
HAL Id: hal-01545655
https://hal.science/hal-01545655

Submitted on 22 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Existence and uniqueness of periodic solutions of
integro-differential equations with two variable in vector

valued spqces
Rachid Bahloul

To cite this version:
Rachid Bahloul. Existence and uniqueness of periodic solutions of integro-differential equations with
two variable in vector valued spqces. Conference on Numerics and Mathematical Analysis for Singu-
larities and Eigenvalue Problems, Feb 2017, Rennes, France. . �hal-01545655�

https://hal.science/hal-01545655
https://hal.archives-ouvertes.fr


Existence and uniqueness of periodic solutions
of integro-differential equations with two

variable in vector valued spqces
Bahloul Rachid 1∗

1 Introduction

Motivated by the fact that neutral functional integro-differential equations
(abbreviated, NFDE) with finite delay arise in many areas of applied mathe-
matics, this type of equations has received much attention in recent years. In
particular, the problem of existence of periodic solutions, has been considered
by several authors.
In this poster, we study the existence of periodic solutions for the following
integro-differential equation with two variable of the following form

∂

∂x

∂

∂y
(u(x,y)− L(ux,y)) + Au(x, t) = G(ux,y) +

∫ x

−∞

∫ y

−∞
a(x− s,y − ξ)u(s, ξ)dξds + f(x,y) for x, t ∈ R

(1.1)
Where (A,D(A)) is a closed linear operator on a Banach spase X, L and G are
linear bounded operators, a ∈ L1(R+ × R+) and f : R × R → X is a locally
p-integrable and 2π-periodic function for 1 ≤ p <∞.
ux,y(θ, ξ) = u(x+ θ, y + ξ) for all θ, ξ ∈ [−r, 0], x, y ≥ 0.

2 A creterion for periodic solutions

Let X be a Banach Space. Firstly, we denote By T the group defined as the
quotient R/2πZ. There is an identification between functions on T and 2π-
periodic functions on R. We consider the interval [0; 2π) as a model for T.
Given 1 ≤ p <∞, we denote by Lp(T×T;X) the space of 2π-periodic locally
p-integrable functions from R× R into X,
For f ∈ Lp(T × T;X), we denote by f̂(k, z), (k, z) ∈ Z the (k, z)-th Fourier
coefficient of f that is defined by:
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̂̂
f(k, z) = ( 1

2π
)2
∫ 2π

0

∫ 2π

0
e−i(kx+zt)f(x, t)dxdt.

for (k, z) ∈ Z× Z and (x, t) ∈ R× R.

Notation 2.1. : Let (k, z) ∈ Z× Z and 1 ≤ p <∞. Denote by

H1,p(T×T;X) =
{
u ∈ Lp(T× T;X) : ∃v ∈ Lp(T× T;X), ̂̂v(k, z) = −kẑ̂u(k, z)

}
.

˜̃a(λ, µ) =
∫ +∞
0

∫ +∞
0

e−(λx+µy)a(x,y)dxdy, λ, µ ∈ C, be the Laplace transform
of a

Lemma 2.2. For 1 ≤ p < ∞, a sequence {Mk,z}(k,z)∈Z×Z is said to be an

Lp-multiplier (or (Lp, Lp)-multiplier) if for each f ∈ Lp(T×T, X), there exists

u ∈ Lp(T× T, Y ) such that ̂̂g(k, z) = Mk,z
̂̂
f(k, z) for all (k, z) ∈ Z× Z.

Definition 2.1. For 1 ≤ p < ∞, a sequence {Mk,z}(k,z)∈Z×Z is said to be an

Lp-multiplier (or (Lp, Lp)-multiplier) if for each f ∈ Lp(T×T, X), there exists

u ∈ Lp(T× T, Y ) such that ̂̂g(k, z) = Mk,z
̂̂
f(k, z) for all (k, z) ∈ Z× Z.

Definition 2.2. : For 1 ≤ p < ∞ , a sequence {Mk,z}(k,z)∈Z×Z is said to

be an (Lp, H1,p)-multiplier if for each f ∈ Lp(T × T, X), there exists u ∈
H1,p(T× T, Y ) such that ̂̂g(k, z) = Mk,z

̂̂
f(k, z) for all (k, z) ∈ Z× Z.

3 A caracterization of stong Lp-solution

Definition 3.1. : Let f ∈ Lp(T×T;X). A function u ∈ H1,p(T×T;X) is
said to be a 2π-periodic strong Lp-solution of Eq. ((1.1)) if u ∈
D(A), u(0, t) = u(2π, t), u(x, 0) = u(x, 2π) for all (x, t) ∈ T × T and
Eq.((1.1)) holds almost every where.

Proposition 3.1. Let X be a Banach space. Suppose that for every f ∈
Lp(T× T;X) there exists a unique strong solution of Eq. ((1.1)) for 1 ≤ p <
∞. Then

(1) for every (k, z) ∈ Z×Z the operator (−kzI+A− ˜̃a(ik, iz)) has invertible.

(2)
{
−kz(−kzI + A− ˜̃a(ik, iz))−1

}
(k,z)∈Z×Z is an Lp-multiplier.
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4 Existence of solution

Lemma 4.1. Let 1 ≤ p <∞ and X be a Banach space. The following asser-
tions are equivalent

(1) {Mk,z}(k,z)∈Z×Z is an (Lp, Hp)-multiplier.

(2) {−kzMk,z}(k,z)∈Z×Z is an Lp-multiplier.

Such that Mk,z = (−kzI + kzLkz + A−Gkz − ˜̃a(ik, iz))−1

Theorem 4.2. Let A be a closed linear operator and 1 ≤ p <∞. If

(1) for every (k, z) ∈ Z × Z the operator (−kzI + kzLkz + A − Gkz −
˜̃a(ik, iz)) has invertible.

(2)
{
−kz(−kzI + kzLkz + A−Gkz − ˜̃a(ik, iz))−1

}
(k,z)∈Z×Z is an Lp-multiplier.

Then for every f ∈ Lp(T × T;X) there exists a unique 2π-periodic
strong Lp-solution of (Eq 1).
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