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Sensitivity analysis via Karhunen-Loève expansion of a random

�eld model: estimation of Sobol' indices and experimental design

Luc Pronzato*�

June 22, 2017

Abstract

We use the Karhunen-Loève expansion of a random-�eld model to construct a tensorised
Bayesian linear model from which Sobol' sensitivity indices can be estimated straightforwardly.
The method combines the advantages of models built from families of orthonormal functions,
which facilitate computations, and Gaussian-process models, which o�er a lot of �exibility.
The posterior distribution of the indices can be derived, and its normal approximation can
be used to design experiments especially adapted to their estimation. Implementation details
are provided, and values of tuning parameters are indicated that yield precise estimation from
a small number of function evaluations. Several illustrative examples are included that show
the good performance of the method, in particular in comparison with estimation based on
polynomial chaos expansion.

Keywords: sensitivity analysis, Sobol' indices, random-�eld model, Karhunen-Loève expansion,
Bayesian linear model, polynomial chaos, optimal design of experiments.

1 Introduction and problem statement

We consider global sensitivity analysis for a function f(·) depending on d independent real input
variables x1, . . . , xd, xi being distributed with the probability measure µi over Xi ⊆ R for each
i = 1, . . . , d, so that the probability measure µ of x = (x1, . . . , xd) has the tensor-product form

dµ(x) = dµ1(x1)× · · · × dµd(xd) . (1.1)

Global sensitivity analysis aims at identifying important variables, and possibly important inter-
actions between groups of variables, in the sense that they are the most in�uential in the global
behaviour of f(·) on the support of µ. The calculation of Sobol' indices, which quantify the portion
of the variance of f(x) explained by each xi, or combination of di�erent xi's, see Section 2.1, has
become a standard tool in sensitivity analysis for measuring the importance of (groups of) variables.

Commonly used estimation methods of Sobol' indices include the Fourier Amplitude Sensitivity
Test (FAST) [5, 30, 6], see also [29]; the model-free pick-and-freeze methods [31, 28] based on QMC
sampling designs, Latin hypercubes (Lh) or orthogonal arrays, see in particular [19, 34, 12, 13].
In case of functions f(·) of computationally expensive evaluation, the use of metamodels allows
estimation of indices from a reduced number of data points; see e.g., [22, 20]. See also [17] which
combines Gaussian-process metamodeling and Monte Carlo sampling. The calculation of Sobol'
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indices is then considerably facilitated when the metamodel used has a particular form, which is
especially adapted to the underlying Sobol'-Hoe�ding decomposition.

(i) Polynomial Chaos Expansions (PCE) correspond to tensor products of univariate polynomial
models Pi(xi), each Pi(·) belonging to a family of orthogonal polynomials with respect to µi, and
provide an easy evaluation of Sobol' indices. Indeed, the indices are given by ratios of quadratic
forms in estimated parameters in the linear regression model de�ned by the PCE; see [33, 2, 1]. The
precision of the estimated indices can be related to the information matrix for the linear regression
model, which allows the construction of e�cient designs adapted to the estimation of Sobol' indices;
see [4]. Families of orthogonal polynomials are known for particular distributions (e.g., Hermite for
the standard normal, Legendre for the uniform distribution, etc.), but transformations or calculation
via moment matrices can be used in more general situations, see Section 4.1.

(ii) To a given Random Field (RF) model with tensor-product covariance (see [32, p. 54]) and a
tensorised probability measure µ, one can associate a particular ANOVA kernel that yields a simple
expression for the Sobol' indices, see [7]. The construction of the ANOVA kernel is explicit for some
particular RF covariances and measures µ only, but numerical integration can be used otherwise.
See also [14] for the ANOVA decomposition of a kernel, with some insights into the consequence of
enforcing sparsity through the choice of a sparse kernel.

On the other hand, both approaches su�er from some limitations. The number of monomials
to be considered in a PCE model grows very fast with the number d of variables, so that many
observations (function evaluations) are required to get an estimate of the indices, even for moderate
values of d. Moreover, the polynomial model seems to o�er less �exibility than a RF model with
covariance chosen in a suitable family (for instance the Matérn class, see [32, Chap. 2]) that speci�es
the regularity of the RF realisations (i.e., of the function to be approximated). In the approach
based on ANOVA kernels, no simple characterisation of the precision of the estimation, which could
be used for experimental design, is available. Moreover, no simple recursive calculation of the indices
seems possible in the case where data are collected successively.

The objective of the paper is to present a method that combines the positive aspects of (i) and
(ii): starting with an arbitrary Gaussian RF model with covariance in the tensor product form,
following the approach in [11], we construct a Bayesian Linear Model (BLM) through a particular
Karhunen-Loève expansion of the �eld associated with the tensor-product measure µ; see also [8].
Like in a PCE model, the regression functions of variable i are orthogonal for µi, i = 1, . . . , d (they
may possibly also include a few polynomial terms), but in addition to a PCE model the parameters
have here a joint prior normal distribution, with known diagonal covariance. The Sobol' indices
(of any order) are obtained straightforwardly from the estimated parameters in the BLM, and the
presence of a prior allows estimation from a few observations only. Like in [4], the linearity of the
model facilitates the recursive estimation of the indices in case of sequential data collection. The
sequential selection of observation points (sequential design) ensuring a precise estimation of the
indices can easily be implemented, and various selection rules can be considered depending on which
characterisation of precision is preferred. Approximate design theory can also be used to construct
an optimal design measure for the estimation of Sobol' indices through the solution of a convex
problem, from which an exact design (without repetitions of observations) can be extracted.

The computation of Sobol' indices via the Karhunen-Loève expansion of a covariance operator
is also considered in [9], but in a di�erent framework. The authors consider an additive model with
functional inputs and, using properties of U-statistics, they investigate the asymptotic properties of
an estimator of �rst-order indices when the truncation levelM of the expansion grows at suitable rate
as a function of the number n of observations. The situation is much di�erent in the present paper:
we consider a general nonlinear function f(·) of scalar inputs and our Karhunen-Loève expansion
concerns a random-�eld model of f(·). The number M of regression functions in the obtained BLM
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and the regression functions themselves are �xed, with M of the same order of magnitude as the
number n of observations to be performed. We shall not investigate the asymptotic properties of
our estimator of Sobol' indices as M and n tend to in�nity. For �xed M , i.e., for a �xed BLM, the
estimated indices tend to the true indices of that BLM as n tends to in�nity and satisfy a central
limit theorem (under standard assumptions concerning Bayesian estimation in a linear regression
model). However, since M is �xed, the estimated indices do not converge to the true indices of
f(·) as n tends to in�nity. Note that we are mainly interested in the case where n is small, a
prerequisite when f(·) expensive to evaluate, and we are more concerned with the choice of the n
design points ensuring a precise estimation of the indices than with asymptotic properties for large
n, when M = M(n) grows with n at suitable rate.

The paper is rather long, but several sections which are important for implementing the method
can be skipped on a �rst reading. Section 2 gives a brief overview of the Sobol'-Hoe�ding decom-
position and the estimation of Sobol'indices in models given by tensor-products of orthonormal
functions. The tensorised BLM is introduced in Section 3 for a general measure µ. Its practical
implementation relies on �nitely supported measures, typically quadrature approximations, and is
detailed in Section 4 with some numerical illustrations. Section 5 considers the estimation of Sobol'
indices in the BLM, together with the construction of posterior distributions and credible intervals.
In Section 6, the normal approximation of the posterior distribution is used to design experiments
adapted to the estimation of Sobol' indices. The examples in Section 7 illustrate the performance
of the method, in particular in comparison with PCE.

2 Sobol' sensitivity indices

2.1 The Sobol'-Hoe�ding decomposition and Sobol' indices

Let f(·) be a function depending on d input variables x = (x1, . . . , xd) ∈ X ⊆ Rd and µ denote
a probability measure on X . We suppose that f ∈ L2(X , µ), the Hilbert space of real-valued
functions on X square integrable for µ, and that µ has the product-tensor form (1.1). We shall
denote by Eµ{·} and varµ{·} the expectation and variance for µ, respectively. Then f(·) admits the
following Sobol'-Hoe�ding decomposition of f(·) in 2d terms [31],

f(x) = f0 +
d∑
i=1

fi(xi) +
∑
i≤j≤d

fi,j(xi, xj) +
∑

i≤j≤k≤d
fi,j,k(xi, xj , xk) + · · ·+ f1,...,d(x1, . . . , xd) . (2.1)

For U an index set, U ⊂ {1, . . . , d}, denote by fU (xU ) the corresponding term in the decomposition
above (without further indication, we shall only consider ordered index sets). For a �xed f0, when
we impose that

∀i ∈ U ,

∫
X
fU (xU ) dµi(xi) = 0 , (2.2)

then the decomposition (2.1) is unique. Moreover, we have the orthogonality property

∀U 6= V , U ,V ⊂ {1, . . . , d} , Eµ{fU (XU )fV (XV )} = 0 ,
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together with f0 = Eµ{f(X)}. The orthogonality property implies that we can decompose the
variance of f(X) as

V = varµ{f(X)} =

d∑
i=1

varµ{fi(Xi)}+
∑
i≤j≤d

varµ{fi,j(Xi, Xj)}+ · · ·+ varµ{f1,...,d(X1, . . . , Xd)}

=
∑

U ⊂{1,...,d}

VU ,

where we have denoted VU = varµ{fU (XU )}. For any U ⊂ {1, . . . , d}, (2.2) implies that

Eµ{f(X)|XU ) = f0 +
∑

V ⊆U

fV (XV ) ,

so that VU = varµ{Eµ{f(X)|XU )} −
∑

V ⊂U VV , where the inclusion is strict on the right-hand
side. The Sobol' sensitivity index associated with the index set U is de�ned by

SU =
VU

V
.

Notice that
∑

U ⊂{1,...,d} SU = 1. The d �rst-order indices Si (respectively, d(d− 1)/2 second-order

indices Si,j) correspond to U = {i}, i = 1, . . . , d (respectively, U = {i, j}, (i, j) ∈ {1, . . . , d}2,
i < j). The closed index associated with U is de�ned by

SU =
varµ{Eµ{f(X)|XU )}

V
=
∑

V ⊆U

SV . (2.3)

Also of interest are the so-called total-e�ect indices,

SU =
∑

V ∩U 6=∅

SV = 1−
∑

V ∩U =∅

SV = 1−
varµ{Eµ{f(X)|X{1,...,d}\U }}

V
=

Eµ{varµ{f(X)|X{1,...,d}\U }}
V

,

in particular the d �rst-order total-e�ect indices Si = S{i}, i = 1, . . . , d. A group of variables xU

such that SU ≈ 0 can be considered are having negligible e�ect on the global behaviour of f(·),
which thus allows dimension reduction.

2.2 Sobol' indices for tensor-products of linear combinations of µi-orthonormal

functions

For all i = 1, . . . , d, let {φi,`(·) , ` = 0, . . . , pi} denote a collection of pi + 1 orthornormal functions
for µi; that is, such that∫

Xi

φi,`(x) dµi(x) = 1 for all ` and

∫
Xi

φi,`(x)φj,`′(x) dµi(x) = 0 for all `′ 6= ` . (2.4)

We suppose moreover that φi,0(x) ≡ 1 for all i. Consider the tensor-product function de�ned by

f(x) =

d∏
i=1

[
pi∑
`=0

αi,`φi,`(x)

]
. (2.5)
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It can be rewritten in the form of a linear regression model having
∏d
i=1(pi + 1) parameters β`,

f(x) =
∑
`

β`ψ`(x) ,

where ` = {`1, . . . , `d} denotes a multi index, with `i ∈ {0, . . . , pi} for all i = 1, . . . , d, and where
β` =

∏d
i=1 αi,`i and ψ`(x) =

∏d
i=1 φi,`i(xi).

For any index set U ⊂ {1, . . . , d}, since Eµi{φi,`(Xi)} = 0 for all i and all ` 6= 0, we have

Eµ{f(X)|XU )} = β0 +
∑

`∈L(U )

β`ψ`(X) ,

where 0 = {0, . . . , 0} and L(U ) = {` 6= 0 : `i = 0 for all i /∈ U }. Next, the orthonormality property
(2.4) gives

SU =

∑
`∈L(U ) β

2
`∑

` 6=0 β
2
`

,

from which we can easily compute SV and SV for any index set V , see Section 2.1. In particular,

Si = S{i} and Si =

∑
`:`i 6=0 β

2
`∑

6̀=0 β
2
`

for all i = 1 . . . , d , Si,j = S{i,j} − Si − Sj for all i, j = 1 . . . , d .

When the φi,`(·) in (2.5) are univariate polynomials Pi,`(·) of degree ` in a family of orthonormal
polynomials for µi, the construction of Section 2.2 corresponds to the PCE approach in [33, 2, 1, 4].

3 A tensorised Bayesian linear model

The objective is to construct a linear approximation model for f(·), with orthonormal regression
functions that satisfy the properties of Section 2.2, together with a prior on the parameters to allow
estimation from less observations than parameters. The construction relies on Gaussian RF models
with parametric trend given by orthonormal polynomials. In absence of reliable prior information on
the behaviour of f(·), we recommend to simply replace that trend by a constant term; see Section 4.5.
However, the presentation covers the general situation, so that the approach can be considered as
an extension of the PCE method of [33, 2]. In this section we consider a theoretical construction
which requires the computation of integrals for the measures µi. The practical implementation of
the model relies on quadrature approximations for the µi and will be detailed in Section 4.

3.1 Construction of univariate models

We use the univariate orthonormal polynomials of the PCE model as trend functions for a univariate
RF model; that is, for each i = 1, . . . , d we consider

Yi,x = ηi(x) + Zi,x , (3.1)

where ηi(x) =
∑pi

`=0 αi,`Pi,`(x) and where (Zi,x)x∈Xi
denotes a Gaussian RF indexed by Xi, with

zero mean (E{Zi,x} = 0 for all x) and covariance E{Zi,xZi,x′} = Ki(x, x
′) for x, x′ ∈Xi. We denote

by Hi the Reproducing Kernel Hilbert Space (RKHS) of real valued functions on Xi de�ned by the
kernelKi(·, ·). We suppose that eachKi(·, ·) is µi-measurable on Xi×Xi and that Eµi{Ki(X,X)} <
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∞. We also suppose that the realisations of (Zi,x)x∈Xi
belong to L2(Xi, µi) with probability one;

see [10, 11] for more precisions. We then consider the following linear operator on L2(Xi, µi):

∀f ∈ L2(Xi, µi), ∀t ∈Xi, Ti,µi [f ](t) =

∫
Xi

f(x)Ki(t, x) dµi(x) = Eµi{f(X)Ki(t,X)} .

The operator Ti,µi is compact, positive semide�nite and self-adjoint, and Ti,µi [f ] ∈ Hi,µi for all
f ∈ L2(Xi, µi), with Hi,µi the closed linear subspace of Hi orthogonal to Hi,0 = {h0 ∈ Hi :
‖h0‖2L2(Xi,µi)

= 0}.

3.2 Univariate orthogonalisation and kernel reduction

Following [11, Sect. 5.4], for each i = 1, . . . , d, we consider the orthogonal projection pi of L
2(Xi, µi)

onto the linear subspace Ti spanned by the Pi,`(·), ` = 0, . . . , pi and denote qi = idL2 − pi. In
matrix notation, denote gi(x) = (Pi,0(x), . . . , Pi,pi(x))T and αi = (αi,0, . . . , αi,pi)

T . From the
orthonormality of the Pi,`(·), we can write, for x ∈Xi,

piZi,x = gTi (x)Eµi{gi(X)Zi,X} , (3.2)

with E{piZi,x} = 0 and, for y ∈ Xi, E{(piZi,x)(piZi,y)} = gTi (x)Eµi{Ti,µi [gi](X)gTi (X)}gi(x) and
E{(piZi,x)Zi,y} = gTi (x)Ti,µi [gi](y).

Now, the model (3.1) can be written as

Yi,x = gTi (x)αi + piZi,x + qiZi,x = gTi (x)αqi
i + qiZi,x, (3.3)

with αqi
i = αi + Eµi{gi(X)Zi,X}. The covariance kernel of (qiZi,x)x∈Xi

in (3.3), called a reduction
of the kernel Ki(·, ·), is equal to

Kqi
i (x, y) = E{(qiZi,x)(qiZi,y)}

= Ki(x, y) + gTi (x)Eµi{Ti,µi [gi](X)gTi (X)}gi(y)− Ti,µi [gTi ](x)gi(y)− gTi (x)Ti,µi [gi](y) .

Note that in (3.3) we have orthogonality in L2(Xi, µi) between the realisations of (qiZi,x)x∈Xi
and

the trend subspace Ti, with piZi,x ∈ Ti.
Consider now the integral operator associated with Kqi

i (·, ·),

∀f ∈ L2(Xi, µi), ∀t ∈Xi, T qi
i,µi

[f ](t) = Eµi{f(X)Kqi
i (t,X)} .

By construction, it satis�es T qi
i,µi

[Pi,`] = 0 for all ` ∈ {0, · · · , pi}. Like Ti,µi , it is compact, positive
semide�nite and self-adjoint. The set of its strictly positive eigenvalues is at most countable; we shall
denote by γi,1 ≥ γi,2 ≥ · · · these eigenvalues ordered by decreasing values and by ϕi,k ∈ L2(Xi, µi)
the associated eigenfunctions, satisfying

∀k ≥ 1, T qi
i,µi

[ϕi,k] = γi,kϕi,k , γi,k > 0 ,

and chosen to be orthonormal in L2(Xi, µi). We shall also consider their canonical extensions
ϕ′i,k ∈ Hi,

∀x ∈Xi, ϕ′i,k(x) =
1

γi,k
T qi
i,µi

[ϕi,k](x) , k ≥ 1 , (3.4)
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so that {√γi,kϕ′i,k : k ≥ 1} forms an orthonormal basis of Hi,µi for the Hilbert structure of Hi, see
[10, Prop. 3.1]. Notice that the ϕ′i,k(·) are de�ned over the whole Xi, with ϕ

′
i,k = ϕi,k µi-almost

everywhere, and that Eµi{ϕ′i,k(X)Pi,`(X)} = 0 for all ` = 1, . . . , pi and all l ≥ 1. Also,∑
k≥1

γi,k = Eµi{K
qi
i (X,X)} ≤ Eµi{Ki(X,X)} , (3.5)

see [11]. Next, we consider the Karhunen-Loève expansion of qiZi,x in (3.3),

∀x ∈Xi , qiZi,x =
∑
k≥1

α′i,kϕ
′
i,k(x) + εi,0,x ,

where the α′i,k, k ≥ 1, are mutually orthogonal normal random variables N (0, γi,k) and where εi,0,x
is a centred RF that belongs to the Gaussian Hilbert space isometric to Hi,0 and has covariance
Kqi
i (x, y) −

∑
k≥1 γi,kϕ

′
i,k(x)ϕ′i,k(y). Also, for all x ∈ Xi, the α

′
i,k are orthogonal to εi,0,x. We can

thus rewrite (3.3) as

Yi,x =

pi∑
`=0

αqi
i,`Pi,`(x) +

∑
k≥1

α′i,kϕ
′
i,k(x) + εi,0,x . (3.6)

3.3 Tensorised BLM

We set a prior on the αqi
i,`, and suppose that αqi

i = (αqi
i,0, . . . , α

qi
i,pi

)T is normally distributed
N (0,Di), with Di = diag{ϑi,`, ` = 0, . . . , pi}, for all i = 1, . . . , d. The choice of the ϑi,` is
discussed in Section 4.3. We then consider the kernels

K ′i(x, y) = Kqi
i (x, y) +

pi∑
`=0

ϑi,`Pi,`(x)Pi,`(y) , (3.7)

and denote the associated RKHS by H′i. This yields the following tensorised version of model (3.6),

Yx =
∑
`∈Nd

β`ψ`(x) + ε0,x (3.8)

where ` = {`1, . . . , `d} with `i ∈ N for all i, and where the β` are independent random variables

N (0,Λ`) with Λ` =
∏d
i=1 λi,`i , ψ`(x) =

∏d
i=1 φi,`i(xi) for any x ∈X , and

φi,`(·) =

{
Pi,`(·) for ` = 0, . . . , pi ,
ϕ′i,`−pi(·) for ` ≥ pi + 1 ,

λi,`(·) =

{
ϑi,` for ` = 0, . . . , pi ,
γi,`−pi for ` ≥ pi + 1 .

(3.9)

Here, ε0,x is a centred RF that belongs to the Gaussian Hilbert space isometric to H⊗0 = {h ∈
⊗di=1H′i : ‖h‖2L2(X ,µ) = 0} and has covariance E{ε0,xε0,y} =

∏d
i=1K

′
i(xi, yi)−

∑
`∈Nd Λ`ψ`(x)ψ`(y).

When truncating the sum in (3.8) to ` in a given �nite subset L of Nd, we obtain the model
Yx =

∑
`∈L β`ψ`(x) + εx, where now E{εxεy} =

∏d
i=1K

′
i(xi, yi)−

∑
`∈L Λ`ψ`(x)ψ`(y). The choice

of L will be discussed in Section 4.4.
Finally, the BLM we shall use for sensitivity analysis is given by

Yx =
∑
`∈L

β`ψ`(x) + ε′x , (3.10)
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where we have replaced the errors εx by uncorrelated ones ε′x, such that E{ε′xε′y} = 0 for x 6= y and

∀x ∈X , s2(x) = E{(ε′x)2} = E{(εx)2} =

d∏
i=1

K ′i(xi, xi)−
∑
`∈L

Λ`ψ
2
` (x) . (3.11)

Following the results in Section 2.1, the estimation of the parameters β` in (3.10) from evaluations
of f(·) at a given set of design points will provide estimates of Sobol' indices; see Section 5.

Remark 3.1. We might also consider estimation of β` in the model with correlated errors εx.
However, estimation with a n-point design would then require the calculation and manipulation of
a n× n correlation matrix, whereas only its n diagonal terms need to be used for the model (3.10).
Moreover, this choice of uncorrelated errors will facilitate the construction of experimental designs
adapted to the estimation of Sobol' indices, see Section 6. /

4 Practical implementation via quadrature approximation

The ϕ′i,k(·) and associated eigenvalues γi,k in (3.6) are usually unknown, and we need to resort to
numerical approximations. A convenient practical implementation consists in replacing the measures
µi by quadrature approximations

µ̂i =

qi∑
j=1

wi,jδxi,j .

For all i = 1, . . . , d, denote Wi = diag{wi,j , j = 1, . . . , qi} and Qi (respectively, Qqi
i ) the matrix

with j, k term {Qi}j,k = Ki(xi,j , xi,k) (respectively, {Qqi
i }j,k = Kqi

i (xi,j , xi,k)) for j, k = 1, . . . , qi.

We shall always assume that
∏d
i=1 qi � n, the projected number of evaluations of f(·).

Remark 4.1. Since we are considering unidimensional approximations, qi does not need to be very
large, and qi = 100 seems to be enough in most cases, see Sections 4.6 and 7. On the other hand,
the µ̂i may also correspond to empirical measures obtained from historical data, a situation where
qi may naturally take large values. /

4.1 Construction of Qqi
i

For each i = 1, . . . , d we consider the family of polynomials Pi,`(·), of degrees l = 0, . . . , pi ≤ qi − 1,
orthonormal for the measure µ̂i. Direct calculation shows that orthonormality implies (up to an
arbitrary sign change)

Pi,0(x) = 1 and Pi,`(x) =

det


1 mi,1 · · · mi,`

mi,1 mi,2 · · · mi,`+1
...

...
. . .

...
mi,`−1 mi,` · · · mi,2`−1

1 x · · · x`


det1/2(Mi,`) det1/2(Mi,`−1)

for l ≥ 1 ,

where, for any ` ∈ N, Mi,` is the (`+1)×(`+1) moment matrix with j, k term {Mi,`}j,k = mi,j+k−2
and mi,k = Eµ̂i{Xk} for all k. Denote by Gi the qi × (pi + 1) matrix with j, ` term φi,`(xi,j). It
satis�es GT

i WiGi = Ipi+1 and we have, from the de�nition of Kqi
i (·, ·),

Qqi
i = Qi + GiG

T
i WiQiWiGiG

T
i −GiG

T
i WiQi −QiWiGiG

T
i , (4.1)

from which we can readily check that Qqi
i WiGi = Oqi,(pi+1), the qi × (pi + 1) null matrix.
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4.2 Calculation of ψ`(x) and s2(x)

We �rst diagonalise W
1/2
i Qqi

i W
1/2
i (for the Euclidean structure of Rqi) and compute a matrix Φ̃i

of eigenvectors and a diagonal matrix Γi of associated eigenvalues (sorted by decreasing values)

that satisfy W
1/2
i Qqi

i W
1/2
i = Φ̃iΓiΦ̃

T

i , with Φ̃
T

i Φ̃i = Iqi , the qi × qi identity matrix. Denote Φi =

W
−1/2
i Φ̃i; it satis�es ΦT

i WiΦi = Iqi , Qqi
i = ΦiΓiΦ

T
i and Qqi

i WiΦi = ΦiΓi, so that GT
i WiΦi =

O(pi+1),qi .
Like in [11], we call quadrature design of size n a collection Dn = {x1, . . . ,xn} of n points of X

such that {xj}i = xi,j is included in the support of µ̂i for all j = 1, . . . , n and i = 1, . . . , d.
Consider �rst a point xj in a quadrature design Dn, with {xj}i = xi,j for i = 1, . . . , d. In

the BLM model (3.10), ψ`(xj) =
∏d
i=1 φi,`i(xi,j) and the β` are independent normal random

variables N (0,Λ`) with Λ` =
∏d
i=1 λi,`i , where the φi,`(xi,j) and λi,` are given by (3.9), with

ϕ′i,k(xi,j) = {Φi}j,k and γi,k is the kth diagonal element of Γi. To compute s2(xj) we need to

calculate additionally
∏d
i=1K

′
i(xi,j , xi,j), see (3.11), with

K ′i(xi,j , xi,j) = {Qqi
i }j,j +

pi∑
`=0

ϑi,`P
2
i,`(xi,j) =

qi∑
`=1

γi,`{Φi}2j,` +

pi∑
`=0

ϑi,`P
2
i,`(xi,j) ,

see (3.7).
Consider now any x ∈X ; its ith coordinate xi being not necessarily in the support of µ̂i. Using

expression (3.4) of canonical extensions, we need to compute

φ′i(xi) = Γ−1i ΦT
i Wik

qi
i (xi) ,

the ` component of which gives ϕ′i,`(xi) to be used in ψ`(xj), see (3.9), where

kqi
i (x) = ki(x) + GiG

T
i WiQiWiGigi(x)−QiWiGigi(x)−GiG

T
i Wiki(x) ,

for all i = 1, . . . , d and all x ∈Xi, with ki(x) the qi-dimensional vector

ki(x) = [K(x, xi,1), . . . ,K(x, xi,qi)]
T .

Since ΦT
i WiGi = Oqi,(pi+1), we obtain

φ′i(xi) = Γ−1i ΦT
i Wiki(xi)− Γ−1i ΦT

i WiQiWiGigi(xi) . (4.2)

The computation of
∏d
i=1K

′
i(xi, xi) in (3.11) relies on

K ′i(x, x) = Ki(x, x) + gTi (x)GT
i WiQiWiGigi(x)− 2 gTi (x)GT

i Wiki(x) +

pi∑
`=0

ϑi,`P
2
i,`(x) , (4.3)

for all i = 1, . . . , d and all x ∈Xi; see (3.7).

Remark 4.2. When pi ≥ 1, if µ̂i is a quadrature approximation of µi for which orthogonal poly-

nomials Pi,`(·) are known, we shall simply use {Gi}j,` = Pi,`(x
(j)
i ), although the Pi,`(·) are not

orthonormal for µ̂i. However, we must then modify the orthogonal projection (3.2) into

piZi,x = gTi (x)M−1
gi

Eµi{gi(X)Zi,X} ,
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with Mgi the pi × pi Gram matrix Eµi{gi(X)gTi (X)}. (We suppose that µi is such that Mgi is
invertible.) The expression of Kqi

i (x, y) must be modi�ed accordingly, into

Kqi
i (x, y) = Ki(x, y) + gTi (x)M−1

gi
Eµi{Ti,µi [gi](X)gTi (X)}M−1

gi
gi(y)

−Ti,µi [gTi ](x)M−1
gi

gi(y)− gTi (x)M−1
gi
Ti,µi [gi](y) ,

and (4.1) becomes

Qqi
i = Qi + GiM

−1
gi

GT
i WiQiWiGiM

−1
gi

GT
i −GiM

−1
gi

GT
i WiQi −QiWiGiM

−1
gi

GT
i .

Also, when x is not a quadrature point, (4.2) and (4.3) must be modi�ed into

φ′i(xi) = Γ−1i ΦT
i Wiki(xi)− Γ−1i ΦT

i WiQiWiGiM
−1
gi

gi(xi) (4.4)

and

K ′i(x, x) = Ki(x, x) + gTi (x)M−1
gi

GT
i WiQiWiGiM

−1
gi

gi(x)− 2 gTi (x)M−1
gi

GT
i Wiki(x)

+

pi∑
`=0

ϑi,`P
2
i,`(x) . /

Remark 4.3. In some situations, several designs have to be considered, all being subsets of a �nite
design space XQ = {x(1), . . . ,x(Q)} ⊂ X Q, for instance XQ may be given by the �rst Q points of
a low discrepancy sequence in X . This is the case in particular when selecting a n-point design
among XQ, see Section 6. It is then advantageous to compute all φ′i({x(j)}i) given by (4.2) and all
K ′i({x(j)}i, {x(j)}i) given by (4.3) in advance, for j = 1, . . . , Q and i = 1, . . . , d. /

4.3 Choice of ϑi,`, ` = 0, . . . , pi

The selection of eigenfunctions in (3.10) will rely on the energy of each component, measured by
the associated eigenvalues, see Section 4.4. It is therefore important to choose values of ϑi,` for
` = 0, . . . , pi large enough to ensure that important polynomial trend functions will be kept in
the model, but not too large to allow the preference of eigenfunctions if necessary. There is some
arbitrariness in this construction, but we think the suggestion below is suitable in most situations.

We shall use stationary kernels Ki(·, ·), so that we can assume (without any loss of generality)
that Ki(x, x) = 1 for all x ∈Xi and each i = 1, . . . , d. Indeed, in (3.10), we can write the variance of

β` as σ
2Λ` and the variance of ε′x as s2(x) = σ2

[∏d
i=1K

′
i(xi, xi)−

∑
`∈L Λ`ψ

2
` (x)

]
for some positive

scalar σ2, and then estimate σ2 from the data; see Section 5.2. From (3.5), we have
∑

k≥1 γi,k ≤ 1,
and we can take ϑi,0 = 1 for all i. When pi ≥ 1, in order to favour the selection of low degree

polynomials, we suggest to take ϑi,` = κ`i with κi = γ
1/(1+pi)
i,1 , so that ϑi,` > γi,k for all ` = 0, . . . , pi

and all k ≥ 1.

4.4 Choice of the truncation set L

In PCE, when considering the tensor product of polynomials up to degree pi in variable xi, the
model can have up to

∏d
i=1(1 + pi) terms. A rather usual approach consists in favouring simple

models by setting a constraint on the total degree D of the polynomial in d variables; the resulting
model has then

(
d+D
d

)
parameters (the cardinality of the set {` = {`1, . . . , `d} ∈ Nd :

∑d
`=1 ≤ D}).

Here we suggest to base the selection of terms in (3.10) on the ranking of the eigenvalues Λ`. We

�rst choose a number N ≤ N =
∏d
i=1(pi + qi + 1) that sets a lower bound on the size of the model
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(the number of terms we want to consider) � a value of N of the same order of magnitude as the
projected number of evaluations of f(·) seems reasonable. Let Λ`1 ≥ · · · ≥ Λ`k ≥ Λ`k+1

≥ · · · denote
the ordered sequence of the Λ` =

∏d
i=1 λi,`i , with ` = {`1, . . . , `d} ∈ Nd, where we set Λ{`1,...,`d} = 0

when `i > pi + qi + 1 for some i. Note that `1 = 0 = {0, . . . , 0} and Λ`1 = 1; see Section 4.3. Our
truncation set is then

LN = {`1, . . . , `M ∈ Nd, with M the smaller integer ≥ N such that Λ`M < Λ`M+1
} . (4.5)

Remark 4.4. We do not need to compute all the N values Λ`k , and the construction of LN can be
sequential since the λi,k are ordered (by decreasing values) for each i. Also, due to the truncation
operated in the construction of LN , in theory we do not need to compute all qi eigenpairs in the
spectral decomposition of Section 4.2. The resulting computational gain may be marginal when
each approximation µ̂i has a small numbers qi of components, but may be signi�cant when the µ̂i
correspond to empirical data; see Remark 4.1. /

Remark 4.5. In the special case where all µ̂i are identical and are supported on q points, and
pi = p for all i, all matrices Qi are identical, and the same is true for Qqi

i , Φi, Γi, etc. The model
(3.10) has md terms at most, with m = p+ q + 1. Each Λ` can be written as

Λ` = λa00 × · · · × λ
am−1

m−1 , (4.6)

with ak =| {i : `i = k} | and
∑m−1

k=0 ak = d. The Λ` can thus take
(
d+m−1
m−1

)
di�erent values at most;

there are at least d!/(a0!× · · · am−1!) di�erent ψ`(·) associated with the same Λ` given by (4.6). /

4.5 The special case pi = 0

The construction of the BLM is simpler when pi = 0 (i.e., when the trend ηi(·) in (3.1) is a constant,
ηi(x) = αi,0 for all x), for all i = 1, . . . , d. Then, gi(x) = 1 for all i and x, and the reduced kernel
Kqi
i (x, y) is given by

Kqi
i (x, y) = Ki(x, y) + Eµi{Ki(X,Y )} − Eµi{K(x,X)} − Eµi{K(y,X)} ;

(4.1) becomes

Qqi
i = Qi + 1qi(1

T
qiWiQiWi1qi)1

T
qi − 1qi1

T
qiWiQi −QiWi1qi1

T
qi ,

with 1qi the qi-dimensional vector of ones, and (4.2) and (4.3) respectively become

φ′i(x) = Γ−1i ΦT
i Wiki(x)− Γ−1i ΦT

i WiQiWi1qi

and

K ′i(x, x) = Ki(x, x) + 1TqiWiQiWi1qi − 2 ki(x)TWi1qi +

pi∑
`=0

ϑi,`P
2
i,`(x) .

We only need to choose ϑi,0 in (3.9), and we can take ϑi,0 = 1 for all i; see Section 4.3.

4.6 Numerical illustrations

Consider the Matérn 3/2 covariance function, given byK3/2(x, y; θ) = (1+
√

3θ|x−y|) exp(−
√

3θ|x−
y|); see [32, Chap. 2]. A zero-mean Gaussian process with this covariance is one-time mean-square
di�erentiable. Suppose that µ1 is the uniform measure on [0, 1], and consider the discrete approxi-
mation µ̂1(q1) that puts weight 1/q1 on each of the q1 points x1,j = (j−1)/(q1−1), j = 1, . . . , q1. We
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take p1 = 2, and the P1,0(·) in (3.6) are the �rst three orthonormal polynomials for µ1: P1,0(x) = 1,
P1,1(x) =

√
3(2x− 1) and P1,2(x) =

√
5(6x2 − 6x+ 1).

Figure 1-left shows the values of the components of the �rst three eigenvectors ϕ′1,`(x1,j) =
{Φ1}j,` of the reduced kernel for j = 1, . . . , q1 and ` = 1 (triangles), ` = 2 (circles) and ` = 3
(crosses), when q1 = 20, θ = 2 (top) and θ = 20 (bottom). Their canonical extensions ϕ′1,`(x),
x ∈ [0, 1], obtained from (4.4), are plotted in dashed-line. They are orthonormal for µ̂1(20), and
close to being orthonormal and orthogonal to the Pi,`(x) (plotted in full line) for µ1; see Table 1.
The components of the �rst three eigenvectors obtained when q1 = 100 are indicated by dots. One
may notice the good agreement with the canonical extensions ϕ′1,`(x) based on 20 points only. We
shall use qi = 100 in the examples of Section 7 to ensure quasi-orthonormality of the ψ`(·) in (3.10),
see Table 2.

P1,0 P1,1 P1,2 ϕ′1,1 ϕ′1,2 ϕ′1,3

P1,0 1 0 0 ≈ 0 0.0803 ≈ 0
P1,1 · 1 0 -0.1468 ≈ 0 0.1447
P1,2 · · 1 ≈ 0 0.1879 ≈ 0
ϕ′1,1 · · · 0.9208 ≈ 0 0.1295

ϕ′1,2 · · · · 0.9314 ≈ 0

ϕ′1,3 · · · · · 0.9247

Table 1: Inner products 〈φ1,`, φ1,`′〉L2(X ,µ) between regression functions used in (3.6) for canonical exten-
sions ϕ′1,j(·) based on a 20-point quadrature approximation with covariance K3/2(x, y; 2) and µ uniform on

[0, 1] (≈ 0 means an absolute value less than 10−15).

P1,0 P1,1 P1,2 ϕ′1,1 ϕ′1,2 ϕ′1,3

P1,0 1 0 0 ≈ 0 -0.0180 ≈ 0
P1,1 · 1 0 0.0304 ≈ 0 0.0322
P1,2 · · 1 ≈ 0 -0.0408 ≈ 0
ϕ′1,1 · · · 0.9799 ≈ 0 -0.0320

ϕ′1,2 · · · · 0.9779 ≈ 0

ϕ′1,3 · · · · · 0.9762

Table 2: Inner products 〈φ1,`, φ1,`′〉L2(X ,µ) between regression functions used in (3.6) for canonical exten-
sions ϕ′1,j(·) based on a 100-point quadrature approximation with covariance K3/2(x, y; 2) and µ uniform on

[0, 1] (≈ 0 means an absolute value less than 10−15).

Figure 1-right shows the values of the λi,` in (3.9) for ` = 0, . . . , 10. The eigenvalues γ1,`

associated with the ϕ′1,`, see (3.9), are indicated by stars; the values of ϑ1,` = γ
`/(1+p1)
1,1 = γ

`/3
1,1 in

(3.9) (see Section 4.3) for ` = 0, 1, 2 are indicated by triangles. We can see that θ (the inverse of
the correlation length) has a moderate in�uence on the �rst eigenfunctions of the decomposition,
but the decrease of eigenvalues is signi�cantly slower for θ = 20 (bottom) than for θ = 2 (top),
which has a noticeable impact on the prior distribution of Sobol' indices; see Section 7. The choice
of θ should preferably agree with prior information on the �uctuations of f(·). In absence of such
prior knowledge, a possible guideline is to select a value of θ compatible with the projected number
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Figure 1: First eigenfunctions (left) and eigenvalues (right) for the univariate model with uniform measure
on [0, 1] and Matérn covariance K3/2(·, ·; θ), for θ = 2 (top) and θ = 20 (bottom).

n of function evaluations: a model with about n components should be able to capture the global
behaviour of f(·) over X . A value of θ such that

ρ(θ) =

∑n
k=1 Λ`k∑
k Λ`k

=

∑n
k=1 Λ`k∏d

i=1

(∑pi+qi+1
`=1 λi,`

) ' 1 , (4.7)

see (3.9), thus seems reasonable. For instance, when n = 64 and pi = 2 for all i, we obtain here
ρ(2) ' 0.9993 and ρ(20) ' 0.8290 for d = 2, and ρ(2) ' 0.9845 and ρ(20) ' 0.5083 for d = 3,
suggesting that 64 evaluations of a function of three variables may not be enough to reproduce its
behaviour with a tensorised model based on Matérn 3/2 covariance with θ = 20 and second-degree
polynomials in each variable. The posterior distributions of the model parameters β` and Sobol'
indices depend on θ and rely on strong assumptions on the underlying model; they should thus
be taken with caution. As Section 7 will illustrate, they can, however, be used as guidelines for
designing experiments adapted to the estimation of Sobol' indices.

Remark 4.6. Another option, which we shall not develop in this paper due to space-limitation, is to
estimate θ from the data, by maximum likelihood or cross validation, before the eigendecomposition,
using the tensorised covariance kernel K(x,y; θ) =

∏d
i=1K

′
i(xi, yi; θ), where the K

′
i(·, ·; θ) are given

by (3.7). This requires specifying values for the ϑi,`, but does not raise particular di�culties when
pi = 0 for all i: one may simply take all ϑi,0 equal to 1, see Section 4.3. The problem then boils
down to estimating covariance parameters θ in a RF model with unknown mean and covariance∏d
i=1[1 +Kqi

i (xi, yi; θ)]− 1. /

The results obtained with the Matérn 5/2 covariance function, K5/2(x, y; θ) = (1 +
√

5θ|x− y|+
5θ2|x−y|2/3) exp(−

√
5θ|x−y|), for the same values of θ as above, yield plots hardly distinguishable
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from those presented in Figure 1. Similar experiments with other covariance functions con�rm the
intuition that the choice of the kernel among a class of smooth enough stationary kernels has little
in�uence when considering only a few terms of the eigendecomposition.

Suppose now that d = 2, with µ1 = µ2 uniform on [0, 1], and consider the tensorised model
(3.10). We take p1 = p2 = 2 and use the covariance K3/2(x, y; 2) in each dimension, with the
100-point quadrature approximation µ̂1(100). For N = 25, the truncation set LN de�ned by (4.5)
is equal to

L25 =

{
0 0 1 1 0 2 1 2 0 3 0 4 2 1 3 0 5 1 4 2 3 0 6 1 5
0 1 0 1 2 0 2 1 3 0 4 0 2 3 1 5 0 4 1 3 2 6 0 5 1

}
The corresponding values of (log of) Λ` are shown in Figure 2, see (4.6). The construction of the

ϑi,`i in Section 4.3 implies that λ1,`λ2,`′ = γ
(`+`′)/3
1,1 for `, `′ ∈ {0, . . . , 3}, which explains the presence

of a triple and a quadruple of identical Λ`; pairs of identical values are simply due to an exchange
between dimension indices, i.e., λ1,`λ2,`′ = λ2,`λ1,`′ .

Figure 2: Eigenvalues Λ` (log scale) in the tensorised model.

Besides the 9 polynomial components P1,`(x1)P2,`′(x2), `, `
′ ∈ {0, 1, 2}, the model (3.10) also

contains 16 components that involve (canonical extensions of) eigenfunctions ϕ′i,j(·), for i = 1, 2 and
j ∈ {1, . . . , 6}. A random realisation of

∑
`∈L25

β`ψ`(x) in (3.10), with β` independently normally
distributed N (0,Λ`), is presented in Figure 3-left. Increasing N in LN allows modelling thinner
details in the behaviour of f(·), as illustrated by Figure 3-right which uses N = 125 with the
same collection of eigenfunctions. Clearly, a more precise modelling calls for a larger number of
observations, this is why we suggest to choose N of the same order of magnitude as the projected
number of evaluations of f(·).

5 Estimation of Sobol' indices and credible intervals

Suppose that n evaluations of f(·) at Dn = {x1, . . . ,xn} ⊂X n have been performed, and denote

Yn = [f(x1), . . . , f(xn)]T .

Also, in the BLM (3.10) with L = LN given by (4.5), denote Λ = diag{Λ`k , k = 1, . . . ,M}, Ψn the
n ×M matrix with j, k term ψ`k(xj), for j = 1, . . . , n, k = 1, . . . ,M , and Σn = diag{s2(xj), j =
1, . . . , n} with σ2(x) given by (3.11). The parameters β = (β`1 , . . . , β`M )T have the normal prior
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Figure 3: Random realisations of the model response (3.10) for parameters β` having the normal prior
N (0,Λ`) and truncation levelN = 25 (left) andN = 125 (right) in (4.5). The tensorisation usesK3/2(x, y; 2)
in each dimension with a 100-point quadrature approximation.

N (0, σ2Λ) and the errors ε′n = [ε′(x1), . . . , ε
′(xn)] are normally distributed N (0, σ2Σn), see Sec-

tion 4.3. However, the introduction of a prior on the trend parameters in Section 3.3 was only
motivated by the construction of the tensorised model, and when estimating β we shall put an im-
proper prior on the β`k that correspond to pure trend components in (3.10); that is, we set Λ−1`k

= 0
for all k such that `k,i ≤ pi for all i = 1, . . . , d. We denote by Λ0 the corresponding diagonal matrix.
We also denote by K the set of such k, with |K| = K, and Λ′ = diag{Λ`k : k ∈ {1, . . . ,M}\K}; Rn

is the matrix formed by the columns of Ψn with indices in K and Ψ′n is formed by the remaining
columns to Ψn; α is formed by the K components of β with indices in K and β′ by the other
components of β, having the prior distribution N (0, σ2Λ′).

5.1 Estimation of indices

We estimate β by its posterior mean

β̂
n

= M−1
n ΨT

nΣ−1n Yn ,

with Mn the Bayesian information matrix

Mn = ΨT
nΣ−1n Ψn + Λ−10 . (5.1)

Note that when the data [xk, f(xk)] arrive sequentially, classical recursive least squares formulae can
be used to avoid repetitions of matrix inversion. Following the developments in Section 2.2, for any
index set U ⊂ {1, . . . , d} we estimate SU , de�ned in (2.3), by

Ŝ
n

U =

∑
`∈LN (U )(β̂

n
` )2∑

`∈L∗N
(β̂n` )2

, (5.2)

where L∗N = {`k ∈ LN : `k 6= 0} = {`2, . . . , `M} and LN (U ) = {`k ∈ L∗N : `k,i = 0 for all i /∈ U },
see Section 4.4. This allows us to estimate all Sobol' indices SV and SV for any index set V , see
Section 2. Any such estimate has the form

Ŝn =

∑
`k∈L̃N

(β̂n`k
)2∑M

k=2(β̂
n
`k

)2
,
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for some subset L̃N of L∗N , and is thus given by the ratio of two (simple) quadratic forms in β̂
n
.

Note that Ŝn does not depend on the value of σ2.

5.2 Estimation of σ2

The marginal distribution of Yn given α and σ2 is normal N (Rnα, σ
2(Σn + Ψ′nΛ

′Ψ′n
T

). With
an improper prior on σ2 (with density proportional to 1/σ2), its posterior distribution is inverse
chi-square with n−K degrees of freedom and such that E{1/σ2|Yn} = 1/σ̂2n, with

σ̂2n =
1

n−K
(Yn −Rnα̂

n)T (Σn + Ψ′nΛ
′Ψ′n

T
)−1(Yn −Rnα̂

n)

(the restricted maximum likelihood estimator; see [32, p. 170]), where α̂n corresponds to the K
components of β̂

n
with indices in K.

Given σ2, the posterior distribution π(β|Yn, σ
2) of β is normal N (β̂

n
, σ2 M−1

n ), with Mn given
by (5.1). When the number of degrees of freedom, n−K, of the posterior distribution of σ2 is large
enough, we may consider that the posterior π(β|Yn) is normal N (β̂

n
, σ̂2n M−1

n ), and we shall make
this assumption in the following. Notice in particular that K = 1 when all pi equal zero, see
Section 4.5.

5.3 Distribution of Sobol' indices

Take any index given by

SL̃N
(β) =

∑
`k∈L̃N

β2`k∑M
k=2 β

2
`k

(5.3)

for some L̃N ⊆ L∗N (which is well de�ned when β`k 6= 0 for at least one k > 1, see (4.5)). We
consider two di�erent approximations of its posterior distribution. The �rst one (Section 5.3.1) is
a normal approximation obtained via the delta-method; the second one (Section 5.3.2) is obtained
from the exact distribution of a ratio of two quadratic forms in normal variables.

Remark 5.1. The value of SL̃N
(β) is invariant by a scale transformation of the β`k , with the

consequence that when β has the normal prior N (0, σ2Λ), the prior distribution of SL̃N
(β) does

not depend on the value of σ2. /

5.3.1 Normal approximation

Consider the ratio (5.3). Direct calculation gives

∂SL̃N
(β)

∂β
=

2

βTJβ
∆L̃N

β , (5.4)

with ∆L̃N
the diagonal matrix

∆L̃N
= UL̃N

− SL̃N
J , (5.5)

where UL̃N
= diag{u`k , k = 1, . . . ,M}, u`k = 1 if `k ∈ L̃N and is zero otherwise, and J is the

M × M diagonal matrix diag{0, 1, . . . , 1}. This yields a normal approximation of the posterior
distribution π(SL̃N

(β)|Yn), with mean SL̃N
(β̂

n
) and variance

V n
L̃N

=
4 σ̂2n

[(β̂
n
)TJβ̂

n
]2

(β̂
n
)T∆L̃N

M−1
n ∆L̃N

β̂
n
, (5.6)
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from which we can construct approximate credible intervals for SL̃N
(β) (by simply considering

critical values for the normal distribution, truncated to [0, 1]). Notice that the estimation of Sobol'
indices (5.3) and the construction of these credible intervals can be data-recursive; see also [12, 13]
for another approach for �rst and second-order indices.

5.3.2 Exact posterior distribution of Sobol' indices for normal parameters

We can use the results in [16] and [3] to derive the exact distribution of SL̃N
(β) de�ned by (5.3) when

β is normal N (β̂
n
, σ̂2n M−1

n ). Denoting A = σ̂2n M
−1/2
n UL̃N

M
−1/2
n and B = σ̂2n M

−1/2
n JM

−1/2
n , we

get
FL̃N

(r) = Prob{SL̃N
(β) ≤ r} = Prob{tT (A− rB)t ≤ 0} ,

where t ∼ N (0, IM ). Next, we construct the spectral decomposition A − rB = PDPT , with

D = diag{δ1, . . . , δM}, and compute ω = (ω1, . . . , ωM )T = σ̂−1n PTM
1/2
n β̂

n
. Then,

FL̃N
(r) =

1

2
− 1

π

∫ ∞
0

sinβ(u)

uγ(u)
du , (5.7)

where

β(u) =
1

2

M∑
k=1

[
arctan(δku) +

ω2
kδku

1 + δ2ku
2

]
and γ(u) = exp

{
1

2

M∑
k=1

[
ω2
kδ

2
ku

2

1 + δ2ku
2

+
1

2
log(1 + δ2ku

2)

]}
;

see [16]. The density of SL̃N
(β) is given by

fL̃N
(r) =

1

π

∫ ∞
0

ρ(u) cosβ(u)− uδ(u) sinβ(u)

2γ(u)
du , (5.8)

where β(u) and γ(u) are de�ned above and

ρ(u) = trace[HF−1] + ωTF−1(H− u2DHD)F−1ω , δ(u) = trace[HDF−1] + 2ωTF−1HDF−1ω ,

with H = PTBP and F = IM + u2D2; see [3].
Using the expressions (5.7) and (5.8) of FL̃N

(r) and fL̃N
(r), we can easily construct credible

intervals of minimum length for SL̃N
(β), e.g. via dichotomy search. For a given α ∈ (0, 1), e.g.,

α = 0.05, we �nd b ∈ [0, 1] such that FL̃N
(b) − FL̃N

[a(b)] = 1 − α, where a(b) < b is such that

fL̃N
[a(b)] = fL̃N

(b) and is also determined by dichotomy search. An illustration is given in Figure 5-
left. Of course, the required integral computations make this construction signi�cantly heavier than
when using the normal approximation of Section 5.3.1.

6 Experimental design

Suppose that we wish to estimate several indices SL̃N,j
(β), j = 1, . . . , J , corresponding to di�erent

sets L̃N,j = L̃N (Uj) in (5.3). For instance, to estimate the d �rst-order total indices Si, i = 1, . . . , d,

we consider the d sets L̃N,i = {`k ∈ L∗N : `k,i 6= 0}; see Section 2.2. We then consider the M × J
matrix

S(β) =
2

βTJβ

[
∆L̃N,1

β | · · · |∆L̃N,J
β
]

(6.1)
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formed from the derivatives (5.4) of the J indices of interest. Following developments similar
to those in Section 5.3.1, we can approximate the posterior joint distribution of SL̃N,1

, . . . , SL̃N,J

by a normal distribution with covariance matrix σ̂2n ST (β̂
n
)M−1

n S(β̂
n
), and a good experimental

design Dn should minimise a scalar function of ST (β̂
n
)M−1

n S(β̂
n
). We suppose that Dn ⊂ XQ =

{x(1), . . . ,x(Q)}, a given �nite set of candidate points, see Remark 4.3.
Unsurprisingly, due to the nonlinear dependence of SL̃N,j

(β) in β, an optimal experiment for

the estimation of the SL̃N,j
(β) depends on the unknown β; see, for instance, [26, Chap. 8]. This

di�culty can be circumvented in di�erent ways. The approach of Section 6.1 is adaptive: after
n0 evaluations at some prespeci�ed design Dn0 (for instance, a space-�lling design in X ; see, e.g.,
[25]), the next design points are chosen sequentially, the choice of xn+1 for n ≥ n0 being based
on the current estimated value β̂

n
. A batch-sequential construction can also be used, where the

estimated value β̂
kn0

is used for the selection of xkn0+1, . . . ,x(k+1)n0
. Here all batches have the

same size n0, but extension to more general situations is straightforward; in particular, two-stage
design uses β̂

n0
for the construction of all xn for n > n0. One may alternatively try to design each

batch of points optimally (Section 6.2), either with an exchange-type algorithm (Section 6.2.1) or
using the classical machinery of approximate design theory to construct an optimal design measure
ξ∗ through the solution of a convex programming problem, see [23], from which an exact design can
be extracted. This is considered in Section 6.2.2.

6.1 Adaptive design

Denote by Ωn(β) the J × J matrix

Ωn(β) = ST (β)M−1
n S(β) ,

with S(β) given by (6.1), so that Ωn(β̂
n
) characterises the precision of the estimation of the J

indices SL̃N,j
(β) of interest, j = 1, . . . , J , after n evaluations of f(·).

The choice of suitable design criteria depends on which aspect of the precision we consider more
appealing. Assuming that the indices of interest are approximately normally distributed, the D-
optimality criterion det(Ωn) is related to the (squared) volume of joint con�dence ellipsoids; the
A-optimality criterion trace(Ωn) is related to the sum of squared lengths of the principal axes of
these ellipsoids; MV-optimality aims at minimising the maximum of the variances of individual
indices, and the criterion is given by max[diag(Ωn)]; see [18].

D-optimality for the estimation of �rst-order Sobol' indices in PCE models is considered in [4],
and we follow the same line in the more general framework considered here. We suppose that n0
evaluations of f(·) have been performed, such that Mn0 is nonsingular. Then, for any n ≥ n0, after
estimation of β̂

n
from n evaluations of f(·), we choose the next design point xn+1 which yields the

largest decrease of j[Ωn+1(β̂
n
)], with H(·) one of the criteria above.

Straightforward calculations indicate that

xn+1 = arg max
x∈XQ

ψT (x)M−1
n S(β̂

n
)[ST (β̂

n
)M−1

n S(β̂
n
)]−1ST (β̂

n
)M−1

n ψ(x)

s2(x) +ψT (x)M−1
n ψ(x)

(6.2)

when minimising det[Ωn+1(β̂
n
)],

xn+1 = arg max
x∈XQ

ψT (x)M−1
n S(β̂

n
)ST (β̂

n
)M−1

n ψ(x)

s2(x) +ψT (x)M−1
n ψ(x)

(6.3)
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when minimising trace[Ωn+1(β̂
n
)], and

xn+1 = arg max
x∈XQ

min
j=1,...,J

{
[ψT (x)M−1

n S(β̂
n
)ej ]

2

s2(x) +ψT (x)M−1
n ψ(x)

− eTj ST (β̂
n
)M−1

n S(β̂
n
)ej

}
(6.4)

when minimising max{diag[Ωn+1(β̂
n
)]}, with ψ(x) = [ψ`1(x), . . . , ψ`M (x)]T and ej the jth canon-

ical basis vector of RJ . Note that we may also consider weighed versions of the criteria trace(Ω)
and max[diag(Ω)] by introducing weights along the diagonal of Ω, for instance in order to consider
individual relative precision of the J indices.

Remark 6.1. The presence of independent errors in the model (3.10) has the consequence that
the sequential construction above may yield repetitions of observations at the same design point
When this happens, it may be interpreted as an indication that the approximations involved are
too rough for the number of observations considered and should be re�ned by (i) considering a �ner
set XQ and/or (ii) enlarging the number of components in (3.10), that is, the value of N in (4.5).
Repetitions can always be avoided by considering that s2(x) is in�nite for any x already selected.

/

6.2 Optimal design

A locally D, A or MV-optimal n-point exact design Dn(β0) is obtained by direct minimisation of
j[Ωn(β0)] with respect to Dn, for one of the criteria mentioned above and for a given nominal value
β0 of β. This is generally a formidable problem (non-convex, with multiple local minima) when n
and d are large, and the usual approach is to resort to an exchange type algorithm, like the one
considered in Section 6.2.1. Another approach (Section 6.2.2) is to construct an optimal design
measure ξ∗ (a probability measure on X ) and then extract an exact design from the support of ξ∗.
We only consider A-optimality in the following.

Direct calculation shows that trace[Ωn(β0)] (to be minimised) is proportional to

H[Ωn(β0)] = trace
[
C(β0)M

−1
n

]
,

where

C(β) =
J∑
j=1

∆L̃N,j
(β)ββT ∆L̃N,j

(β) , (6.5)

and where the ∆L̃N,j
(β) are given by (5.5) (they depend on β through the indices SL̃N,i

(β) =

(βTUL̃N,i
β)/(βTJβ), see (5.3)). Note that {C(β)}1,1 = 0.

In batch sequential design, β0 in C(β0) is set to the current estimated value β̂
n
. It is also

tempting to try to construct an initial optimal design before any evaluation of f(·), i.e., in situations
where no prior value β0 is available. One may then replace all quadratic forms in β that appear
in H[Ωn(β)] by their expectations, with β normally distributed N (0, σ2Λ). Direct calculations
shows that this amounts to replacing Ωn(β0) by Ω̃n, with

{Ω̃n}i,j =
4

σ2 trace2(JΛ)
trace

[
M−1

n ∆L̃N,i
(β̃)∆L̃N,j

(β̃)Λ
]
,

where we have denoted β̃ = diag{Λ1/2
`k
, k = 1, . . . ,M}. We then minimise H(Ω̃n) = trace[C̃M−1

n ]
with

C̃ = Λ

J∑
j=1

∆2
L̃N,j

(β̃) , (6.6)
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where we used the fact that Λ and the ∆L̃N,j
are diagonal. Note that {C̃}1,1 = 0 and {C̃}k,k > 0

for k ≥ 2 (since SL̃N,i
(β̃) > 0 for all i, so that {∆L̃N,i

(β̃)}k,k 6= 0 for all k ≥ 2, see (5.5)).

6.2.1 An exchange algorithm for exact design

Instead of considering the direct minimisation of trace[CM−1
n ] with respect to Dn, with C = C(β0)

given by (6.5) for some β0 in batch sequential design, or C = C̃ given by (6.6) in the construction
of an initial design, we consider an exchange-type algorithm, similar to the DETMAX algorithm of

[21]. Let Dn = D
(k)
n denote the current design at iteration k of the algorithm and Mn denote the

corresponding Bayesian information matrix. We suppose that Dn is such that Mn is nonsingular.
Each iteration comprises two steps. We only consider excursions through (n+ 1)-point designs, but
excursions through designs of size larger than n+ 1 could be considered as well.

First, we consider an optimal design augmentation, obtained by adding the point

xn+1 = arg max
x∈XQ

ψT (x)M−1
n CM−1

n ψ(x)

s2(x) +ψT (x)M−1
n ψ(x)

(6.7)

to Dn, where we set s2(xi) = ∞ for all xi ∈ Dn to avoid repetitions of observations at the same
point.

Second, we return to an n-point design by removing a point from D+
n = Dn ∪ {xn+1}. Denote

by M+
n the Bayesian information matrix corresponding to D+

n . It satis�es

(M+
n )−1 = M−1

n −
M−1

n ψ(xn+1)ψ
T (xn+1)M

−1
n

s2(xn+1) +ψT (xn+1)M
−1
n ψ(xn+1)

,

and elementary calculation shows that the optimal choice for the point x− to be removed is given
by

x− = arg min
x∈D+

n

ψT (x)(M+
n )−1C(M+

n )−1ψ(x)

s2(x)−ψT (x)(M+
n )−1ψ(x)

.

The design D
(k+1)
n for next iteration is then Dn ∪ {xn+1} \ {x−}. The algorithm is stopped when

H(·) does not decrease between two successive iterations, which generally means that x− = xn+1.

6.2.2 Exact design via optimal design measures

Construction of an optimal design measure. Let Ξ denote the set of probability measure on
XQ, a �nite subset of X . Consider the construction of an optimal initial design. For any ξ in Ξ
and any ϑ ∈ R+, de�ne

Mϑ(ξ) =

∫
XQ

1

s2(x)
ψ(x)ψT (x) dξ(x) +

Λ−10

ϑ
, (6.8)

so that nMn(µn) = Mn given by (5.1) when µn = (1/n)
∑n

k=1 δxi is the empirical measure associ-
ated with the design Dn. An optimal design measure ξ∗ is obtained by minimizing the L-optimality
criterion (L for linear)

Hϑ(ξ) = trace
[
CM−1

ϑ (ξ)
]
, (6.9)

with C = C̃ given by (6.6), with respect to ξ ∈ Ξ. In batch sequential design, we would take
C = C(β̂

n
) given by (6.5) for the current estimated value β̂

n
and substitute Mn for Λ−10 in

(6.8). Since XQ is �nite, the minimisation of Hϑ(ξ) forms a �nite-dimensional convex optimisation
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problem, for which many e�cient algorithms are available; see, e.g., [26, Chap. 9]. Iteration k of a
vertex-direction algorithm transfers some mass to x∗ ∈ XQ that minimises the current directional
derivative Fϑ(ξk,x), here given by

Fϑ(ξk,x) = lim
γ→0+

Hϑ[(1− γ)ξk + γδx]−Hϑ(ξk)

γ

= −
ψT (x)M−1

ϑ (ξk)CM−1
ϑ (ξk)ψ(x)

s2(x)
+ trace

{
M−1

ϑ (ξk)[Mϑ(ξk)− Λ−10

ϑ
]M−1

ϑ (ξk)C

}
.

This gives x∗ = arg maxx∈XQ
[ψT (x)M−1

ϑ (ξk)CM−1
ϑ (ξk)ψ(x)]/s2(x), compare with (6.7). Note that

we have assumed that Mϑ(ξk) is nonsingular. This can always be achieved trough regularisation,
by re-introducing a weakly informative prior N (0, γ2 IK) on the K parameters α, with a large γ,
so that all diagonal terms of Λ−10 become strictly positive in (6.8).

Extraction of an exact design. Let ξ∗ denote an ε-optimal design measure for the criterion
Hϑ(·), satisfying minx∈XQ

Fϑ(ξ∗,x) > −ε, with ε a small positive number. The measure ξ∗ is a
discrete measure with a �nite number N∗ of support points, and can be written as

ξ∗ = ξN∗ =

N∗∑
k=1

wk:N∗δxk
,

where the weights are ordered by decreasing values: w1:N∗ ≥ w2:N∗ ≥ · · · ≥ wN∗:N∗ . Our extraction
procedure consists in sequentially reducing the support by transferring the smallest current weight
to another support point, suitably chosen (see also Algorithm 1 of [11] for an alternative approach).
The size n of the design extracted is not set a priori, but is in some sense adapted to the truncation
level used to construct the set LN , see (4.5). The value of ϑ used to construct ξ∗ should be of the
same order of magnitude as N , but this choice is not critical. For ξN a discrete measure of the
form ξN =

∑N
k=1wkδxk

, we denote by ξN,u the uniform measure having the same support; that

is, ξN,u = (1/N)
∑N

k=1 δxk
. The matrix NMN (ξN,u) thus corresponds to the Bayesian information

matrix MN for the design DN formed by the support of ξN , see (5.1). The construction is described
in Algorithm 1.

Algorithm 1 Greedy algorithm for merging support points

Require: ξN∗ , an ε-optimal design measure for Hϑ(·), a threshold τ > 1;
1: set N = N∗;
2: while N > 1 do

3: compute k∗ = arg maxk=1,...,N−1[ψ
T (xk)M

−1
ϑ (ξN )CM−1

ϑ (ξN )ψ(xk)]/s
2(xk);

4: Compute ξN−1 =
∑N−1

k=1 wk,Nδxk
where wk,N = wk:N for k 6= k∗ and wk∗,N = wk∗:N +wN :N ;

reorder the weights of ξN−1 by decreasing values, i.e., write ξN−1 =
∑N−1

k=1 wk:N−1δxk
, with

w1:N−1 ≥ w2:N−1 ≥ · · · ≥ wN−1:N−1; N ← N − 1;
5: if ρN = trace{C[NMN (ξN,u)]−1}/ trace{C[(N+1)MN+1([N/(N+1)]ξN+1,u)]−1} > τ , stop;
6: end while

7: return n = N + 1 and Dn given by the support of ξN+1.

We rescale ξN+1,u into [N/(N + 1)]ξN+1,u in the test at line 5 of the algorithm, since ξN+1,u has
one more point than ξN,u (and thus trace{C[NMN (ξN,u)]−1} > trace{C[(N+1)MN+1(ξN+1,u)]−1}
for allN), whereas ρN usually �uctuates around 1 in the �rst steps withN close toN∗; see Figure 13-
right in Section 7 for an illustration. We can also base the selection of an optimal k∗ at line 3 on
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the comparison between the values of Hϑ(·), or HN (·), achieved for all the N − 1 possible mass
transfers, at the expense of a signi�cantly larger computational cost when N∗ is large.

7 Numerical examples

7.1 Ishigami function

This function depends on three variables and is frequently used as a test-case in sensitivity analysis.
It is given by f(x) = sin(x1)+a sin2(x2)+bx43 sin(x1), x being uniformly distributed in X = [−π, π]3.
We shall use the values a = 7 and b = 0.1. The �rst-order indices are equal to

S1 = (bπ4/5 + b2π8/50 + 1/2)/∆ , S2 = a2/(8∆) , S3 = 0

where ∆ = a2/8 + bπ4/5 + b2π8/18 + 1/2, the second-order indices are all zero excepted S1,3 =
8b2π8/(225∆). We have, by de�nition, see Section 2.1,

S1 = S1 + S1,3 , S2 = S2 , S3 = S1,3 , S1,2 = S1 + S2 , S1,3 = S1,3 + S1 and S2,3 = S2 .

We approximate each marginal of µ by the discrete uniform measure that puts weight 1/100 at
each of the points (j−1)/99, j = 1, . . . , q = 100 and use the covariance K3/2(x, y; θ), see Section 4.6.
We set pi = 0 for i = 1, 2, 3 (we have observed that the performances are signi�cantly deteriorated
when setting the polynomial degrees pi to positive values). We estimate the indices by evaluating
f(·) at the �rst n points of Sobol' low-discrepancy sequence in [0, 1]3, and take N = n in (4.5).

Figure 4-left shows the density (5.8) of the prior distribution of �rst-order indices Si (the same
for i = 1, 2, 3) for θ = 2 (solid line) and θ = 20 (dashed line). Figure 4-right shows the two posterior
distributions obtained for S1 when n = 64, θ = 2 (solid line) and θ = 20 (dashed line), β having
the normal distribution N (β̂

n
, σ̂2n M−1

n ); see Section 5.3.2. The true value of S1 is about 0.3139;
the model with θ = 2 seems able to adequately capture the global behaviour of f(·), whereas prior
weights on components with fast variations are exaggeratedly large when θ = 20, see the discussion
in Section 4.6, which makes the estimation less precise.

Figure 4: Ishigami function. Left: density (5.8) for Si (�rst-order indices) when β has the prior distribution

N (0, σ2Λ) (see Remark 5.1). Right: density of S1 when β has the posterior distribution N (β̂
n
, σ̂2

n M−1
n ),

n = 64. The covariance for univariate models is K3/2(x, y; 2) (solid line) or K3/2(x, y; 20) (dashed line);
S1 ' 0.3139.
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Figure 5-left shows the posterior density (5.8) for S1 (solid line, same as in Figure 4-right), the
minimum-length 95% credible interval, and the normal approximation of the posterior (dashed line),
all for θ = 2. Figure 5-right shows the posterior density (5.8) of S1,2 (solid line) and its normal
approximation (dashed line). Figure 6 presents the same information for S1,3, when n = 64 (left)

and n = 256 (right). The estimated value Ŝn1 given by (5.2) equals 0.3337 and is reasonably close
to the true value S1 ' 0.3139, both the exact posterior and its normal approximation yield 95%
credible intervals that contain S1, see Figure 5-left. The estimation of second-order indices is more
di�cult with n = 64: S1,2 tends to be over-estimated (Figure 5-right) and S1,3 underestimated
(Figure 6-left), although the situation improves when increasing n (Figure 6-right).

Figure 5: Ishigami function: posterior distributions for n = 64 with covariance K3/2(x, y; 2). Left: posterior
density (5.8) for S1 (solid line) and minimum-length 95% credible interval; normal approximation (dashed
line); S1 ' 0.3139. Right: posterior density (5.8) for S1,2 (solid line) and its normal approximation (dashed
line); the true value is zero.

Figure 6: Ishigami function: posterior density (5.8) for S1,3 (solid line) and its normal approximation
(dashed line) with covariance K3/2(x, y; 2). Left: n = 64; Right: n = 256; S1,3 ' 0.2437.

Figure 7-left show the evolution of �rst order-index Ŝn1 , see (5.2), with β̂
n
estimated from

evaluations at successive points of Sobol' sequence. After a batch of n0 = 10 evaluations, we use a
recursive construction for β̂

n
, and thus for Ŝn1 , for n = 11, . . . , 256 (dashed line). The 95% credible
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intervals for the normal approximation (Section 5.3.1) are shown in dashed line, the true value of S1
corresponds to the horizontal solid line. Figure 7-right presents the same information for S2 (top)
and S3 (bottom). We have taken θ = 2 in K3/2(x, y; θ), N = 256 in (4.5) and pi = 0 for i = 1, 2, 3.

Figure 7: Ishigami function: estimated �rst-order indices (dashed line) and normal approximation of 95%
credible intervals (dotted lines) with a tensorised BLM using K3/2(x, y; 2); the solid line indicates the true
value. Left: S1; right: S2 (top) and S3 (bottom).

The function f(·) is �xed, but we may consider the variability of estimated indices when using
di�erent designs. We take θ = 2 in K3/2(x, y; θ), N = n in (4.5) and pi = 0 for i = 1, 2, 3 in

the construction of the tensorised BLM, and evaluate f(·) at 100 di�erent n-point Lh designs D
(k)
n

constructed as follows. We �rst generate 10,000 random Lh designs in X , and then select the 100
designs having the smallest value of Jq(·) de�ned by

Jq(Dn) =
n∑
i=1

min
j 6=i
‖xj − xi‖q , q < 0 ,

with Dn = {x1, . . . ,xn}. J
1/q
q (Dn) tends to JMm(Dn) = mini 6=j ‖xj − xi‖ as q tends to −∞,

but its value depends on the respective positions of all points, contrary to the maximin criterion
JMm(·). A design optimal for Jq(·) is n1/q-e�cient for JMm(·) in the family considered [24]; we
take q = −20 to select designs having good space-�lling properties. The left column of Figure 8
presents box-plots (median, 25th and 75th percentiles and minimum and maximum values) of the
errors Ŝn − S, for n = 64 (top), 128 (middle) and 256 (bottom) respectively, for �rst-order, total,
second-order and closed-second-order indices. We can see that the estimation is already reasonably
accurate for small n. Table 3 gives the empirical coverage probabilities (in %), for the 100 random
Lh designs, of approximate 2σ credible intervals constructed with the variance V n

L̃N
given by (5.6),

for �rst-order indices (S1, S2, S3), total indices (S1, S2, S3), second-order indices (S1,2, S1,3, S2,3)
and closed-second-order indices (S1,2, S1,3, S2,3). Although V n

L̃N
accounts for uncertainty due to

the possible variability of f(·) conditional to evaluations at a �xed design, by considering di�erent
designs of the same type (they are all space-�lling and have the same one-dimensional projections)
we try to mimic the behaviour of di�erent f(·) for the same design. The coverage probabilities in
Table 3 are acceptable in most cases (the small values observed for S1,3 can be explained by the
presence of a small estimation bias, see Figure 8).

We now consider estimation of indices via (Legendre) polynomial-chaos expansion. When the
total polynomial degree is D, the model contains M =

(
D+d
d

)
parameters. Figure 9 presents the
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Figure 8: Ishigami function: box-plots of estimation errors of �rst-order, total, second-order and closed-
second-order indices for 100 random Lh designs with n = 64 (top), n = 128 (middle), n = 256 (bottom).
Left column: tensorised BLM; right-column: polynomial-chaos model with D = 5 (top), D = 6, (middle)
and D = 8 (bottom).

same information as Figure 7, using the same design points. We take D = 5, which gives a model
with M = 56 parameters. We start with a batch of n0 = 64 observations and then estimate β̂

n

by recursive least-squares, for n = 65, . . . , 256. When the number of observations is small, we are
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Si Si Si,j Si,j

n = 64 92 98 100 97
98 99 67 99
99 97 100 98

n = 128 100 93 99 78
95 95 59 93
97 78 96 93

n = 256 99 96 99 85
97 96 73 96
89 85 65 96

Table 3: Empirical coverage probabilities (in %), for 100 random Lh designs, of approximate 2σ credible
intervals for (S1, S2, S3), (S1, S2, S3), (S1,2, S1,3, S2,3) and (S1,2, S1,3, S2,3) (BLM with K3/2(x, y; 2)).

over-con�dent in the model, although it is not �exible enough to estimate the indices correctly;
when n increases, con�dence in the model decreases due to a bad �tting with 56 tuning parameters
only. Next, using the same random Lh designs as in Figure 8-left, we select the total degree D
that gives the best estimation (which is possible here since we know the true value of indices). This
gives a model of degree 4 (respectively, 6 and 8), with 35 (respectively, 84 and 165) parameters,
when n = 64 (respectively, 128 and 256). The results (box-plots) are presented in the right column
of Figure 8. Although we have adapted the total degree of the model to the sample size (which
is not an easy task in practice), comparison with the left column indicates that performance are
signi�cantly worse than with the tensorised BLM.

Figure 9: Ishigami function: estimated �rst-order indices (dashed line) and normal approximation of 95%
con�dence intervals (dotted lines) with a polynomial-chaos model of total degree D = 5; the solid line
indicates the true value. Left: S1; right: S2 (top) and S3 (bottom).

Finally; we consider the adaptive designs of Section 6.1. Figure 10 shows the evolution of
estimated �rst order-indices Ŝn1 , like in Figure 7, but when the design points xn, for n = 11, . . . , 256
are obtained from (6.4) with XQ fromed by the �rst 1,024 points of Sobol' sequence. We observe
that convergence to the true values (solid lines) is faster than with the �rst 256 points of Sobol'
sequence used in Figure 7. Figure 11-left shows the evolution of variances (5.6) (used to build the
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95% credible intervals in Figure 10); on Figure 11-right the design points x11, . . . ,x256 are obtained
from (6.2).

Figure 10: Ishigami function: estimated �rst-order indices (dashed line) and normal approximation of 95%
credible intervals (dotted lines) with a tensorised BLM using K3/2(x, y; 2) and design points given by (6.4);
the solid line indicates the true value. Left: S1; right: S2 (top) and S3 (bottom).

Figure 11: Ishigami function: estimated variances (5.6) of �rst-order indices S1 (solid line), S2 (dashed line)
and S3 (dotted line) as functions of n, for the design sequences (6.4) (left) and (6.2) (right).

7.2 Sobol' g-function

The function is given by f(x) =
∏d
i=1 fi(xi) with fi(x) = (|4x − 2| + ai)/(ai + 1) for all i and x

uniformly distributed in the unit cube X = [0, 1]d, the number d of input variables is arbitrary.
The index corresponding to any index set U = {i1, i2, . . . , is} ⊆ {1, . . . , d} is equal to

SU =
1

D

s∏
j=1

1

3
(aij + 1)−2

where D =
∏d
i=1

[
1 + 1

3 (ai + 1)−2
]
− 1. We use ai = i in the example. Note that f(·) is not

di�erentiable. We take pi = 0 for all i and K3/2(x, y; 2) for the construction of the BLM.
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Consider �rst the case d = 2. The design space XQ is formed by the �rst 1,024 points of Sobol'
sequence. We take N = 20 in (4.5). Figure 12-left shows the adaptive design x11, . . . ,x128 produced
by (6.3) for the estimation of �rst-order indices S1 and S2, when x1, . . . ,x10 correspond to the �rst
10 points of Sobol' sequence. We set s(x) =∞ after the evaluation of f(x) to avoid repetitions, see
Remark 6.1. Note that the design obtained is not evenly spread over X due to the adaptation to the
function considered. After the 10 evaluations at x1, . . . ,x10 we may also construct a locally optimal
design for the next evaluations, using the approach of Section 6.2.2. We substitute M10 for Λ−10 in

(6.8), with ϑ = 20, and take C = C(β̂
10

) given by (6.5). The optimal design measure, obtained
with a vertex-exchange algorithm with ε = 10−5, is supported on 20 points. The greedy merging
algorithm of Section 6.2.2 (with τ = 1.1 and the selection of an optimal k∗ at line 3 based on the
comparison between values of Hϑ(·)), suggests to remove 6 support points. The design obtained is
presented on Figure 12-right.

Figure 12: Left: adaptive design (without repetitions, see Remark 6.1) constructed with (6.3) for the
estimation of �rst-order indices in Example 7.2 with d = 2 (dots); n = 128, the �rst 10 points (stars)
correspond to Sobol' sequence. Right: two-stage design, with the �rst n0 = 10 points (stars) identical to
those on the left part, and the next 14 points (dots) extracted from an optimal measure ξ∗ that minimises

trace[C(β̂
n0

)Mϑ(ξ)], with Mn0
substituted for Λ−10 in (6.8); (ϑ = 20, ε = 10−5, ξ∗ is supported on 20

points).

Next, we construct an initial optimal design for the minimisation of the criterion (6.9) with
ϑ = N = 20. Note that the construction is independent of the function f(·) considered. The ε-
optimal measure ξ∗ (ε = 10−5) is now supported on 44 points, and the algorithm of Section 6.2.2 with
τ = 1.1 suggests to remove 26 points from ξ∗, see Figure 13-right. The design ξ18 extracted is shown
on Figure 13-left, where the disk areas are proportional to the weights wj of ξ18. Similar behaviours
are observed in other situations (di�erent values covariance functions for the BLM, di�erent choices
for N and ϑ, estimation of di�erent indices, etc.): the designs obtained are typically well spread
over X , suggesting that the improvement in terms of the precision of the estimation of indices with
respect to a more standard space-�lling design is questionable.

Consider �nally the case d = 10. Figure 14 shows box-plots of the estimation errors Ŝn − S of
�rst-order and total indices obtained for 100 random Lh designs with n = 512 points generated as in
Section 7.1. The estimation is much more precise with the BLM model (left) than with polynomial-
chaos expansion with total degree D = 3 (right) � the model has 286 parameters, the model for
D = 4 would have 1001 parameters. The true value of the indices are given in Table 4, inspection
of Figure 14-left indicates that the estimation of �rst-order and total indices is already reasonably
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Figure 13: Exact design (18 points) produced by the method of Section 6.2.2 for the estimation of �rst-
order indices in Example 7.2 with d = 2 and ϑ = N = 20. Left: design extracted from the ε-optimal design
measure ξ∗ (ε = 10−5); ξ∗ has 44 support points (not shown), the disk areas are proportional to the weights
wj of ξ18. Right: evolution of ρN∗−k as a function of k.

accurate for n = 512 when using the BLM model (although we only have ρ(θ) ' 0.6130 for θ = 2
and all pi equal to zero, see (4.7), and although f(·) is not di�erentiable). The empirical coverage
probabilities, computed as in Section 7.1, are at least 99% for all �rst-order and total indices.

Figure 14: Sobol' g-function for d = 10 and n = 512: box-plots of estimation errors of �rst-order and total
indices for 100 random Lh designs. Left: tensorised BLM with K3/2(x, y; 2), pi = 0 for all i and N = n in
(4.5); right: polynomial-chaos model with total degree D = 3.

8 Conclusions and further developments

A metamodelling approach has been proposed for the estimation of Sobol'indices. It relies on
Karhunen-Loéve expansions and combines the �exibility provided by Gaussian-process models with
the easy calculations o�ered by models based on families of orthonormal functions. The computa-
tional cost is moderate (it mainly corresponds to the diagonalisation of a few matrices of limited
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i 1 2 3 4 5 6 7 8 9 10
Si 0.4183 0.1859 0.1046 0.0669 0.0465 0.0342 0.0261 0.0207 0.0167 0.0138

Si 0.4631 0.2150 0.1229 0.0792 0.0552 0.0407 0.0312 0.0247 0.0200 0.0165

Table 4: First-order and total indices for Sobol' g-function with d = 10 and ai = i for all i.

dimension), and a normal approximation of the posterior distribution of indices is readily available.
It can be used to construct experiments adapted to the estimation of Sobol' indices, and various
approaches have been considered: sequential, batch sequential, construction of an initial design.

Several points deserve further investigations. The examples shown indicate that the method is
e�cient for estimating the indices accurately from a moderate number n of function evaluations,
but we have not investigated its convergence properties. Consistent estimation can be obtained
by letting N (the number of regression functions in the model) and the qi (number of points in
the one-dimensional quadrature approximations) grow fast enough with n, but we do not know
the optimal growth rate. Moreover, for �xed n, the choice made in the paper (qi constant and
N = n) is surely suboptimal. We observed that the inclusion of orthonormal polynomial terms in
the model (i.e., taking pi ≥ 1) deteriorates the performance of the method. A general con�rmation
of this phenomenon would be useful, especially as computations are signi�cantly simpler when all
pi equal zero. We have used a covariance function with a �xed value of the range parameter θ, with
a suggestion for choosing θ in agreement with the projected value of n, see (4.7). The estimation
of θ based on function evaluations seems a reasonable alternative; see Remark 4.6. It would also
be interesting to consider the Bayesian Local Kriging approach of [27], without localisation (i.e.,

Bayesian Model Averaging [15]), using a (small) set of T di�erent covariance models K
(t)
i (·, ·),

and possibly di�erent polynomial degrees p
(t)
i , t = 1, . . . , T , for each dimension i. Finally, the

construction of optimal experiments adjusted to the estimation of Sobol' indices has been considered
in Section 6. Adaptive constructions seem promising, in the sense that they provide (slightly) faster
convergence of the estimated indices than more usual low-discrepancy sequences. On the other
hand, (initial, o�-line) optimal designs exhibit a rather classical space-�lling property, and therefore
do not seem superior to standard uniform designs.
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