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Université Paris-Saclay

Olivier Cappé
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Abstract

Online advertising and product recommenda-
tion are important domains of applications for
multi-armed bandit methods. In these fields,
the reward that is immediately available is
most often only a proxy for the actual outcome
of interest, which we refer to as a conversion.
For instance, in web advertising, clicks can be
observed within a few seconds after an ad dis-
play but the corresponding sale –if any– will
take hours, if not days to happen. This pa-
per proposes and investigates a new stochas-
tic multi-armed bandit model in the framework
proposed by Chapelle (2014) –based on em-
pirical studies in the field of web advertising–
in which each action may trigger a future re-
ward that will then happen with a stochas-
tic delay. We assume that the probability of
conversion associated with each action is un-
known while the distribution of the conversion
delay is known, distinguishing between the
(idealized) case where the conversion events
may be observed whatever their delay and the
more realistic setting in which late conversions
are censored. We provide performance lower
bounds as well as two simple but efficient algo-
rithms based on the UCB and KLUCB frame-
works. The latter algorithm, which is prefer-
able when conversion rates are low, is based
on a Poissonization argument, of independent
interest in other settings where aggregation of
Bernoulli observations with different success
probabilities is required.

1 Introduction

Characterizing the relationship between marketing ac-
tions and users’ decisions is of prime importance in ad-

vertising, product recommendation and customer rela-
tionship management. In online advertising a key aspect
of the problem is that whereas marketing actions can be
taken very fast –typically in less than a tenth of a second,
if we think of an ad display–, user’s buying decisions
will happen at a much slower rate [7, 4, 18]. In the fol-
lowing, we refer to a user’s decision of interest under the
generic term of conversion. Chapelle, in [4], while ana-
lyzing data from the real-time bidding company Criteo,
observed that, on average, only 35% of the conversions
occurred within the first hour. Furthermore, about 13%
of the conversions could be attributed to ad display that
were more than two weeks old. Another interesting ob-
servation from this work is the fact that the delay distri-
bution could be reasonably well fitted by an exponential
distribution, particularly when conditioning on context
variables that are available to the advertiser.

The present work addresses the problem of sequentially
learning to select relevant items in the context where the
feedback happens with long delays. By long we mean in
particular that the feedback associated with a fraction of
the actions taken by the learner will be practically unob-
served because they will happen with an excessive delay.
In the example cited above, if we were to run an online
algorithm during two weeks, at least 13% of the actions
would not receive an observable feedback because of de-
lays. A related situation occurs if the online algorithm is
run during, say, one month, but its memory is limited to a
sliding window of two weeks. In Section 2 below we in-
troduce models suitable for addressing these two related
situations in the framework of multi-armed bandits.

Delayed feedback is a topic that has been considered be-
fore in the reinforcement learning literature and we de-
fer the precise comparison between existing approaches
and the proposed framework to Section 3. In a nutshell
however, the distinctive features of our approach is to
consider potentially infinite stochastic delays, resulting
in some feedback being censored (ie. not observable).
Existing works on delayed bandits focus on cases where



the feedback is observed after some delay, typically as-
sumed to be finite. In contrast, we assume that delays are
random with a distribution that may have an unbounded
support – although we require that it has finite expecta-
tion. As a result, some conversion events cannot be ob-
served within any finite horizon and the proposed learn-
ing algorithm must take this uncertainty into account.

In Section 2, we propose discrete-time stochastic multi-
armed bandit models to address the problem of long de-
lays with possibly censored feedback. We distinguish
two situations that correspond to the cases mentioned in-
formally above: In the uncensored model, conversions
can be assumed to be eventually observed after some
possibly arbitrarily long delay; In the censored model,
it is assumed that the environment imposes that the con-
versions related to actions cannot be observed anymore
after a finite window of m time steps.

Assuming that the delay distribution is known, we prove
problem-dependent lower bounds on the regret of any
uniformly efficient bandit algorithm for the censored and
uncensored models in Section 4.

In Section 5, we describe efficient anytime policies re-
lying on optimistic indices, based on the UCB [1] or
KLUCB [5] algorithms. The latter uses a Poissoniza-
tion argument that can be of independent interest in other
bandit models. In typical scenarios where the conversion
rates are less than one percent, using the KLUCB vari-
ant will ensure a much faster learning and provides near-
optimal perfomance on the long run (see Theorem 11).

These algorithms are analyzed in Section 6, showing that
they reach close to optimal asymptotic performance. In
Section 7 we discuss the implementation of these meth-
ods, showing that it is further simplified in the case of
geometrically distributed delays, and we illustrate their
performance on simulated data.

2 A Stochastic Model for the Delays

We now describe our bandit setting for delayed conver-
sion events, inspired by [4]. We first consider the setting
in which delays may be potentially unbounded and then
consider the case where censoring occurs.

2.1 General Bandit Model under Delayed Feedback

At each round t ∈ N∗, the learner chooses an arm
At ∈ {1, . . . ,K}. This action simultaneously triggers
two independent random variables:

• Ct ∈ {0, 1}, is the conversion indicator that is equal
to 1 only if the action At will lead to a conversion;
• Dt ∈ N, is the delay indicating the number of time

steps needed before the conversion – if any – be dis-
closed to the learner.

At each round t, the agent then receives an integer-valued
reward Yt which corresponds to the number of observed
conversions at time t:

Yt =

t∑
s=1

Cs1{Ds = t− s}.

In the following, we will use the short-hand notation
Xs,t = Cs1{Ds ≤ t − s}, for s ≤ t to denote the
possible contribution of the action taken at time s to the
conversion(s) observed at a later time t. We emphasize
that even if the actual reward of the learner is the sum of
the conversions, we assume that the agent also observes
all the individual contributions (Xs,t)1≤s≤t at time t trig-
gered by actions taken before time t.

The above mechanism implies that if Ct = 1, the learner
will observe Dt at time t + Dt, whereas if Ct = 0, the
delay will not be directly observable. In particular, if at
time t, Xs,u = 0, for all s ≤ u ≤ t, it is impossible
to decide whether Cs = 0 or if Cs = 1 but Ds > t −
s. Formally, the history of the algorithm is the σ-field
generated byHt := (Xs,u)1≤u≤t,1≤s≤u.

We consider the stochastic model under the following ba-
sic assumptions:

Ct|Ht−1 ∼ Bernoulli(θAt),

Dt|Ht−1 ∼ distribution with CDF τ ,

and Ct, Dt are conditionally independent givenHt−1.

Lemma 1. Denote by a∗ ∈ {1, . . . ,K} an index such
that θ∗a ≥ θk, for k ∈ {1, . . . ,K}, and define by
r(T ) =

∑T
t=1 Yt the cumulated reward of the learner

and by r∗(T ) the cumulated reward obtained by an ora-
cle playing At = a∗ at each round. The expected regret
of the learner is given by

L(T ) = E [r∗(T )− r(T )] =

T∑
s=1

E [θa∗ − θAs ] τT−s

(1)
where by definition τT−s = P(Ds ≤ T − s). Denoting
E[Nk(T )] :=

∑T−1
s=1 1{As = k}, it holds that

L(T ) ≤
K∑
k=1

(θa? − θk)Nk(t)

and if µ = E[Ds] <∞,

K∑
k=1

(θa? − θk)Nk(t)− L(T ) ≤ µ
K∑
k=1

(θa? − θk). (2)



Proof The cumulated reward at time T satisfies

r(T ) =

T∑
t=1

Yt =

T∑
t=1

t∑
s=1

Cs1{Ds = t− s}

=

T∑
s=1

Cs1{Ds ≤ T − s} =

T∑
s=1

Xs,T ,

where the index T stands for the time at which all past
conversions are observed while s is the index at which
the action has been taken. Hence Eq. (1) is obtained by

E

[
T∑
t=1

r(T )

]
= E

[
T∑
t=1

Yt

]

=

T∑
s=1

E [Xs,T ] =

T∑
s=1

θAsτT−s.

Obviously the fact that τT−s ≤ 1 implies that L(T ) is
upper bounded by

∑K
k=1(θa? − θk)Nk(t), which corre-

sponds to the usual regret formula in the bandit model
with explicit immediate feedback. To upper bound the
difference, note that

K∑
k=1

(θa? − θk)Nk(t)− L(T )

=

K∑
k=1

(θa? − θk)

T∑
s=1

1{As = k}(1− τT−s)

≤
K∑
k=1

(θa? − θk)

∞∑
n=0

(1− τn) = µ

K∑
k=1

(θa? − θk).

2.2 Thresholded Delays: Censored Observations

The model with m-thresholded delays takes into account
the fact that a conversion can only be observed within m
steps after the action occurred. This basically changes
the expression of the expected instantaneous reward Yt
which becomes,

Yt =

t∑
s=t−m

Cs1{Ds = t− s}

and the future contributions of each action are capped
to the next m time steps: (Xs,t)t−m≤s≤t. The
history of the algorithm only consists of Ht =
σ((Xs,u)1≤u≤t,u−m≤s≤u) and the regret expression of
Lemma 1 can be split into two terms corresponding to

old pulls and the m most recent pulls:

T−m∑
s=1

(θa? −E[θAs ])τm +

T∑
s=T−m+1

(θa? −E[θAs ])τT−s

(3)

In the remaining, for (p, q) ∈ [0, 1]2, we will denote by
d(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q))
the binary entropy between p and q, that is the Kullback-
Leibler divergence between Bernoulli distributions with
parameters p and q. Moreover, without loss of generality,
we will assume that a∗ = 1 is the unique optimal arm of
the considered bandit problems and denote by θ∗ = θ1

the optimal conversion rate.

3 Related Work on Delayed Bandits

Delayed feedback recently received increasing attention
in the bandit and online learning literature due to its var-
ious applications ranging from online advertising [4] to
distributed optimization [10, 3]. Indeed, delayed feed-
back have been extensively considered in the context
of Markov Decision Processes (MDPs) [12, 19]. How-
ever, the present work focuses on unbounded delays and
the models considered therein would result in an infinite
space MDP for which even the planning problem would
be challenging. In contrast, the lack of memory in ban-
dits makes it possible to propose relatively simple algo-
rithms even in the case where the delays may be very
long. For a review of previous works in online learning
in the stochastic and non-stochastic settings, see [8] and
references therein. The latter work tackles the more gen-
eral problem of partial monitoring under delayed feed-
back, with Sections 3.2 and 4 of the paper focusing on
the stochastic delayed bandit problem. A key insight
from this work is that, in minimax analysis, delay in-
creases the regret in a multiplicative way in adversarial
problems, and in an additive way in stochastic problems.

The algorithm of [9] relies on a queuing principle termed
Q-PMD that uses an optimistic bandit referred to as
“BASE” to perform exploration; in [9] UCB is chosen
as BASE strategy while the follow-up work [8] also con-
siders the use of KLUCB. The idea is to store all the ob-
servations that arrive at the same time t in a FIFO buffer
and to feed BASE with the information related to an arm
k only when this arm is about to be chosen. It means that
the number of draws of an arm as well as the cumulated
sum of the subsequent rewards are only updated when-
ever the observation arrives to the learner. Meanwhile,
the algorithm acts as if nothing happened.

However, in the setting considered in the present work,
updating counts only after the observations are eventu-
ally received cannot lead to a practical algorithm: When-



ever a click is received, the associated reward is 1 by def-
inition, otherwise the ambiguity between non-received
and negative feedback remains. Thus, the empirical av-
erage of the rewards for each arm computed by the up-
dating mechanism of Q-PMD sticks to 1 and does not
allow to compare the arms. As a consequence, the Q-
PMD policy cannot be used for the models described in
Section 2, except in the specific case of the uncensored
delay model with bounded delays: Then there is no cen-
soring anymore as one only needs to wait long enough
(longer than the maximal possible delay) to reveal with
certainty the exact value of the feedback.

Also, [16] notices that the empirical performances of this
queuing-based heuristic are not fully satisfying because
of the lack of variability in the decisions made by the
policy while waiting for feedback. Their suggestion is
to use random policies instead of deterministic ones in
order to improve the overall exploration. Note that even
though we stick to deterministic, history-based, policies,
this problem is taken care of by our algorithm thanks to
the use of the CDF of the delays that allow us to cor-
rect the confidence intervals continuously after a pull has
been made.

Another possible way to handle bounded delays would
be to plan ahead the sequence of pulls by batches, fol-
lowing the principles of Explore Then Commit, see [17].
With finite delays, a new un-necessary batch of explo-
ration pulls might be started before the algorithm enters
the exploitation (or commitment) phase. The extra cost
would therefore be the maximal observable delay. Al-
though these techniques are random and not determinis-
tic, they have the same drawbacks as the other ones: The
policy is not updated while waiting for feedback and, as
a consequence, cannot handle arbitrarily large delays.

An obvious limitation of our work is that we assume that
the delay distribution is known. We believe that it is a re-
alistic assumption however as the delay distribution can
be identified from historical data as reported in [4]. In
addition, as we assume that the same delay distribution
is shared by all actions, it is natural to expect that esti-
mating the delay distribution on-line can be done at no
additional cost in terms of performance. Perhaps more
interestingly, it is possible to extend the model so as to
include cases where the context of each action is avail-
able to the learner and determines the distribution of the
corresponding delay, using for instance the generalized
linear modeling of [4]. In particular, the same algorithms
can be used in this case, by considering the proper CDFs
corresponding to different instances. Of course the anal-
ysis to be described below would need to be extended to
cover also this contextual case.

4 Lower-bound on the Regret

The purpose of this section is to provide lower bounds on
the regret of uniformly efficient algorithms in the two dif-
ferent settings of the Stochastic Delayed Bandit problem
that we consider. This class of policies, introduced by
[15], refers to algorithms such that for any bandit model
ν, and any α ∈ (0, 1), E[R(T )]/Tα → 0 when T →∞.

Our results rely on changes of measure argument that are
encapsulated in Lemma 1 of [13], or more recently, and
more generally, in Inequality (F) of [6]. Those results
can actually be reformulated as a lower bound on the ex-
pected log-likelihood ratio of the observations under the
originally considered bandit model θ and the alternative
one θ′

E[`T ] = Eθ

[
pθ((Xs,t)1≤t≤T,1≤s≤t)

pθ′((Xs,t)1≤t≤T,1≤s≤t)

]
.

The following inequality is obtained using proof tech-
niques from Appendix B of [13] that are detailed in Ap-
pendix B.

lim inf
T→∞

E[`T ]

log(T )
≥ 1. (4)

To obtain explicit regret lower bounds for the models in-
troduced in Section 2, we compute below the expected
log-likelihood ratio corresponding to these two models.

Lemma 2. In the censored delayed feedback setting, the
expected log-likelihood ratio is given by

Eθ [`T ] =

T−m∑
s=1

d(θAsτm, θ
′
Asτm)

+

T∑
s=T−m

d(θAsτT−s, θ
′
AsτT−s).

In the uncensored setting, the above sum is not split and
we have

Eθ [`T ] =

T∑
s=1

d(θAsτT−s, θ
′
AsτT−s).

Proof GivenHs−1, (Xs,s, . . . , Xs,T ) can be equal to

• (0, . . . , 0), with proba. (1− θAs) + θAs(1− τT−s),

• (0, . . . , 0, 1, 1, . . . , 1) with proba. θAsδu−s, for u =
s, . . . , T (u denotes the position of 1 in the vector),
where δk = P(Ds ≤ k).



Hence,

Eθ

[
log

pθ(Xs,s, . . . , Xs,T )

pθ′(Xs,s, . . . , Xs,T

∣∣∣∣Hs−1

]
= log

1− θAsτT−s
1− θ′AsτT−s

(1− θAsτT−s)

+

T∑
u=s

log
θAsδu−s
θ′Asδu−s

θAsδu−s

= log
1− θAsτT−s
1− θ′AsτT−s

(1− θAsτT−s) + log
θAs
θ′As

θAsτT−s

= d(θAsτT−s, θ
′
AsτT−s).

The equivalent expression for the censored case is easily
deduced from the same calculations.

4.1 Censored Setting

Using our notations, the following theorem provides a
problem-dependent lower bound on the regret.

Theorem 3. The regret of any uniformly efficient algo-
rithm is bounded from below by

lim inf
T→∞

R(T )

log(T )
≥
∑
k 6=k∗

τm(θ∗ − θk)

d(τmθk, τmθ∗)
.

Proof The details of the proof can be found in Ap-
pendix B but we provide here a sketch of the main ar-
gument. The log-likelihood ratio is given by Lemma 2:

Eθ [`T ] =

T−m∑
s=1

d(θAsτm, θ
′
Asτm)

+

T∑
s=T−m

d(θAsτT−s, θ
′
AsτT−s),

which is bounded from below by Eq.(4). However, ob-
taining a lower bound on the regret requires to decom-
pose this quantity into (K − 1) terms depending on the
suboptimal arms. For a fixed arm k 6= 1, we consider
θ′ = (θ1, . . . , θk−1, θ1 + ε, . . . , θK) for which the ex-
pected log-likelihood ratio is

E[Nk(T )]d(τmθk, τm(θ1 + ε))

+

T∑
s=T−m

d(θkτT−s, (θ1 + ε)τT−s) ≥ Eθ [`T ] .

Divide by log(T ) and let T to infinity, to get the result
for ε→ 0, as the second term in the l.h.s. is bounded.

This lower bound implies that the delayed bandits prob-
lem with trespassing probability τm is as hard as solv-
ing the scaled bandit problem with expected rewards
(τmθ1, . . . , τmθK). In the long run, one cannot learn
faster than the heuristic approach discarding the last m
observations and considerimg the fictitious bandit model
with parameters (τmθ1, . . . , τmθK). However, on hori-
zons of the order of m time-steps, we will show em-
pirically in Section 7 that taking delay distributions into
account allows for much faster learning. Note also that
the convexity of the function τ → d(τp, τq) proved in
Lemma 15 implies that the regret lower bound is a mono-
tonically increasing function of τm. Hence, either re-
duced values of m or longer values of the expected delay
µ actually make the problem harder.

4.2 Uncensored Setting

In the uncensored model, the same argument shows that
the lower bound does not differ from the classical Lai &
Robbins Lower Bound [15].

Theorem 4. The regret of any uniformly efficient algo-
rithm in the Uncensored Delays Setting is bounded from
below by

lim inf
T→∞

R(T )

log(T )
≥
∑
k 6=k∗

(θ∗ − θk)

d(θk, θ∗)
.

The full proof of this result is similar to the proof of The-
orem 3 and can be found in Appendix B.

5 Delay-corrected Estimators and
Confidence Intervals

In this section, for a fixed arm k ∈ {1, . . . ,K}, we define
a conditionally unbiased estimator for the conversion rate
θk. Then, based on suitable concentration results we de-
rive optimistic indices: a delay-corrected UCB as in [1]
as well as a delay-corrected KLUCB as in [5].

5.1 Parameter estimator

Define the sum of rewards up to time t as

Sk(t) =

t∑
s=1

s∑
u=1

Xu,s1{Au = k}.

We recall that we defined the exact number of pulls of
arm k up to time t asNk(t) :=

∑t−1
s=1 1{As = k}. How-

ever, defining an estimator of θk that is unbiased – when
conditioning on the selections of arms – requires to con-
sider a delay-corrected count Ñ(t) taking into account
the probability of having eventually observed the reward



associated with each previous pull of k. We distinguish
the expression of Ñ(t) according to whether feedback is
censored or not.

Censored model. When rewards cannot be disclosed
afterm rounds following the action, the current available
information on the pulls is split into two main groups:
The ‘oldest’ pulls, censored if not observed yet, and the
most recent ones. Namely, we now define Ñk(t) as

Ñk(t) =

t−m∑
s=1

1{As = k}τm +

t−1∑
s=t−m+1

1{As = k}τt−s.

Overall, the conversion rate estimator is defined as

θ̂k(t) =
Sk(t)

Ñk(t)
. (5)

Remark 5. In the uncensored case, defining Ñk(t) :=∑t
s=1 1{As = k}τt−s. leads to an equivalent definition

of θ̂k(t) as a conditionally unbiased estimator.

5.2 UCB index

We first define a delay-corrected UCB-index for bounded
rewards.

Concentration bound. Using the self-normalized con-
centration inequality of Proposition 8 of [14], yields the
following result, that we recall here for completeness.

Proposition 6. Let k be an arm in {1, ...,K}, then for
any β > 0 and for all t > 0,

P

(
θk > θ̂k(t) +

√
Nk(t)

Ñk(t)

√
β

2Ñk(t)

)
< βe log(t)e−β .

Upper-confidence Bound. Thus, an UCB index for
θ̂k(t) may be defined as

U UCB
k (t) = θ̂k(t) +

√
Nk(t)

Ñk(t)

√
βε(t)

2Ñk(t)
,

where βε(t) is a suitable slowly growing exploration
function (see below). This upper confidence interval is
scaled by Nk(t)/Ñk(t) when compared to the classical
UCB index. This ratio gets bigger when the (τd)’s are
small for large delays d, that is when the median delay
is large: The longer we need to wait for observations to
come, the largest our uncertainty about our current cu-
mulated reward.

5.3 KLUCB index

Concentration bound. We first state a concentration
inequality that controls the underestimation probability
based on an alternative Chernoff bound for a sum of in-
dependent binary random variables (Lemma 13 proved
in Appendix A).

This lemma only holds for a sequence of pulls fixed
before-hand, independently of realizations, i.e., the val-
ues of At do not depend on the sequence of Xs. Al-
though with a restrictive scope, it provides intuition on
the construction of the algorithm.

Lemma 7. Assume that the sequence of pulls is fixed
beforehand and let k be an arm in {1, ...,K}. Then for
any δ > 0 and for all t > 0,

P
({
θ̂k(t) < θk

}
∩
{
Ñk(t)dPois(θ̂k(t), θk) > δ

})
< e−δ.

where dPois(p, q) = p log p/q+q−p denotes the Poisson
Kullback-Leibler divergence.

To get upper confidence bounds for θk from Lemma 7,
we follow [5] and define the KL-UCB index by

U KL
k (t) = max

{
q ∈ [θ̂k(t), 1] :

Ñk(t)dPois(θ̂k(t), q) ≤ βε(t)
}
.

Using βε(t) = β, this KL-UCB index satisfies a result
analogous to Proposition 6 (see Proposition 14 in Ap-
pendix A.1):

P (θk > U KL
k (t)) ≤ edβ log(t)ee−β .

Even though the Kullback-Leibler divergence does not
have the same expression for Bernoulli and Poisson ran-
dom variables, the following lemma (proved in Appendix
A.1) shows that for a certain range or parameters they are
actually very close.

Lemma 8. For 0 < p < q < 1,

(1− q)d(p, q) ≤ dPois(p, q) ≤ d(p, q).

6 Algorithms

Algorithm 1 present the scheme common to both the cen-
sored and uncensored cases, which differ only by the def-
inition of the parameter estimator. In both cases, one
may also consider either of the two UCB or KL-UCB
index defined in the previous section, resulting in the
DelayedUCB and DelayedKLUCB algorithms. We pro-
vide a finite-time analysis of the regret of these algo-
rithms, when using an exploration function of the form
βε(t) = (1 + ε) log(t), for some positive ε.



Algorithm 1 – DelayedUCB and DelayedKLUCB.

Require: K, CDF parameters (τd)d≥0, threshold m > 0 if
feedback is censored.
Initialization: First K rounds, play each arm once.
for t > K do

Compute Sk(t) and Ñk(t) for all k according to the as-
sumed feedback model (censored or not),
Compute θ̂k(t) for al k,
For a given choice of algorithm A ∈ {KLUCB, UCB},
At ← argmaxk U

A
k (t).

Observe reward Yt and all individual feedback (Xs, t)s≤t

end for

Finite-time Analysis of DelayedUCB.
Theorem 9. In the censored setting, the regret of
DelayedUCB is bounded from above by

LUCB(T ) ≤ (1 + ε) log(T )
∑
k 6=∗

1

2τm∆k
+ oε,m(log(T )).

Proof Outline of the proof (cf Appendix C.1):

1. First upper-bound the regret using Lemma 1 in the
uncensored case:

R(T ) ≤
∑
k>1

∆kE[Nk(T )],

and bounding the first m losses by 1 in the censored
case:

R(T ) ≤ m+
∑
k>1

τm∆kE

[
T∑
t>m

1{At = k}

]
.

2. Then, decompose the event 1{At = k} as in [1]

T∑
t>m

1{At = k} ≤
T∑
t>m

1
{
UUCB

1 (t) < θ1

}
+

T∑
t>m

1
{
At+1 = k, UUCB

k (t) ≥ θ1

}
.

3. Remark that the first sum is handled by Proposi-
tion 6 so it suffices to control the second sum.

E
[
1
{
At+1 = k, UUCB

k (t) ≥ θ1

}]
≤ (1 + ε) log(T )

2τ2
m∆2

i

+
∑

s>
(1+ε) log(T )

2∆2
i

P
(
UUCB
k (t) ≥ θi + ∆i

)
.

The last term is actually O(
√

log(T )), giving the
desired result. Details, as well as explicit constants and
dependencies can be found in Appendix C.1.

Corollary 10. In the uncensored setting, we also assume
that there exists c > 0 such that 1 − τm ≤ c

m for all
m ≥ 1. Then, is bounded from above by

LUCB(T ) ≤ 1 + ε

1− ε
log(T )

∑
k>1

1

2∆k
+ oε,m(log(T )).

Proof The analysis of DelayedUCB given in Ap-
pendix C.1 (in the censored setting) shows that the
performances of DelayedUCB in the uncensored setting
can be upper-bounded by its performances in the cen-
sored setting, where the threshold m can be arbitrarily
fixed to some value. Choosing m will only have an
impact on the analysis of the algorithm. The specific
choice of m satisfying τm ≥ 1 − ε gives the claimed
result. As indicated in Appendix C.1, the dependency
of oε,m(log(T )) is actually only linear in m. As a
consequence, along with the assumption on the decay
of 1 − τm, this yields that the overall dependency in the
parameter m is reduced to 1/ε.

We emphasize that the assumption that 1 − τm ≤ 1/m,
is actually rather natural. Indeed, if 1− τm ≤ c/mγ , for
some constants c, γ > 0, then the finiteness requirement
on the expected delay is satisfied if and only if γ > 1.

Finite-time Analysis of DelayedKLUCB.

Theorem 11. For any η > 0, the regret of
DelayedKLUCB is bounded in the censored setting as

LKLUCB(T ) ≤(1 + η)
βε(t)

1− θ1

∑
k>1

τm∆k

d(τmθk, τmθ1)

+ oε,m,η(log(T )).

Proof Outline of the proof (cf. AppendixC.2):

1. We start by decomposing the regret according to
the different types of unfavorable events. Note that
thanks to the upper bound on the regret provided by
Lemma 1, we need to control on the number of sub-
optimal pulls E[Nk(T )] for arms k > 1.

E[Nk(T )] ≤ m+ E

[
T∑

t=m+1

1{U1(t) < θ1}

]

+ E

[
T∑

t=m+1

1{A(t) = k, Uk(t) ≥ θ1}

]
.

2. The first sum is handled by Theorem 14 in Ap-
pendix A which shows that it is o(log(T )). For the
second term, we bound the indices using the fact



that Ñk(t) ≥ τmNk(t−m) to obtain

U KL
k (t) ≤ U KL+

k (t)

:= arg max
q∈[θ̂k,1]

{
q|τmdPois(θ̂k(t), q) ≤ βε(t)

Nk(t−m)

}
.

Notice that the U KL+
k (t) indices are well defined for

t > m.

3. Then, we proceed as in the proof of Theorem 10 in
Appendix B.2 of [9]. For any η > 0, we define the
characteristic number of pulls

Kk(T ) =
(1 + η)βε(t)

dPois(τmθk, τmθ1)
,

and we prove∑
s≥Kk(T )

P
(
τmsdPois(θ̂k,s, θ1) ≤ βε(t)

)
= oε,m,η(log T )

using Fact 2 of [2] for exponential families.

Corollary 12. In the uncensored setting, under the same
hypothesis than in Corollary 10, namely that there exists
a constant c such that 1− τm ≤ c

m for all m ≤ 1. Then,
the regret of DelayedKLUCB is bounded from above as

LKLUCB(T ) ≤ βε(t)

1− θ1

∑
k>1

(1 + η)(1− ε)∆k

d((1− ε)θk, (1− ε)θ1)

+ oη,ε(log(T )).

Proof As for the proof of Corollary 10, the performance
of DelayedKLUCB in the uncensored case can be
bounded as in the censored case by a specific choice
of m(ε) such that τm ≥ 1 − ε, namely m(ε) ≥ c/ε.
As shown in the proof of Theorem 11 in the censored
case, the dependency in m of the term of rest is linear,
reducing to 1/ε.

Naive benchmark: The DISCARDING policy. An ob-
vious benchmark algorithm in the censored setting is to
use the regular UCB and KLUCB policies only using the
first t − m pulls and observed rewards at each time t.
In that case the empirical average considered is simply
θ̂mk (t) = Sk(t−m)/τmNk(t−m) and the correspond-
ing optimistic indices are

Um(t) = θ̂mk (t) +
√
βε(t)/2τmNk(t−m),

U
m|KL
k (t) = max

q∈[θ̂mk ,1]

{
q| τmdPois(θ̂

m
k , q) ≤

βε(t)

N(t−m)

}
.

These indices can only be computed after at least m
rounds. The proof technique used for the analysis of our
algorithms in the censored case actually shows that the
DISCARDINGUCB and DISCARDINGKLUCB policies
are asymptotically optimal. Nonetheless, in practice it is
very undesirable to have an arbitrarily long linear regret
phase at the beginning of the learning until the threshold
m is reached. This is especially true if the threshold m is
large as compared to the horizon T . In that case, we em-
pirically show in Section 7 that our algorithms achieve
drastically improved short-horizon performance.

7 Experiments

In this section we perform simulations in our two delayed
feedback frameworks. The algorithms described in the
previous section will be denoted D-UCB and D-KLUCB
in the censored setting, and UD-UCB and UD-KLUCB in
the uncensored setting.

As a matter of fact, the bottleneck of such policies is
to compute Ñ(t) which is theoretically a weighted sum
over all past actions and, without any assumption on the
weights (τs)s≥0, it requires to store all previous rewards
and recompute Ñ(t) at each iteration.

Following the conclusions of [4], we assume all along
this section that the delays follow a geometric distribu-
tion with parameter λ := 1/µ. This assumption allows
us to implement our algorithms in a computationally,
memory-efficient manner. Indeed, for each s ≥ 0, we
now have (1 − τs+1) = λ(1 − τs) and this remark pro-
vides a sequential updating scheme of the quantity Ñk(t)
for k ∈ [K]. In the uncensored setting, we have:

Ñk(t) =

t∑
s=1

(1−λt−s+1)1{As = k} = Nk(t)−Ok(t),

where Ok(t) is updated after each round as follows

Ok(t+ 1)← λOk(t) + 1{At = k}. (6)

In the censored setting, however, one must still keep
track of some of the previous pulls in order to compute

Ñk(t) = Nk(t−m)τm +

t−1∑
s=t−m+1

1{As = k}τt−s.

In practice this can be done by maintaining a buffer of
size m containing the last m pulls that are multiplied by
the probability of observing a reward with the delay cor-
responding to their current position in the buffer. In ad-
dition to this buffer, we add old pulls in a separate count
Nk(t−m) for which the weight will stay τm.
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Figure 1: Expected regret of D-UCB and D-KLUCB (censored setting), and UD-UCB and UD-KLUCB (uncensored
setting) for two bandit problems: θH = (0.5, 0.4, 0.3), θL = (0.1, 0.05, 0.03). For all experiments, T = 10000,
µ = 500, m = 1000 (if censored) and the results are averaged over 100 runs.

Comparing DelayedUCB and DelayedKLUCB. We
compare the regret of both delayed bandits policies in the
censored and uncensored setting for T = 10000, µ =
500 and m = 1000.

Simulations on Figure 1, for two problems, θH =
(0.5, 0.4, 0.3) on the left, and θL = (0.1, 0.05, 0.03) on
the right, display the classical pattern that while UCB-
based algorithms perform satisfactorily for central values
(close to 0.5) of the conversion rate, they are clearly sub-
optimal with more realistic values for the conversion rate.
The two right plots also confirm that, for the KLUCB-
based algorithms, the loss with respect to the optimal re-
gret growth rate due to the use of the Poisson divergence
is – as expected from Theorem 11 – not significant for
low values (here θ∗ = 0.1) of the conversion rates.
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Figure 2: Expected regret of D-UCB and D-KLUCB in
the censored setting vs the equivalent discarding policies
when µ = 500 andm = 1000. Results are averaged over
200 independent runs.

DelayedUCB and DelayedKLUCB vs. DISCARDING.
In this section, we illustrate the good empirical ini-
tial performance of DelayedUCB and DelayedKLUCB,
when compared to the heuristic DISCARDING approach
presented in Section 6.

Figure 2 compares results for both DelayedUCB and
DelayedKLUCB with θ = (0.1, 0.05, 0.03), T = 10000,
µ = 500 and m = 1000 in the censored setting. We ob-

serve that discarding policies incur a linear regret phase
at the beginning of the learning and happen to catch up
with the expected regret growth rate only after a large
number of rounds. These figures reveal a non-negligible
gap in performance between the naive DISCARDING ap-
proach and our delay-adapted quasi-optimal algorithms.

8 Conclusion

The stochastic delayed bandit setting introduced in this
work addresses an important problem in many applica-
tions where the feedback associated to each action is de-
layed and censored, due to the ambiguity between con-
versions that will never happen and conversions that will
occur at some later – perhaps unobservable– time. Under
the hypothesis that the distribution of the delay is known,
we provided a complete analysis of this model as well as
simple and efficient algorithms. An interesting general-
ization of the present work would be to relax the model
hypothesis and estimate the delay distribution on-the-go,
possibly using context-dependent delay distributions.
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[6] Aurélien Garivier, Pierre Menard, and Gilles Stoltz.
Explore first, exploit next: The true shape of re-
gret in bandit problems (to appear). Mathematics
of Operations Research, 2017.

[7] Wendi Ji, Xiaoling Wang, and Dell Zhang. A prob-
abilistic multi-touch attribution model for online
advertising. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowl-
edge Management, pages 1373–1382. ACM, 2016.

[8] Pooria Joulani, András György, and Csaba
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A Concentration results

A.1 Poissonization of the KL indices

We require variants of Lemma 9 and Theorem 10 in [5] adapted to our setting.

Lemma 13. For θ ∈ [0, 1], (τi)1≤i≤L ∈ [0, 1], let (Xi,j)1≤i≤L,j≥1 be a collection of independent Bernoulli random
variables such that E(Xi,j) = τiθ and (εi,j) ∈ {0, 1} associated deterministic indicators. For 1 ≤ i ≤ L, denote
by ni =

∑∞
j=1 εi,j and whe shall assume that all ni are finite an that at least one of them is non-zero. Let X =∑L

i=1

∑∞
j=1 εi,jXi,j and denote by φ(λ) = logE [exp(λX)] its log-Laplace transform and by φ∗(x) = supλ xλ −

φ(λ) the associated convex conjugate (Fenchel–Legendre transform).

Then, for all λ ∈ R,

φ(λ) ≤

(
L∑
i=1

τini

)
θ
(
eλ − 1

)
, (7)

and, for all x ≥ 0,

φ∗(x) ≥

(
L∑
i=1

τini

)
dPois

(
x∑L

i=1 τini
, θ

)
, (8)

where dPois(p, q) = p log p/q + q − p denotes the Poisson Kullback-Leibler divergence.

Proof By direct calculation,

φ(λ) =

L∑
i=1

ni log
(
1− τiθ + τiθe

λ
)
.

The function τi → log
(
1− τiθ + τiθe

λ
)

is a strictly concave function on [0, 1] and we upper bound it by its tangent
in 0, that is,

log
(
1− τiθ + τiθe

λ
)
≤ τiθ(eλ − 1),

which yields (7) upon summing on i.

The r.h.s. of (7) is easilly recognized as the log-Laplace transform of the Poisson distribution with expectation(∑L
i=1 τini

)
θ. To obtain (8), we use the observations that xλ− a

(
eλ − 1

)
is maximized for λ = log(x/a) where it

is equal to dPois(x, a) as well as the fact that dPois(τx, τa) = τdPois(x, a).

Lemma 13 bounds the log-Laplace transform of the Bernoulli distribution with that of the Poisson distribution with
the same mean and uses the stability of the Poisson distribution. Using dPois(p, q) instead of d(p, q) –where d(p, q) =
p log p/q + (1 − p) log[1 − p)/(1 − q) denotes the Bernoulli Kullback-Leibler divergence– will of course induce a
performance gap, which is however not significant for low values of the probabilities as shown by the Lemma 8, which
we recall below.

Lemma 8. For 0 < p < q < 1,
(1− q)d(p, q) ≤ dPois(p, q) ≤ d(p, q).

Proof For the upper bound,

d(p, q)− dPois(p, q) = (1− p) log
1− p
1− q

− (q − p) = −(1− p) log(1 +
p− q
1− p

) + (p− q) ≥ 0,

using − log(1 + x) ≥ −x.

For the lower bound,

dPois(p, q)− (1− q)d(p, q) = qp log
p

q
+ q − p− (1− q)(1− p) log

(
1− p
1− q

)
. (9)



One has dPois(q, q) = d(q, q) = 0 and the derivative of (9) wrt. p is equal to

q log
p

q
+ (1− q) log

(
1− p
1− q

)
= −d(q, p) ≤ 0.

Hence, dPois(p, q)− (1− q)d(p, q) is positive when p ≤ q.

We can now prove the concentration result stated in Lemma 7 that we recall below for readability purpose.

Lemma 7. Assume that the sequence of pulls is fixed beforehand and let k be an arm in {1, ...,K}. Then for any
δ > 0 and for all t > 0,

P
({
θ̂k(t) < θk

}
∩
{
Ñk(t)dPois(θ̂k(t), θk) > δ

})
< e−δ.

where dPois(p, q) = p log p/q + q − p denotes the Poisson Kullback-Leibler divergence.

Proof To bound P(θ̂k(t) < x) = P(Sk(t) < Ñk(t)x), for 0 < x < θk, apply Chernoff’s method using the result of
Lemma 13 to obtain

P(θ̂k(t) < x) ≤ e−Ñk(t)dPois(x,θk).

Using that x 7→ dPois(x, θk) is decreasing on [0, θk], we can apply it on both side of the inequality on the left-hand
side to obtain

P
({
θ̂k(t) < θk

}
∩
{
Ñk(t)dPois(θ̂k(t), θk) > Ñk(t)dPois(x, θk)

})
≤ e−Ñk(t)dPois(x,θk).

Denoting δ = Ñk(t)dPois(x, θk) yields the desired result.

Theorem 14. Consider (τi)1≤i≤L ∈ [0, 1], θ ∈ (0, 1), and independent sequences (Xi(s))s≥1 of independent
Bernoulli random variables such that EXi(s) = τiθ. Let Ft denote an increasing sequence of sigma-fields, such
that for each t and all i, σ(Xi(1), . . . , Xi(t)) ⊂ Ft. Also consider a predictable sequence of indicator variables
εi(s) ∈ {0, 1}, that is, such that σ(ε1(t+ 1), . . . , εL(t+ 1)) ⊂ Ft.

Define

Si(t) =

t∑
s=1

εi(s)Xi(s), Ni(t) =

t∑
s=1

εi(s);

and the pooled quantities

S(t) =

L∑
i=1

Si(t), N(t) =

L∑
i=1

Ni(t), Ñ(t) =

L∑
i=1

τiNi(t), θ̂(t) =
S(t)

Ñ(t)
.

The KLUCB index, defined as,

U KL(n) = max
{
q ∈

[
θ̂(n), θM

]
: Ñ(n)dPois(θ̂(n), q) ≤ δ

}
.

satisfies
P (U(n) ≤ θ) ≤ edδ log(n)ee−δ.

Proof The proof is analogous to that of Theorem 10 of [5] and we only detail the step that differs, namely, the
identification of the supermartingale Wλ

t .

Define, Wλ
0 = 1 and, for t ≥ 1,

Wλ
t = exp

(
λS(t)− Ñ(t)θ

(
eλ − 1

))
.



E [exp(λ(S(t+ 1)− S(t))) |Ft ] = E

[
exp

(
λ

L∑
i=1

εi(t+ 1)Xi(t+ 1)

)∣∣∣∣∣Ft
]

≤ exp

((
L∑
i=1

τiεi(t+ 1)

)
θ
(
eλ − 1

))
= exp

((
Ñ(t+ 1)− Ñ(t)

)
θ
(
θeλ − 1

))
,

where we have used (7) and the definition of Ñ(t). Multiplying both sides of the inequality by
exp

(
λS(t)− Ñ(t+ 1)θ

(
eλ − 1

))
show that EWλ

t+1 ≤ EWλ
t and hence that Wλ

t is a supermartingale.

The rest of the proof is as in [5] replacing N(t) by Ñ(t) and φµ(λ) by θ
(
eλ − 1

)
.

B Details on the Lower Bound Results

We provide here the details of the proof of Theorems 4 and 3. The key result that we use is a lower bound on the log-
likelihood ratio under two alternative bandit models θ and θ′ that do not have the same best arm. Namely, according
to Lemma 1 of [13], we have

lim inf
T→∞

E[`T ]

log(T )
≥ 1.

Now, considering specific changes of measures θ′ that only modify the distribution of one single suboptimal arm, we
are going to obtain lower bounds on each expected number of pulls E[Nk(T )] for k 6= 1 as in Appendix B of [13].

Uncensored Setting: As argued in Section 4, in the uncensored setting the likelihood of the observations is

Eθ [`T ] =

T∑
s=1

d(θAsτT−s, θ
′
AsτT−s).

Now, fix arm k 6= 1 and for ε > 0, consider θ′ = (θ1, . . . , θk−1, θ1 + ε, . . . , θK). For this change of measure, the
expected log-likelihood only contains the terms involving arm k:

Eθ [`T ] =

T∑
s=1

1{As = k}d(θkτT−s, (θ1 + ε)τT−s).

Now, in order to obtain an expression that involves E[Nk(T )], we need to bound from above this sum using Lemma 5
of the Appendix B of [11], which we recall here for completeness.

Lemma 15. Let p, q be any fixed real numbers in (0, 1). The function f : α 7→ d(αp, αq) is convex and increasing on
(0, 1). As a consequence, for any α < 1, d(αp, αq) < d(p, q).

Thus, for each s ≥ 1 we have τT−s ≤ 1 and according to the above result,

d(θk, (θ1 + ε)) ≥ d(θkτT−s, (θ1 + ε)τT−s)

and

E[Nk(T )]d(θk, θ1 + ε) ≥
T∑
s=1

1{As = k}d(θkτT−s, (θ1 + ε)τT−s).

We obtain

lim inf
T→∞

E[Nk(T )]d(θk, θ1 + ε)

log(T )
≥ lim inf

T→∞

E[`T ]

log(T )
≥ 1.

Letting ε→ 0 yields

lim inf
T→∞

E[Nk(T )]

log(T )
≥ 1

d(θk, θ1)
.



In order to bound the expected regret LT , we use the inequality (2) from Lemma 1:

LT ≥
K∑
k=2

(θ1 − θk) (E[Nk(t)]− µ) ,

where µ = E[Ds]. We now lower bound each E[Nk(t)] and under the assumption that E[Ds] < ∞ and we use that
lim infT→∞ µ/ log(T ) = 0 to obtain

lim inf
T→∞

LT
log(T )

≥ lim inf
T→∞

∑K
k=2(θ1 − θk) (E[Nk(t)]− µ)

log(T )
≥

K∑
k=2

(θ1 − θk)

d(θk, θ1)
.

Censored Setting: The proof in the Censored Setting follows the same step as the proof above expect for the fact
that we do not require Lemma 5 of [11] in order to bound the log-likelihood ratio. We directly have

Eθ [`T ] =

T−m∑
s=1

d(θAsτm, θ
′
Asτm) +

T∑
s=T−m

d(θAsτT−s, θ
′
AsτT−s).

Proceeding as above and considering the adequate change of measure involving only one suboptimal arm k and taking
ε→ 0, we obtain

lim inf
T→∞

E[Nk(T )]d(τmθk, τmθ1) +
∑T
s=T−m d(θkτT−s, θ1τT−s)

log(T )
= lim inf

T→∞

E[Nk(T )]d(τmθk, τmθ1)

log(T )
≥ 1,

where we used the fact that the second term of the sum in the left-hand side is finite. The end of the proof is similar to
the uncensored setting case treated above where we can simply bound the regret according to Eq. (3) as

LT ≥
k∑
k=2

τm(θ1 − θk)E[Nk(T −m)] +

T∑
s=T−m+1

τT−s(θ1 − θAs)

in order to obtain the asymptotic lower bound.

C Analysis of DelayedUCB and DelayedKLUCB

In order to control the empirical averages of the rewards of each arm for different values of Nk(t), we introduce the
notation θ̂k,s :=

∑s
u=1Xk,u/s for the mean over the first s pulls of k.

C.1 DelayedUCB

In this section, we provide the complete proof of Theorem 9.

We decompose the regret after bounding by 1 the first m losses of the policy :

LUCB(T ) ≤ m+
∑
k>1

τm∆kE

[
T∑
t>m

1{At = k}

]
.

Hence we only need to bound the number of suboptimal pulls, as in the seminal proof by [1]. For any suboptimal
k > 1, we have:

E[Nk(T )] ≤ 1 +

T∑
t=K+1

P
(
UUCB

1 (t) < θ1

)
+

T∑
t=K+1

P
(
At+1 = k, UUCB

k (t) ≥ θ1

)
.



While the first term is simply handled by Proposition 6 and is O(1/ε3) = o(log(T ), the second one must be controlled
as in the original proof of UCB1 by [1] using the fact that for all t > m,

Nk(t)

Ñk(t)
≤ Nk(t−m) +m

Ñk(t)
≤ 1

τm
+

m

τmNk(t−m)

that allows us to upper-bound the optimistic indices as

θ̂k(t) +

(
1

τm
+

m

τmNk(t−m)

)√
βε(t)

2Nk(t)
≥ UUCB

k (t).

Then, we use this upper bound on the indices in order to bound the relevant sum of probabilities.

T∑
t=m+1

P
(
At+1 = k, UUCB

k (t) ≥ θ1

)
≤ E

∑
s≥1

1

{
θ̂i,s +

(
1

τm
+

m

τms

)√
βε(t)

2s
≥ θi + ∆i

} .
In order to upper-bound this expectation, we first introduce the quantity si > 0 defined by

(
1

τm
+

m

τmsi

)√
βε(t)

2si
= ∆i,

that we rewrite, with the introduction of γi > 0, as

si =
βε(t)

2τ2
m∆2

i

(1 + γi)
2 so that we get

(
1 +

m

si

)
1

1 + γi
= 1.

Simple computations finally leads to, if γi ≤ 1,

2mτ2
m∆2

i

βε(t)
= γi(1 + γi)

2 ≤ 4γi.

As a consequence, if T is big enough (so that the left hand side is smaller than 4), we get that

si ≤
(1 + ε) log(T )

2τ2
m∆2

i

(1 + γi)
2 ≤ (1 + ε) log(T )

2τ2
m∆2

i

(1 + 3γi) ≤
(1 + ε) log(T )

2τ2
m∆2

i

+m.

We now focus on the sum to upper-bound:

E

∑
s≥1

1

{
θ̂i,s +

(
1

τm
+

m

τms

)√
βε(t)

2s
≥ θi + ∆i

} ≤ dsie+ 1 +
∑
s>dsie

e
−2s

(
∆i−( 1

τm
+ m
τms

)
√
βε(t)

2s

)2

≤ si + 2 +
∑
s>dsie

e
−2

(√
s∆i−

(
1+m

si

)√
βε(t)

2τ2
m

)2

,

where we used the Chernoff’s inequality for bounded random variables.



Standard computations (comparisons between sums and integrals) give the following

∑
s>dsie

e
−2

(√
s∆i−

(
1+m

si

)√
βε(t)

2τ2
m

)2

≤
∫ ∞
si

e
−2

(√
s∆i−

(
1+m

si

)√
βε(t)

2τ2
m

)2

ds

≤ 1

2∆2
i

(
1 +

√
2π

4

(
1 +

m

si

)√
βε(t)

2τ2
m

)

≤ 1

2∆2
i

(
1 +

√
2π

4

√
si∆i

)

≤ 1

2∆2
i

(
1 +

√
π

4

√
(1 + ε) log(T )

τ2
m

+

√
π

4

√
m

)
.

As a consequence, we have just proved that

T∑
t=m+1

P
(
At+1 = k, UUCB

k (t) ≥ θ1

)
≤ (1 + ε) log(T )

2τ2
m∆2

i

+ o(log(T )) .

More precisely, combining all our claims yields that

LUCB(T ) ≤ (1 + ε) log(T )

2τ2
m∆i

+O

(
1

∆i

√
(1 + ε) log(T )

2τ2
m

)
+O

(
1

∆i

1

ε3

)
+O

(√
m

∆i
+m

)
,

and the result follows.

C.2 DelayedKLUCB

We follow the steps of [5] and decompose the regret as

E[Nk(T )] ≤1 +m−K
T∑

t=m+1

P (U KL
1 (t) < θ1) +

T∑
t=m+1

P
(
At+1 = k, UKL

k (t) ≥ θ1

)
≤ 1 +m−K +

T∑
t=m+1

P
(
UKL

1 (t) < θ1

)
+

T∑
t=m+1

P (At+1 = k, U KL
k (t) ≥ θ1) .

The first term of the above sum is handled by Theorem 14 that shows that it is o(log(T )). We must now bound the
second sum corresponding to the cases when suboptimal indices reach the optimal mean θ1. To proceed, we simply
notice that for all t, Ñk(t) ≥ τmNk(t −m). We define an alternative optimistic index that upper bounds U KL

k (t) for
t > m:

U KL
k (t) ≤ arg max

q∈[θ̂k,1]

{q|τmNk(t−m)dPois(θ̂k(t), q) ≤ βε(t)} := U KL+
k (t).

Now we can finish the proof following the steps of the proof of Theorem 2 in [5]. First, we denote

Kk(T ) =
(1 + η)βε(t)

d(τmθk, τmθ1)

and we decompose the second sum after bounding the first Kk(T ) terms by 1 and bounding the remaining terms in a



similar way as in Lemma 11 of [9]:

T∑
t=m+1

P
(
At+1 = k, U KL+

k (t) ≥ θ1

)
≤ Kk(T ) +

∑
t≥Kk(T )+m+1

P
(
At+1 = k, U KL+

k (t) ≥ θ1

)

≤ Kk(T ) + E

 ∑
t≥Kk(T )+m+1

t∑
s=1

1
{
At+1 = k,Nk(t−m) = s, τmsdPois(θ̂k,s, θ1) ≤ βε(t)

}
≤ Kk(T ) + E

 T∑
s=Kk(T )

1
{
τmsdPois(θ̂k,s, θ1) ≤ βε(t)

} T∑
t=s

1 {At+1 = k,Nk(t−m) = s}


≤ Kk(T ) +m

∑
s≥Kk(T )

P
(
τmsdPois(θ̂k,s, θ1) ≤ βε(t)

)
≤ Kk(T ) +

mC2(η)

T f(η)
,

where the last inequality comes from the fact that for all s ∈ {1, . . . , T},
∑T
t=1 1 {At+1 = k,Nk(t−m) = s} ≤ m

and from the proof of Fact 2 for exponential family bandits in [2] that proves the existence of the constants C2(η) and
f(η) that achieve the bound.

We can now upper bound the regret thanks to the decomposition provided by equation 3:

LKLUCB(T ) ≤ m+
∑
k>1

τm∆kE [Nk(T )] ≤ (1 + η)βε(t)

K∑
k=2

τm∆k

dPois(τmθk, τmθ1)
+ o(log(T )).

To obtain the final result, we use Lemma 8 that shows that for θk < θ1, dPois(τmθk, τmθ1) > (1 −
τmθ1)d(τmθk, τmθ1). Thus,

LKLUCB(T ) ≤ m+ (1 + η)
βε(t)

1− τmθ1

K∑
k=2

τm∆k

d(τmθk, τmθ1)
+ o(log(T )).

D Additionnal experiments on delay agnostic policies

As a last additional contribution to this work, we suggest a distribution-agnostic heuristic that estimates the CDF
parameters (τd)d≥0 in an online fashion. Indeed, as the delay distribution is assumed to be shared between actions,
each observed reward provides an information on the delays that can be exploited to estimate the CDF without having
to deal with the exploration-exploitation dilemma.

Uncensored setting. In the Uncensored setting and under the geometric assumption on the distribution of the
delays, the entire CDF can be retrieved using an estimate of the unique parameter λ = 1/µ. To this aim, we build
an estimate the expected delay at round t, µ̂(t), using a stochastic approximation process with decreasing weights
αt = 1/tγ for 1 ≥ γ ≥ 0.5. When an observation Dt arrives we update

µ̂(t)← (1− αt)µ̂(t) + αtDt.

Then we use this estimator as a plug-in quantity to compute Ok(t) defined in (6) for all k.

Censored setting. In the Censored setting however, no observation comes after the threshold m and this does
not allow us to directly estimate the expected delay µ as the longest observations are censored. To circumvent this
problem, we choose to estimate biased parameters for τ1, . . . , τm. Concretely, we initialize counts for the observed
delay values δ0 = (0, . . . , 0) ∈ Nm+1 (delay can be null). Then, after each observation Dt, we increment all
the counts δs for s ≥ Dt. Then, the biased empirical CDF is obtained by normalizing those counts by the total
number of observations received up to time t, nd(t). We emphasize that the obtained estimators are biased: For each



s ∈ {0, . . . ,m},E[δs(t)/nd(t)] = τs/τm as all observed delays are smaller or equal to m. Thus, plugging those
estimates in Ñk(t) actually allows to have an estimate of Ñk(t)/τm instead of Ñk(t) and consequently an estimate of
τmθk instead of θk.
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Figure 3: Expected regret of DelayedKLUCB with and without online estimation of the CDF in both the censored
and uncensored setting. Results are averaged over 100 independent runs.

Figure 3 compares both our policies to its equivalent, delay-agnostic heuristic using the same confidence intervals with
plug-in estimates of the (τd)d≥0. It is clear from these experiments that using delay parameters estimated on-the-go
does not hurt the cumulated regret overall.
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