magnetic field; however, the scale area of a typical magnetic field is always macro. In this letter, we proposed a method to control atoms via vector the polarizability at mesoscopic scale by optical microcavity. The linear quantum control of optical microcavity, at the same time, is achieved, which could be a significant for on-chip device engineering. In addition, by applying magnetic field, a nonlinear phenomenon of transmission spectrum is observed, which could be used as a test pool for many fancy nonlinear dynamics.

I. INTRODUCTION

Modern research on cavity quantum electrodynamics (CQED) obtains great results about strong interactions between light field and single atom. To obtain the interaction a promising method is by increasing the energy density, where using optical cavity to spatially confine photons is a promising approach. The strong interaction has two remarkable consequences: on the one hand the atom is governed by the light field, and on the other hand the cavity modes are also modulated by the atoms. The former one is widely studied in numerous CQED systems such as graphene plasmonics [1], cavity polariton [2,3], quantum dot [4] and WGM cavity [5,6]. In addition, perfect circular WGM cavities, though exhibit great quality factor, are hard to couple with fiber, while asymmetric WGM cavities are always good substitution in reality. For single atom's coupling with light field, the later phenomenon can hardly be observed at ordinary light intensity level for experiments; however, things are different for an atom ensemble interacts with light field. What makes atom ensemble unique in this interaction form rather than individual atom arises from the interaction between atoms. Ordinarily, the interaction could be tuned by magnetic field via Feshbach resonance [7][8][9]. In general the Feshbach resonance occurs accompanied with zero energy bound state. Magnetic field tune the Zeeman shifting to create a bound state, and it could also be done via optical field by a so-called optical control of Feshbach resonance [10][11][12][13][14][15][16][17]. In the optical microcavity coupling to atom ensemble setup, this could also be important and have exotic phenomena both in cavity modes side and in atom's dynamics side.

In this work, we propose a system which for the first time can directly couple WGM cavity with atom's spin level. To achieve the necessary power, an asymmetry is * introduced to WGM cavity due to its strong near-field intensity. We assume the atoms are set in the mesoscale region, which is acme of both cavity mode intensity and the coupling strength. Due to the conversation of angular momentum, different cavity mode which has its unique orbital angular momentum could couple to each other via each order of spin flipping process.

In Sec. II we establish a description of the system, and discuss simplification which suits the ordinary experimental condition. In Sec. III we discuss the influence of this interaction to cavity mode where an interesting nonlinear behavior is observed. In Sec. IV we then discuss how this universal interaction matters on atoms, and two aspects are analyzed: first the population of spin as a function of input power and frequency is studied, and second we based on recent approach of deriving effective large scattering length via time-dependent modulated external field, where we extend it to light field rather than magnetic field to get better time-domain control.

II. MODEL CONSTRUCTION

Circular WGM cavity has a rotation symmetry, and its eigenmodes are all TM or TE polarized, i.e., have no circular polarizability. These properties would not be useful in a strong light-matter interaction for our study. By introducing asymmetry, such as deformation [18][19][20] or defects to make annular cavity [21,22], the near-field intensity is increased at some particular positions, and the eigenmodes of the cavity have circular polarization. Set atom ensembles in the regions where field intensity is large would therefore establish effective coupling between the cavity modes and atom. A fine-structured atom could interact with small detuning monochromic light via a form as

H eff = iu v (E × E * ) • S ( 1 
)
where S is spin of an atom, and for the ideal two-level atom, u v = -1 12∆e α | l = 1|d|l = 0 | 2 is the so-called vector polarization which is derived in textbooks and literatures [23][24][START_REF] Cohen-Tannoudji | Atom-photon interactions: basic processes and applications[END_REF][START_REF] Cohen-Tannoudji | [END_REF][27][28] as the coupling strength of dipole interaction, and the ∆ e is the detuning of light frequency from energy gap between the atom's ground state and first excited state: ∆ e = E e -ω. This particular form of interaction is remarkable for artificial gauge field in ultracold atom areas, considering it produces a vector shift of atom and explores new form of light-matter interaction, and could disappear only when the total angular momentum F = 0. 4), (e) energy level demonstration, where the left shaded region and right shaded region couple to each other based on the conservation of angular momentum. The coupling strength proportional to the overlapping of cavity mode within the area of atomic ensemble.

For a symmetric optical microdisk, it could not exhibit any sort of property of this interaction, for the emission of a single resonance mode always has unitary distribution of E × E * . However, when asymmetric is introduced into the microcavity, such as deformed microcavity or annular microcavity, the TE mode electric field could be extremely different. In this letter, we take consideration of annular cavity to make the cavity asymmetrical. Fig. 1 (a-d) shows an example for annular cavity and related light intensity and |E×E * | distribution. For a TM mode, the field component perpendicular to the plane is magnetic field [22], therefore the TM mode's electronic field can be derived as

E ⊥ = - i r 2 kẑ × ∇ ⊥ B z , ∇ ⊥ = (∂ x , ∂ y , 0) (2) 
within cylinder coordinates, it's

E ⊥ = - i r 2 kẑ × ∂B z ∂r e r + 1 r ∂B z ∂θ e θ (3) 
and for a circular cavity this effect annihilates for θ symmetric and E is in same direction as E * .

For a TM mode, E × E * is pure imaginary and has no components on x, y direction, so we can suppose that E × E * = iΩe z /u v , an illustration see Fig. 1. We then derive the effective Hamiltonian as

H eff = -ΩS z (4)
which causes the splitting of the alkali atom's single outmost electron's two spin degeneracy eigenstate.

The physical process at resonance is important, for it obeys the conservation of energy and angular momentum at the same time, and hence the phenomenon is remarkable. The extra term we add into Hamiltonian is described as the following process: 1. the microcavity mode |m, 1 is excited by taper, with annihilation operator a m . Its emission, when treat as classical light, interacts with the atoms outside; 2. the spin-up atom absorbs photon with orbital momentum m , then emit a photon with orbital momentum (m + 1) and falls into spin-down atom; 3. the interaction could be described as coupling between atom electron spin and photon, i.e., gb † ↓ b ↑ a † m+1 a m + h.c; 4. the interaction happens because the photon spin is transferred into electron spin, however, with even weak spin-orbital interaction of photon, this could happen. Hence, full Hamiltonian without input at resonance is given by

H = H modes + H spin + H int (5a) H modes = j=m,m+1
(ω j -iΓ j )a † j a j (5b)

H spin = (ca † m a m + da † m+1 a m+1 )b † ↑ b ↑ (5c) H int = (gb † ↓ b ↑ a † m+1 a m + h.c) (5d)
where in the Hamiltonian, H modes , for the energy of photons; H spin , for the splitting due to the contribution of the two optical modes (as in Fig. 1, the two mode has basically same strength of E × E * , and hence the efficient is chosen to be same). The interaction between atoms is not taken into account for simplicity. The crossing of two electric field components is actually phenomenologically described via the extra interaction term: H int , for the interaction between integrated state |m + 1, ↓ and |m, ↑ . At large N limits, which means the number of photons and atoms are large enough, we can apply a meanfield approach where all the operators could be treated as numbers. By adding input term, we can write down the dynamics of cavity mode precisely as

b † ↑ b ↑ + b † ↓ b ↓ = N tot
i d dt a m = (ω m -iΓ m + cb † ↑ b ↑ )a m + g * b * ↑ b ↓ a m+1 + i √ κ m P e -iωt , (6a) 
i d dt a m+1 = (ω m+1 -iΓ m+1 + db † ↑ b ↑ )a m+1 + gb * ↓ b ↑ a m + i √ κ m+1 P e -iωt , (6b) 
and also the of spin population is given by

i d dt b ↑ = (ca † m a m + da † m+1 a m+1 )b ↑ + g * b ↓ a * m a m+1 , (6c) 
i d dt b ↓ = gb ↑ a m a * m+1 . (6d) 
with all these four equations, one can exactly solve the dynamical evolution of cavity mode and spin population. However, on the other hand, knowing the exact dynamics is relatively useless for the physics behind the whole framework. Therefore we might need other way to treat these equations, as in Sec. III.

III. REGULATION ON MICROCAVITY

In the first two sub-equations in (6a), (6b), the b † ↑ b ↑ term actually contributes a rather small effect, for firstly the c is relatively a small number, and secondly the number of atom is not large enough to influence the frequency of light, compare to the high optical frequency we are interested in. Based on this analyze, in principle we could omit this extra term due to each spin number.

We suppose that the input source set the frequency, i.e., a m , a m+1 , b ↑ , b ↓ are both in a harmonic oscillating way as a m,0 e -iω1t , a m+1,0 e -iω2t , b ↓,0 e -iω3t and b ↑,0 e -iω4t . An obvious result for this is that ω 1 = ω 2 , ω 3 = ω 4 , and due to the input as compulsory driven force,

ω 1 = ω 2 = ω. Define G 1 = g * b * ↑,0 b ↓,0 / , G 2 = g * a *
m,0 a m+1,0 / ; y ≡ a m+1,0 /a m,0 , z ≡ b ↓,0 /b ↑,0 as some parameters. Based on the condition that the number of total spin is conserved, i.e., |b ↓,0 | 2 + |b ↑,0 | 2 = N tot , the equations (6a) could be transformed that the amplitude obeys the following coupled algebraic equations:

z = 1 2G 2 -(c|a m,0 | 2 + d|a m+1,0 | 2 ) ± (c|a m,0 | 2 + d|a m+1,0 | 2 ) 2 + 4|G 2 | 2 (7a) ω 3 = ω 4 = 1 2 (c|a m,0 | 2 + d|a m+1,0 | 2 ) ± (c|a m,0 | 2 + d|a m+1,0 | 2 ) 2 + 4|G 2 | 2 (7b) a m,0 = √ κ 1 (ω -ω m+1 + iΓ m+1 ) + √ κ 2 G 1 iP (ω -ω m+1 + iΓ m+1 )(ω -ω m + iΓ m ) -|G 1 | 2 (7c) a m+1,0 = √ κ 2 (ω -ω m + iΓ m ) + √ κ 1 G 1 iP (ω -ω m+1 + iΓ m+1 )(ω -ω m + iΓ m ) -|G 1 | 2 (7d)
At this level, the phenomenon is purely linear: for scaling input power, the a m , a m+1 scales linearly which make the z, ω 3 = ω 4 unchanged. The effective coupling strength is therefore a function of total atom number N , as illustrated. We can show that at the experimental practical region, where cN ω, the effective coupling strength is linear increase of N tot . This would result in a linear quantum control of cavity mode, as a useful tool for quantum engineering based on on-chip device. However, the control is determined exclusively by the atom number and cavity shape (g), both hard to vary during experiments, and hence is not efficient for practical use. The following approach provides a solution to this dilemma.

In addition, by adding a constant magnetic field around, i.e., adding additional term µ B B|↑ ↑|, the system shows a very complicated behavior of transmission spectrum, and begin regularized by the input power. In other words, the system enters nonlinear region with nonzero magnetic field. In this region, the quantum control over microcavity is derived: by controlling the input power P , one would slightly control the peak position in transmission spectrum, which is defined as

T = |P - √ κ m a m,0 - √ κ m+1 a m+1,0 |/|P |.
Numerically calculated spectrum is shown in Fig. 2, where a sensitive relation of spin population to the frequency around the first major absorb, i.e., the ω ∼ 150 -160 could be read out. This is actually due to the mode beating, where the two optical mode are mixed together and the dominant one would rule which spin direction has more population. It's the same reason that the two spin orientations dominant at different input power, as in Fig. 3. The transmission spectrum has a shape much different from the traditional Lorentzian result. The spin plays a role of regulating the transmission. Due to it's nonlinear effect, the Fig. 2 only presents a low-power case, and the strong power situation would causes more results, as in Fig. 3. When the power is too strong where the photon number is remarkably high, the coupling between spin up and down is remarkable. This leads to a far deviation from half-half population at resonance, and on the other hand results in the power hard to permit inside the cavity, which in the spectrum means a transmission transparency. This kind of transparency has a dramatically sharp shape and small width, mainly because it happens when the spin population experience a nonlinear bifurcation. It's a sudden phenomenon, results in a discontinuity in physical quantity, and hence the transmission spectrum would only exhibit a sharp peak.

There are two things should be discussed carefully. One is about T > 1 for some particular frequency region. This could be understood as atoms gain energy from magnetic field, and the transfer this energy into photons and flip back into low energy state, and not violate energy conservation law, as expect. The other is the regularization of peak position by this approach is actually limited by the total number of atoms, and hence it saturates at high input energy.

IV. OPTICAL FESHBACH RESONANCE, ATOMIC INTERACTION AND FLOQUET COLLECTIVE EXCITATION

Each atom could interact with each other where the interaction could be described well by contact potential

U I = gδ(r) where g = 4π 2 a s m (8) 
and a s is s-wave scattering length. The scattering length could be tuned by magnetic field due to the emergence of zero energy bound state or αI = B 0 , indicating a strong interacting. However, around these resonance place, the atoms got heated very fast, results in a remarkable atom loss. Recently a floquet approach [29] showed a modulated magnetic Feshbach resonance which means that a time periodic driven magnetic field could effectively reach higher scattering length so that might solve the atom loss issue when reaching strong interaction. However, even though the required frequency for driving the magnetic field is not high for 87 Rb, this could limit a potential application to other species of atom. Considering the driven frequency of light intensity could be really high, this approach could also be used in an optical control of Feshbach resonance, where all procedures are exactly the same.

a(B) = a bg 1 - ∆ B -B 0 (9) 
However, to obtain a same form of time-dependent scattering length a(t), the control of input power is not simple. The light intensity has a nonlinear dependency of input power, due to the interacting between cavity mode and atom. We here can show a direct mapping from [29] the magnetic field approach to our optical approach that if the input power is a function of time I(t) = I 0 + ∆I cos(Ωt), the scattering length exhibits following behavior

1 a(Ω) = 1 ā Ω -Ω 0 Ω -Ω 0 -δ + iγ
and therefore being able to tune the scattering length and at the same time avoid heating and atom loss due to resonance, i.e., it can enhance the real part of scattering length while still having small imaginary part. The advantage for this setup is that the controlling of light intensity is much more flexible than the controlling of magnetic field, for the latter one always involves complicated current control due to large inductor. The light intensity is quite simple to control even at high frequency.

V. SUMMARY

In this work we briefly introduce circular polarization to the annular microcavity, which absences in circular microcavity. This on the other hand could perform a vector polarization on atom and therefore could regularize both the cavity's and the atom's behavior. We then analyze both sides, and find some nontrivial behavior and potential application. In particular, this could be useful for controlling the interaction between atom. The previous difficulties in controlling interaction between atoms are either the loss due to resonance or the technique in magnetic field precise control. In our setup both difficulties are solved.
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 1 FIG. 1. (a) -(d): Comsol simulation of the distribution of an annular microcavity's scar-like m = 16, 17 modes: (a, c) light intensity |E| 2 (b, d) imaginary part of E×E * 's z component, i.e., Ω/uv in eq. (4), (e) energy level demonstration, where the left shaded region and right shaded region couple to each other based on the conservation of angular momentum. The coupling strength proportional to the overlapping of cavity mode within the area of atomic ensemble.

  for the number of atoms. The Heisenberg equation gives the dynamics equation for modes and spin population. The coupling coefficient is determined by the overlapping of mode |m and |m + 1 around a given position, say around the place with high |E × E * | as in Fig.1. Physically one would expect the g as a function of the size and center displacement of annular cavity. The way to determine the coupling constant g is by calculating the mode overlapping of |m , |m + 1 modes at one maximum place.

FIG. 2 .

 2 FIG. 2.Numerically calculated transmission spectrum (rescaled by T → (T -0.8)/0.2) and spin population for the effective two mode system. The frequency of the two optical mode is set at ωm = 205 and ωm+1 = 210. The coupling on the one hand causes expel of peak position, on the other hand give rises of bistable modes.

FIG. 3 .

 3 FIG.3. Transmission spectrum and corresponding spin population at different power. In Fig.2the power is P0, and here is 50/100/200/300P0. As power increases, the frequency where the spin population first present near saturated occupation (50/100P0: spin down; others: spin up) tends to be lower, and the saturation's frequency range tends to broaden; besides, the similar saturation is arose at second dip.
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 04 FIG.4. Illustration of scattering length as a function of light intensity. Shaded region for scattering length exceeds the area of near field light spot and therefore the description of system is no longer valid.