Hardware Architectures for HECC

Gabriel GALLIN and Arnaud TISSERAND

CNRS – Lab-STICC – IRISA HAH Project

CryptArchi June, 2017

Summary	Context & Motivations	HECC Operations	Efficient Multiplier 00000	Architectures and Tools	Conclusion 000
Sumn	nary				

- Context & Motivations
- 2 HECC Operations
- 3 Efficient Multiplier
- Architectures and Tools for HECC
- 5 Conclusion

	Context & Motivations	HECC Operations	Efficient Multiplier 00000	Architectures and Tools	Conclusion 000
Sumn	nary				

- Context & Motivations
- 2 HECC Operations
- 3 Efficient Multiplier
- 4 Architectures and Tools for HECC
- 5 Conclusion

Public-Key Cryptography (PKC)

- Provides cryptographic primitives such as digital signature, key exchange and specific encryption schemes
- First PKC standard: RSA
 - \geq 2000-bit keys recommended today
 - Too costly for embedded applications
- Elliptic Curve Cryptography (ECC):
 - Better performances and lower cost than RSA
 - Allows more advanced schemes
- Hyper-Elliptic Curve Cryptography (HECC):
 - Evolution of ECC focusing on larger sets of curves
 - Supposed to have a smaller cost than ECC

Summary Context & Motivations HECC Operations Efficient Multiplier Architectures and Tools Conclusion

Operations Hierarchy in (H)ECC

Main metric: numbers of M and S in $\mathbb{F}_\mathcal{P}$

- $\bullet\,$ ADD and DBL built using $\mathbb{F}_{\mathcal{P}}$ operations
- Modular arithmetic in $\mathbb{F}_{\mathcal{P}}$:
 - $100\cdots 200$ bits elements for HECC
 - Operations involve modular reduction
 - Choice for \mathcal{P} :
 - Generic \mathcal{P} : more flexible but slower
 - Specific *P* (*e.g.* pseudo-Mersenne): faster but more specific
- $\bullet\,$ Modular multiplication (M) and square (S):
 - Most common and costly operations
 - Efficient dedicated units

Summary	Context & Motivations	HECC Operations	Efficient Multiplier	Conclusion
	000			

ECC, HECC, Kummer-HECC

	$\mathbb{F}_{\mathcal{P}}$ elements size	ADD	DBL	source
ECC	$\ell_{\rm ECC}$	12M + 2S	7M + 3S	[Bernstein and Lange]
HECC	$\ell_{\rm HECC}\approx \frac{1}{2}\ell_{\rm ECC}$	40M + 4S	38M + 6S	[Lange, 2005]
Kummer	$\ell_{ m HECC}$	19M -	+ 12S	[Renes et al., 2016]

• ECC:

- Size of $\mathbb{F}_{\mathcal{P}}$ elements $2\times$ larger
- Simpler ADD and DBL operations
- HECC:
 - Smaller $\mathbb{F}_{\mathcal{P}}$
 - More operations in $\mathbb{F}_\mathcal{P}$ for ADD / DBL
- Kummer-HECC is more efficient than ECC [Renes et al., 2016]:
 - ARM Cortex M0: up to 75% clock cycles reduction for signatures
 - AVR AT-mega: up to 32% cycles reduction for Diffie-Hellman

	Context & Motivations	HECC Operations	Efficient Multiplier	Architectures and Tools	Conclusion 000
Sumn	nary				

- Context & Motivations
- 2 HECC Operations
 - 3 Efficient Multiplier
 - 4 Architectures and Tools for HECC
 - 5 Conclusion

Curve-Level Operations in Kummer

- No ADD operation but still DBL
- Differential addition: $xADD(\pm P, \pm Q, \pm (P Q)) \rightarrow \pm (P + Q)$
- xADD and DBL can be combined: xDBLADD($\pm P, \pm Q, \pm (P - Q)$) $\rightarrow (\pm [2]P, \pm (P + Q))$

For details see [Renes et al., 2016], [Gaudry, 2007] and [Bos et al., 2016]

Summary	Context & Motivations	HECC Operations	Efficient Multiplier	Conclusion
		000		

xDBLADD $\mathbb{F}_{\mathcal{P}}$ Operations

Context & Motivations	HECC Operations ○○●	Efficient Multiplier 00000	Architectures and Tools	Conclusion 000

Scalar Multiplication

Montgomery ladder based crypto_scalarmult [Renes et al., 2016]:

Require: *m*-bit scalar $k = \sum_{i=0}^{m-1} 2^i k_i$, point P_b , $cst \in \mathbb{F}_{\mathcal{D}}^4$ **Ensure:** $V_1 = [k]P_b, V_2 = [k+1]P_b$ $V_1 \leftarrow cst$ $V_2 \leftarrow P_h$ for i = m - 1 downto 0 do $(V_1, V_2) \leftarrow \text{CSWAP}(k_i, (V_1, V_2))$ $(V_1, V_2) \leftarrow \text{xDBLADD}(V_1, V_2, P_b)$ $(V_1, V_2) \leftarrow \text{CSWAP}(k_i, (V_1, V_2))$ end for return (V_1, V_2) CSWAP $(k_i, (X, Y))$ returns (X, Y) if $k_i = 0$, else (Y, X)

- Constant time, uniform operations (independent from key bits)
- \bullet Some parallelism between xDBLADD internal $\mathbb{F}_{\mathcal{P}}$ operations
- CSWAP: very simple but involves secret bits (to be protected)

G. Gallin - A. Tisserand

	Context & Motivations	HECC Operations	Efficient Multiplier	Architectures and Tools	Conclusion 000
Sumn	nary				

- Context & Motivations
- 2 HECC Operations
- 3 Efficient Multiplier
 - 4 Architectures and Tools for HECC
 - 5 Conclusion

Montgomery Modular Multiplication (MMM)

$$egin{aligned} R &= A imes B \ q &= (R imes (-\mathcal{P}^{-1})) \mod (2^n) \ q \mathcal{P} &= q imes \mathcal{P} \end{aligned}$$

 $n \times n \rightarrow 2n$ bits $n \times n \rightarrow n$ bits $n \times n \rightarrow 2n$ bits

Architectures and Tools

Context & Motivations

• Objective: $A \times B \mod \mathcal{P}$

Efficient Multiplier

0000

- Proposed in [Montgomery, 1985]
- Variants are actual state-of-the-art for $\mathbb{F}_{\mathcal{P}}$ multiplication (with generic \mathcal{P})
- Final reduction step discards *n* LSBs

Modular Multiplication: Dependencies Problem

- In practice, MMM is interleaved
 - Operands are split into s words of w bits such that $n = s \times w$
 - Iterations over partial products and reductions on words
 - Coarsely Integrated Operand Scanning (CIOS) from [Koç et al., 1996]
- Impact on hardware implementation
 - Dependencies \rightarrow latencies between internal iterations
 - Hardware pipeline in DSP slices cannot be filled efficiently
- Proposed solution: Hyper-Threaded Modular Multiplier (HTMM)
 - Based on simple CIOS algorithm
 - Use idle stages to compute other independent MMMs in parallel

HTMM Internal Architecture

- HTMM architecture: 3 hardware stages
 - Stages are fully pipelined (several clock cycles per stage)
 - 3 to 4 DSP slices in each stage

HTMM Internal Architecture

- HTMM architecture: 3 hardware stages
 - Stages are fully pipelined (several clock cycles per stage)
 - 3 to 4 DSP slices in each stage

Summary	Context & Motivations	HECC Operations	Efficient Multiplier	Conclusion
			00000	

HTMM Implementations

- Xilinx FPGAs
 - Virtex 4 XC4VLX100 (V4)
 - Virtex 5 XC5VLX110T (V5)
 - Spartan 6 XC6SLX75 (S6)
- Comparison with fastest MMM implementation in literature
 - Design presented in [Ma et al., 2013]
 - Implemented on the same FPGAs for fair comparison
- 2 versions of HTMM:
 - HTMM_DRAM : operands stored in FPGA slices (LUTs)
 - HTMM_BRAM : operands stored in FPGA BRAMs
- Parameters for HTMM:
 - $\mathcal{P}
 ightarrow$ 128 bits
 - w = 34 bits, s = 4
 - Operands size $n = s \times w = 134$ bits

Efficient Multiplier 00000

Architectures and Tools

HTMM Implementations Results

Results for 3 independent multiplications:

Version	FPGA	DSP	BRAM	FF	LUT	Slices	Freq.	Nb.	Time
			18K/9K				(MHz)	cycles	(ns)
	V4	21	6/0	1311	1201	879	252		258
[Ma et al., 2013]	V5	21	6/0	1310	1027	406	296	65	220
	S6	21	0/6	1280	1600	540	210		309
	V4	11	0/0	1638	1128	1346	330		239
HTMM_DRAM	V5	11	0/0	1616	652	517	400	79	198
	S6	11	0/0	1631	1344	483	302		261
HTMM_BRAM	V4	11	2/0	615	364	449	328		241
	V5	11	2/0	593	371	249	357	79	221
	S6	11	0/2	587	359	180	304		260

S6: -47% DSPs, -66% BRAMs, -66% slices, -15% duration

For only 1 single M, HTMM is less efficient (69 cycles against 25)

	Context & Motivations	HECC Operations	Efficient Multiplier	Architectures and Tools	Conclusion 000
Sumn	nary				

- Context & Motivations
- 2 HECC Operations
- 3 Efficient Multiplier
- Architectures and Tools for HECC

5 Conclusion

HECC architectures require different types of units:

- $\mathbb{F}_{\mathcal{P}}$ arithmetic units: add/sub, mul, sqr, inv, \ldots
- Memories, (secure) registers, ...
- Interconnect, global input/output, ...
- Dedicated (secure) control

Problems

- Coding a complete accelerator fully in HDL is costly
- Large design space for various architectures types and parameters (nb. units, algorithms, internal communications and control)
- Need for evaluation of various architectures and parameters
- Need for numerical validation and debug

Proposed Design Framework

- Hierarchical description and simulation for HECC architectures at CCABA level (Critical-Cycle Accurate, Bit Accurate)
 - Units inputs/outputs are bit accurate
 - Units inputs/outputs and external control are critical cycle accurate
- Description of various architectures at high-level
 - Composition of units for differents parameters and optimizations
 - Scheduling tool for control and communications (work in progress)
- Units described, optimized and validated in HDL
 - Perfectly known behavior \rightarrow no need for cycle accurate simulation
 - Area, latency, ... come from actual FPGA implementation

• Dedicated simulator in Python

- Fast development and numerical validation
- Sage (http://www.sagemath.org/) interface for HECC support

Context & Motivations	HECC Operations	Efficient Multiplier 00000	Architectures and Tools ○○●○○○○	Conclusion

Typical Architecture Model

Parameters specified at design time:

- Width w and nb. words s for internal communications $(s \times w = n)$
- Types and number of units

Configuration for Implementations

- 128 bits HECC solutions
- $\mathbb{F}_{\mathcal{P}}$ adder-subtractor (AddSub):
 - 4 cycles latency pipeline
 - $8 \cdots 11$ cycles delay depending on w
- $\mathbb{F}_{\mathcal{P}}$ multiplier (HTMM):
 - Hyper-threaded multiplier for 3 sets of operands computed in parallel
 - 5 cycles latency for loading and reading
 - $68 \cdots 71$ cycles delay depending on w
- CSWAP unit:
 - Secure management of key bits
 - $2 \cdots 4$ cycles delay depending on w

Context & Motivations HE

Results for Basic Architecture (1 Add/Sub, 1 HTMM)

Version $s \times w$	Clock cycles	Units	DSP	BRAM	FF	LUT	Slices	RAM #lines
		НТММ	11	2	587	359	180	12
		AddSub	0	0	366	226	80	-
4×34	207,383	DATA_MEM	0	1	0	0	0	112
		PRGM_MEM	0	1	0	0	0	208
		CSWAP	0	0	536	290	103	-
	185,615	НТММ	11	2	970	633	315	12
		AddSub	0	0	713	382	148	-
2×68		DATA_MEM	0	2	0	0	0	56
		PRGM_MEM	0	1	0	0	0	234
		CSWAP	0	0	553	297	122	-
		HTMM	11	2	1066	623	309	12
1×136		AddSub	0	0	784	464	212	-
	183,051	DATA_MEM	0	4	0	0	0	26
		PRGM_MEM	0	1	0	0	0	250
		CSWAP	0	0	685	431	155	-

s: number of words, w: size of words

ummary Context & Motiva 000 Efficient Multipli

Architectures and Tools

Conclusion 000

Increasing the Number of Arithmetic Units

Version $s \times w$	Clock cycles	Units	DSP	BRAM	FF	LUT	Slices	RAM #lines
		HTMM x 2	22	4	1174	718	360	12
		ADDSUB x 2	0	0	732	452	160	-
4x34	203,543	DATA_MEM	0	1	0	0	0	108
		PRGM_MEM	0	1	0	0	0	213
		CSWAP	0	0	536	290	103	-
	125,455	HTMM x 2	22	4	1940	1266	630	12
		ADDSUB x 2	0	0	1426	764	296	-
2×68		DATA_MEM	0	4	0	0	0	50
		PRGM_MEM	0	1	0	0	0	211
		CSWAP	0	0	553	297	122	-
	115,211	HTMM x 2	22	4	2132	1246	618	12
1×136		ADDSUB x 2	0	0	1568	928	424	-
		DATA_MEM	0	4	0	0	0	25
		PRGM_MEM	0	1	0	0	0	235
		CSWAP	0	0	685	431	155	-

s: number of words, w: size of words

Context & Motivations	HECC Operations	Efficient Multiplier	Architectures and Tools	Conclusion

256b ECC vs 128b HECC (similar theoretical security)

FPGA	Version	DSP	BRAM	Slices	Freq.	Nb.	Time
			18K		(MHz)	cycles	(ms)
	ECC	37	11	4655	250	109,297	0.44
V4	HECC_1u	11	7	1413	330	183,051	0.55
	HECC_2u	22	9	2356	330	115,211	0.35
	ECC	37	10	1725	291	109,297	0.38
V5	HECC_1u	11	7	873	360	183,051	0.51
	HECC_2u	22	9	1542	360	115,211	0.32

Gain 1u on V5: -70% DSPs, -30% BRAMs, -49% slices, +30% duration Gain 2u on V5: -40% DSPs, -10% BRAMs, -10% slices, -15% duration

ECC results from [Ma et al., 2013]

Conclusions and Perspectives

- Kummer based HECC is an efficient alternative to ECC
 - More complex formulas but larger internal parallelism
 - Large exploration space for architectures and arithmetic
- We designed a CCABA modeling and simulator
 - High-level hierarchical description of architectures
 - Units described in HDL, only critical cycles are used
 - Fast validation/debug and evaluation of solutions in exploration space
- Future works
 - Study advanced scheduling algorithms
 - Automating generation of HDL code from high-level description
 - Explore new architectural solutions

Summary	Context & Motivations	HECC Operations	Efficient Multiplier	Conclusion

This work was partially funded by HAH project http://h-a-h.inria.fr/

Thank you for your attention

	Context & Motivations	HECC Operations	Efficient Multiplier 00000	Architectures and Tools	Conclusion 000
Refer	ences I				

[Bernstein and Lange] Bernstein, D. J. and Lange, T. Explicit-formulas database. http://hyperelliptic.org/EFD/.

[Bos et al., 2016] Bos, J. W., Costello, C., Hisil, H., and Lauter, K. (2016). Fast cryptography in genus 2. *Journal of Cryptology*, 29(1):28–60.

[Cohen et al., 2005] Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., and Vercauteren, F. (2005). Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and Its Applications. Chapman & Hall/CRC.

[Gaudry, 2007] Gaudry, P. (2007). Fast genus 2 arithmetic based on theta functions. Journal of Mathematical Cryptology, 1(3):243–265.

[Hankerson et al., 2004] Hankerson, D., Menezes, A., and Vanstone, S. (2004). Guide to Elliptic Curve Cryptography. Springer.

[Koç et al., 1996] Koç, Ç. K., Acar, T., and Kaliski, Jr., B. S. (1996). Analyzing and comparing Montgomery multiplication algorithms. *Micro, IEEE*, 16(3):26–33.

[Lange, 2005] Lange, T. (2005). Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. Applicable Algebra in Engineering, Communication and Computing, 15(5):295–328.

	Context & Motivations	HECC Operations	Efficient Multiplier 00000	Architectures and Tools	Conclusion 000
Rofor	ences II				

[Ma et al., 2013] Ma, Y., Liu, Z., Pan, W., and Jing, J. (2013).

A high-speed elliptic curve cryptographic processor for generic curves over GF(p). In Proc. 20th International Workshop on Selected Areas in Cryptography (SAC), volume 8282 of LNCS, pages 421–437. Springer.

[Montgomery, 1985] Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics of Computation, 44(170):519–521.

[Montgomery, 1987] Montgomery, P. L. (1987). Speeding the Pollard and elliptic curve methods of factorization.

Mathematics of Computation, 48(177):243-264.

[Orup, 1995] Orup, H. (1995). Simplifying quotient determination in high-radix modular multiplication. In Proc. 12th Symposium on Computer Arithmetic (ARITH), pages 193–199. IEEE Computer Society.

[Renes et al., 2016] Renes, J., Schwabe, P., Smith, B., and Batina, L. (2016). μKummer: Efficient hyperelliptic signatures and key exchange on microcontrollers. In Proc. Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume 9813 of LNCS, pages 301–320. Springer.

Elliptic and Hyper-Elliptic Curves for Crypto

Elliptic Curves

- Equation (Weierstrass) $E/\mathbb{K}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Defined over finite fields \mathbb{K} : \mathbb{F}_{2^m} , prime finite field $\mathbb{F}_{\mathcal{P}}$ or GF(p)
- $\mathbb{F}_{\mathcal{P}}$ elements for coefficients and coordinates: 200 \cdots 400 bits

Elliptic and Hyper-Elliptic Curves for Crypto

• Elliptic Curves

- Equation (Weierstrass) $E/\mathbb{K}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Defined over finite fields \mathbb{K} : \mathbb{F}_{2^m} , prime finite field $\mathbb{F}_{\mathcal{P}}$ or GF(p)
- $\mathbb{F}_{\mathcal{P}}$ elements for coefficients and coordinates: 200 \cdots 400 bits

Hyper-Elliptic Curves

- More complex!
- Equation $H/\mathbb{K}: y^2 + h(x)y = f(x)$, deg(h) < g and deg(f) = 2g + 1
- g: genus of the curve, $g \leq 2$ in practice for reliable HECC
- $\mathbb{F}_{\mathcal{P}}$ elements for coefficients and coordinates: $100\cdots 200$ bits

Elliptic and Hyper-Elliptic Curves for Crypto

• Elliptic Curves

- Equation (Weierstrass) $E/\mathbb{K}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- Defined over finite fields \mathbb{K} : \mathbb{F}_{2^m} , prime finite field $\mathbb{F}_{\mathcal{P}}$ or GF(p)
- $\mathbb{F}_{\mathcal{P}}$ elements for coefficients and coordinates: $200\cdots 400$ bits

Hyper-Elliptic Curves

- More complex!
- Equation $H/\mathbb{K}: y^2 + h(x)y = f(x)$, deg(h) < g and deg(f) = 2g + 1
- g: genus of the curve, $g \leq 2$ in practice for reliable HECC
- $\mathbb{F}_{\mathcal{P}}$ elements for coefficients and coordinates: $100\cdots 200$ bits
- Kummer surface
 - Not an additive group: no addition law
 - Can be used in HECC using some (magic) trick
 - Reduced complexity for curve operations

Context & Motivations	HECC Operations	Efficient Multiplier	Conclusion
			000

HTMM Detailed Architecture

