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Sensitivity analysis via Karhunen-Loéve expansion of a random
field model: estimation of Sobol’ indices and experimental design

Luc PRONZATO*

June 22, 2017

Abstract

We use the Karhunen-Loéve expansion of a random-field model to construct a tensorised
Bayesian linear model from which Sobol’ sensitivity indices can be estimated straightforwardly.
The method combines the advantages of models built from families of orthonormal functions,
which facilitate computations, and Gaussian-process models, which offer a lot of flexibility.
The posterior distribution of the indices can be derived, and its normal approximation can
be used to design experiments especially adapted to their estimation. Implementation details
are provided, and values of tuning parameters are indicated that yield precise estimation from
a small number of function evaluations. Several illustrative examples are included that show
the good performance of the method, in particular in comparison with estimation based on
polynomial chaos expansion.

Keywords: sensitivity analysis, Sobol” indices, random-field model, Karhunen-Loéve expansion,
Bayesian linear model, polynomial chaos, optimal design of experiments.

1 Introduction and problem statement

We consider global sensitivity analysis for a function f(-) depending on d independent real input

variables x1, ..., x4, z; being distributed with the probability measure p; over Z; C R for each
i=1,...,d, so that the probability measure p of x = (x1,...,z4) has the tensor-product form
dpa(x) = dpuy (1) x - x dpa(wa) (1.1)

Global sensitivity analysis aims at identifying important variables, and possibly important inter-
actions between groups of variables, in the sense that they are the most influential in the global
behaviour of f(-) on the support of . The calculation of Sobol” indices, which quantify the portion
of the variance of f(x) explained by each z;, or combination of different z;’s, see Section 2.1, has
become a standard tool in sensitivity analysis for measuring the importance of (groups of) variables.

Commonly used estimation methods of Sobol’ indices include the Fourier Amplitude Sensitivity
Test (FAST) |5, 30, 6], see also [29]; the model-free pick-and-freeze methods [31, 28| based on QMC
sampling designs, Latin hypercubes (Lh) or orthogonal arrays, see in particular [19, 34, 12, 13].
In case of functions f(-) of computationally expensive evaluation, the use of metamodels allows
estimation of indices from a reduced number of data points; see e.g., [22, 20]. See also [17| which
combines Gaussian-process metamodeling and Monte Carlo sampling. The calculation of Sobol’
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indices is then considerably facilitated when the metamodel used has a particular form, which is
especially adapted to the underlying Sobol’-Hoeffding decomposition.

(i) Polynomial Chaos Expansions (PCE) correspond to tensor products of univariate polynomial
models P;(z;), each P;(-) belonging to a family of orthogonal polynomials with respect to u;, and
provide an easy evaluation of Sobol’ indices. Indeed, the indices are given by ratios of quadratic
forms in estimated parameters in the linear regression model defined by the PCE; see [33, 2, 1]. The
precision of the estimated indices can be related to the information matrix for the linear regression
model, which allows the construction of efficient designs adapted to the estimation of Sobol” indices;
see [4]. Families of orthogonal polynomials are known for particular distributions (e.g., Hermite for
the standard normal, Legendre for the uniform distribution, etc.), but transformations or calculation
via moment matrices can be used in more general situations, see Section 4.1.

(73) To a given Random Field (RF) model with tensor-product covariance (see [32, p. 54]) and a
tensorised probability measure p, one can associate a particular ANOVA kernel that yields a simple
expression for the Sobol” indices, see [7]. The construction of the ANOVA kernel is explicit for some
particular RF covariances and measures p only, but numerical integration can be used otherwise.
See also [14] for the ANOVA decomposition of a kernel, with some insights into the consequence of
enforcing sparsity through the choice of a sparse kernel.

On the other hand, both approaches suffer from some limitations. The number of monomials
to be considered in a PCE model grows very fast with the number d of variables, so that many
observations (function evaluations) are required to get an estimate of the indices, even for moderate
values of d. Moreover, the polynomial model seems to offer less flexibility than a RF model with
covariance chosen in a suitable family (for instance the Matérn class, see [32, Chap. 2|) that specifies
the regularity of the RF realisations (i.e., of the function to be approximated). In the approach
based on ANOVA kernels, no simple characterisation of the precision of the estimation, which could
be used for experimental design, is available. Moreover, no simple recursive calculation of the indices
seems possible in the case where data are collected successively.

The objective of the paper is to present a method that combines the positive aspects of (i) and
(7i): starting with an arbitrary Gaussian RF model with covariance in the tensor product form,
following the approach in [11], we construct a Bayesian Linear Model (BLM) through a particular
Karhunen-Loeéve expansion of the field associated with the tensor-product measure p; see also [8].
Like in a PCE model, the regression functions of variable i are orthogonal for p;, i = 1,...,d (they
may possibly also include a few polynomial terms), but in addition to a PCE model the parameters
have here a joint prior normal distribution, with known diagonal covariance. The Sobol” indices
(of any order) are obtained straightforwardly from the estimated parameters in the BLM, and the
presence of a prior allows estimation from a few observations only. Like in [4], the linearity of the
model facilitates the recursive estimation of the indices in case of sequential data collection. The
sequential selection of observation points (sequential design) ensuring a precise estimation of the
indices can easily be implemented, and various selection rules can be considered depending on which
characterisation of precision is preferred. Approximate design theory can also be used to construct
an optimal design measure for the estimation of Sobol’ indices through the solution of a convex
problem, from which an exact design (without repetitions of observations) can be extracted.

The computation of Sobol’ indices via the Karhunen-Loéve expansion of a covariance operator
is also considered in 9], but in a different framework. The authors consider an additive model with
functional inputs and, using properties of U-statistics, they investigate the asymptotic properties of
an estimator of first-order indices when the truncation level M of the expansion grows at suitable rate
as a function of the number n of observations. The situation is much different in the present paper:
we consider a general nonlinear function f(-) of scalar inputs and our Karhunen-Loéve expansion
concerns a random-field model of f(-). The number M of regression functions in the obtained BLM



and the regression functions themselves are fixed, with M of the same order of magnitude as the
number n of observations to be performed. We shall not investigate the asymptotic properties of
our estimator of Sobol’ indices as M and n tend to infinity. For fixed M, i.e., for a fixed BLM, the
estimated indices tend to the true indices of that BLM as n tends to infinity and satisfy a central
limit theorem (under standard assumptions concerning Bayesian estimation in a linear regression
model). However, since M is fixed, the estimated indices do not converge to the true indices of
f(-) as n tends to infinity. Note that we are mainly interested in the case where n is small, a
prerequisite when f(-) expensive to evaluate, and we are more concerned with the choice of the n
design points ensuring a precise estimation of the indices than with asymptotic properties for large
n, when M = M (n) grows with n at suitable rate.

The paper is rather long, but several sections which are important for implementing the method
can be skipped on a first reading. Section 2 gives a brief overview of the Sobol’-Hoeffding decom-
position and the estimation of Sobol’indices in models given by tensor-products of orthonormal
functions. The tensorised BLM is introduced in Section 3 for a general measure u. Its practical
implementation relies on finitely supported measures, typically quadrature approximations, and is
detailed in Section 4 with some numerical illustrations. Section 5 considers the estimation of Sobol’
indices in the BLM, together with the construction of posterior distributions and credible intervals.
In Section 6, the normal approximation of the posterior distribution is used to design experiments
adapted to the estimation of Sobol” indices. The examples in Section 7 illustrate the performance
of the method, in particular in comparison with PCE.

2 Sobol’ sensitivity indices

2.1 The Sobol’-Hoeffding decomposition and Sobol’ indices

Let f(-) be a function depending on d input variables x = (z1,...,24) € 2~ C R? and p denote
a probability measure on 2. We suppose that f € L?(2",u), the Hilbert space of real-valued
functions on 2" square integrable for p, and that p has the product-tensor form (1.1). We shall
denote by E,{-} and var,{-} the expectation and variance for x, respectively. Then f(-) admits the
following Sobol’-Hoeffding decomposition of f(-) in 27 terms [31],

d
fE) =fo+ > film)+ D> fis@inz)+ D figelwszg, o)+ + fial@n,. . zg) . (2.1)
i=1 1<j<d 1<j<k<d

For % anindexset, Z C {1,...,d}, denote by fy (x4 ) the corresponding term in the decomposition
above (without further indication, we shall only consider ordered index sets). For a fixed fp, when
we impose that

View, / fu (Xq/) d,ul(:vl) =0, (22)
then the decomposition (2.1) is unique. Moreover, we have the orthogonality property

vu 7é 7/7 62/77/ C {17'“ 7d}7 Eﬂ{f”Z/(X“//)f"l/(X”l/)} = 07



together with fo = E,{f(X)}. The orthogonality property implies that we can decompose the
variance of f(X) as

V =var, {f(X)} = Z:varu{fz Z var, { fi i (Xi, X5)}+ - +vary{fi,.a(X1,..., Xa)}
i<j<d
= > Va,
v c{1,...,d}

where we have denoted Vi = var,{fs (X%)}. For any # C {1,...,d}, (2.2) implies that

E{fX)Xa)=fot+ > fr(Xy),

vCu

so that Vi = var, {E {f(X)|X%)} = > 44 Vy, where the inclusion is strict on the right-hand
side. The Sobol’ sensitivity index associated with the index set % is defined by

v
Notice that } 1, 4y S# = 1. The d first-order indices S; (respectively, d(d — 1)/2 second-order

indices S; ;) correspond to % = {i}, i = 1,...,d (respectively, % = {i,j}, (i,5) € {1,...,d}?,
i < j). The closed index associated with %/ is defined by

S, = varu{Eu{];(v ) X%)} Z S, . (2.3)

VCU

Sy =

Also of interest are the so-called total-effect indices,

Su= Y S5=1-Y 5= 1_Varu{Eu{f(X)\X{l,...,d}\%}} _ Eudvan df (X)X, ap# 3} 7

V |4
VNUFAD VNU=0

in particular the d first-order total-effect indices S; = g{i}, i=1,...,d. A group of variables x4
such that Sy ~ 0 can be considered are having negligible effect on the global behaviour of f(-),
which thus allows dimension reduction.

2.2 Sobol’ indices for tensor-products of linear combinations of y;-orthonormal
functions

Foralli=1,...,d, let {¢;¢(-), £=0,...,p;} denote a collection of p; + 1 orthornormal functions
for p;; that is, such that

/ ¢ie(z)dp;(z) =1 for all £ and / Gio(x)pj o (x) dpi(x) = 0 for all £ # L. (2.4)
2 2

We suppose moreover that ¢;o(z) = 1 for all i. Consider the tensor-product function defined by

d Di
1] [z al-,mi,e(x)] | .3
=0



It can be rewritten in the form of a linear regression model having H?Zl(pi + 1) parameters [y,

Fx) = Brb(x),
L

where £ = {{1,...,44} denotes a multi index, with ¢; € {0,...,p;} for all i = 1,...,d, and where

Be =TTy e, and vu(x) =TTy i (20):
For any index set % C {1,...,d}, since E,, {¢; ¢(X;)} = 0 for all 4 and all £ # 0, we have

E{f(X)X)} = 6o+ D, Beu(X),

LeL(%)

where 0 = {0,...,0 and L(%Z) ={£#0: ¢; =0 for all i ¢ % }. Next, the orthonormality property
(2.4) gives

2
S ZEGIL(“//) B
L2y — 2
220 B
from which we can easily compute Sy and Sy for any index set 7, see Section 2.1. In particular,

Dtti20 B2
D0 B

When the ¢; ¢(+) in (2.5) are univariate polynomials P; ¢(-) of degree ¢ in a family of orthonormal
polynomials for p;, the construction of Section 2.2 corresponds to the PCE approach in [33, 2, 1, 4].

Sz-:ﬁ{i} and S; = foralli=1...,d, Si’jzﬁ{m}—Si—Sj foralli,j=1...,d.

3 A tensorised Bayesian linear model

The objective is to construct a linear approximation model for f(-), with orthonormal regression
functions that satisfy the properties of Section 2.2, together with a prior on the parameters to allow
estimation from less observations than parameters. The construction relies on Gaussian RF models
with parametric trend given by orthonormal polynomials. In absence of reliable prior information on
the behaviour of f(-), we recommend to simply replace that trend by a constant term; see Section 4.5.
However, the presentation covers the general situation, so that the approach can be considered as
an extension of the PCE method of [33, 2|. In this section we consider a theoretical construction
which requires the computation of integrals for the measures p;. The practical implementation of
the model relies on quadrature approximations for the p; and will be detailed in Section 4.

3.1 Construction of univariate models

We use the univariate orthonormal polynomials of the PCE model as trend functions for a univariate
RF model; that is, for each i = 1,...,d we consider

Yi,a: = 771(30) + Zi,a: ) (31)

where n;(x) = >} @ ¢P;¢(x) and where (Z; z)zc 2, denotes a Gaussian RF indexed by Zj, with
zero mean (E{Z; ,} = 0 for all z) and covariance E{Z; . Z; ,} = K;(z,2’) for z, 2’ € Z;. We denote
by H; the Reproducing Kernel Hilbert Space (RKHS) of real valued functions on 2; defined by the
kernel K;(-,-). We suppose that each Kj(-,-) is y;-measurable on 2 x Z; and that E,,, { K;(X, X)} <



oo. We also suppose that the realisations of (Z; ;)zc2: belong to L*( 2, u;) with probability one;
see [10, 11] for more precisions. We then consider the following linear operator on L?(.27, j1;):

Vi€ LA(Zim), Ve 2, Tiulfl) = /x F@)Ki(t, @) duia) = B, {f (O Ki(t, X))

The operator Tj,, is compact, positive semidefinite and self-adjoint, and T; ,,[f] € H;,, for all
[ € L*(2;, i), with H;,, the closed linear subspace of H; orthogonal to H;o = {ho € H; :

1hollZ (7. = O3

3.2 Univariate orthogonalisation and kernel reduction

Following |11, Sect. 5.4, for each i = 1, ..., d, we consider the orthogonal projection p; of L?(.2;, ;)
onto the linear subspace 7; spanned by the P ¢(-), £ = 0,...,p; and denote q; = idz2 — p;. In
matrix notation, denote g;(z) = (Pio(z),...,Pip(2))! and o = (ai0,...,qip,)L. From the
orthonormality of the P 4(-), we can write, for x € 25,

piZi,:v = ng(:L')EMi{gi(X)Zi,X} ’ (3'2)

with E{piZ;,} = 0 and, for y € 25, E{(iZis)(0iZiy)} = &] (©)Eu ATl (X)g] (X)}gi(x) and
E{(piZi2)Ziy} = &] (2)Tip,[8i](y)-
Now, the model (3.1) can be written as

Vie =gl (0)a; +piZiz+ 0iZip = gl (2)a) + i Z; 4, (3.3)

with @) = a; + E,,;{gi(X)Zi x }. The covariance kernel of (q;Z; z)zec2; in (3.3), called a reduction
of the kernel Kj(-,-), is equal to

Ki'(z,y) = B{(0:Zi2)(0iZiy)}
= Ki(z,y) + & (@)Eu{ T &1l (X)g] (X)}gi(y) — T (87 1(@)gi(y) — & (@) T 81l (v)
Note that in (3.3) we have orthogonality in L?(.2;, 11;) between the realisations of (q;Z; +)zc2; and

the trend subspace 7;, with p;Z; , € T;.
Consider now the integral operator associated with K} (-,-),

Vf € LX(Zi ), Vte Zi T, [f1(t) = By {f(XOK](t, X)}.

By construction, it satisfies Tf';l [P;¢] =0 for all £ € {0,---,p;}. Like T; ,,, it is compact, positive
semidefinite and self-adjoint. The set of its strictly positive eigenvalues is at most countable; we shall
denote by ;1 > 752 > - - - these eigenvalues ordered by decreasing values and by ¢; ;. € L2( %, i)
the associated eigenfunctions, satisfying

Vk>1, T [eik] = Vikpik, ik >0,

and chosen to be orthonormal in L%(27, ;). We shall also consider their canonical extensions
@ik € Mi,

1

Vi k

Ve Z plula) = —T il (@), k21, (3.4)



so that {,/7ik¥, ) : k> 1} forms an orthonormal basis of H; ,, for the Hilbert structure of H,;, see
[10, Prop. 3.1]. Notice that the ¢} ,(-) are defined over the whole 2, with ¢}, = ¢;; p;-almost
everywhere, and that E,, {¢] . (X)P;¢(X)} =0forall £=1,...,p; and all [ > 1. Also,

> vk = B (K (X, X)} < B, {Ki(X, X))}, (3.5)
k>1

see [11]. Next, we consider the Karhunen-Loéve expansion of ¢;Z; , in (3.3),

Ve € Zi, QiZix= Za;ksﬁék@) + €02,
k>1

where the 04;’ s k> 1, are mutually orthogonal normal random variables .47(0,; ) and where €; »
is a centred RF that belongs to the Gaussian Hilbert space isometric to H; o and has covariance
K (2,y) = Y Vi kP 1 (T) ¢ 1 (y). Also, for all z € 2, the aj ;. are orthogonal to €;0,. We can
thus rewrite (3.3) as

pi
Yie = Z Oz?fg]%,g(w) + Z @ 105 k() + €00 - (3.6)
(=0 k>1

3.3 Tensorised BLM

We set a prior on the o, and suppose that o' = (a%,...,a?ipi)T is normally distributed
A(0,D;), with D; = diag{d;¢, ¢ = 0,...,p;}, for all « = 1,...,d. The choice of the ¥;, is

discussed in Section 4.3. We then consider the kernels

pi
Kj(z,y) = K¥(2,y) + Y _ 0iePie(x) Poo(y) (3.7)
=0

and denote the associated RKHS by #.. This yields the following tensorised version of model (3.6),

Yy = Z Bﬁz)ﬁ(x) + €o0x (38)
LcINd
where £ = {l1,...,¢q} with ¢; € IN for all ¢, and where the 5, are independent random variables
A(0,Ay) with Ay = Hle Xig;s Ye(x) = Hle ¢ig,(x;) for any x € 27, and
B P;io(v) for £ =0,...,p;, i for£=0,...,p;,
i) = { Cigp, () forl>p;+1, Nial) = Yie—p;, forl=pi+1. (39)

Here, € x is a centred RF that belongs to the Gaussian Hilbert space isometric to ’Hg@ = {h €
@ H HhH%%%’“) = 0} and has covariance E{egxeoy} = Hle Ki(@i,yi) = 3 pena Aetbe(x)Ye(y)-
When truncating the sum in (3.8) to £ in a given finite subset L. of IN?, we obtain the model

Yy = Zﬁe]L Behe(x) + ex, where now E{exey} = H?Zl Kl(xi,y;) — ZEGL Apie(x)0e(y). The choice
of I will be discussed in Section 4.4.
Finally, the BLM we shall use for sensitivity analysis is given by

Y= Buthe(x) + ek, (3.10)

Lel



where we have replaced the errors ex by uncorrelated ones ¢, such that E{e}ey} = 0 for x # y and

d

vx e 2, s°(x) = B{()’} = E{(ex)’} = [ [ Ki(wi, i) = ) A (%) (3.11)

i=1 LelL

Following the results in Section 2.1, the estimation of the parameters §; in (3.10) from evaluations
of f(-) at a given set of design points will provide estimates of Sobol’ indices; see Section 5.

Remark 3.1. We might also consider estimation of (5, in the model with correlated errors ex.
However, estimation with a n-point design would then require the calculation and manipulation of
a n X n correlation matrix, whereas only its n diagonal terms need to be used for the model (3.10).
Moreover, this choice of uncorrelated errors will facilitate the construction of experimental designs
adapted to the estimation of Sobol’ indices, see Section 6. N

4 Practical implementation via quadrature approximation

The ¢}, (-) and associated eigenvalues ~; ;, in (3.6) are usually unknown, and we need to resort to
numerical approximations. A convenient practical implementation consists in replacing the measures

;i by quadrature approximations
g
i = sz‘,ﬁxi,]- :
j=1

For all i = 1,...,d, denote W; = diag{w; j, j = 1,...,¢;} and Q; (respectively, Q") the matrix
with j, k term {Q;};r = Ki(xij, xix) (respectively, {le}]k = Kfl(x”,xzk)) for j,k=1,...,¢.
We shall always assume that Hle gi > n, the projected number of evaluations of f(-).

Remark 4.1. Since we are considering unidimensional approximations, g; does not need to be very
large, and ¢; = 100 seems to be enough in most cases, see Sections 4.6 and 7. On the other hand,
the j1; may also correspond to empirical measures obtained from historical data, a situation where
¢; may naturally take large values. <

4.1 Construction of QY

For each i = 1,...,d we consider the family of polynomials P; s(-), of degrees | =0,...,p; < ¢ — 1,
orthonormal for the measure zi;. Direct calculation shows that orthonormality implies (up to an
arbitrary sign change)

1 mi1 v Mg
mi1 M2 s My 41
det
Mie—1 Mye -+ Mi20—1
1 T o zt

Pio(z) =1 and P(r) =

forl>1,
det'/2(M; ¢) det'/2(M; 1) -

where, for any ¢ € IN, M, ¢ is the (£+1) x ({+1) moment matrix with j, k term {M; ¢}; x = M jr—2
and m;j, = Eﬁi{Xk} for all k. Denote by G; the ¢; x (p; + 1) matrix with j, ¢ term ¢; o(x; ;). It
satisfies GI W;G; = 1,11 and we have, from the definition of K}(-,-),

from which we can readily check that QYW,;G; = Oy..(pi+1), the gi x (p; + 1) null matrix.



4.2 Calculation of ¢,(x) and s?(x)

We first diagonalise Wl1 / 2QE“WZ-1 /2 (for the Euclidean structure of R%) and compute a matrix ®;
of eigenvectors and a diagonal matrix I'; of associated eigenvalues (sorted by decreasing values)

. ~ =T ~T~
that satisfy W1/ °Q¥W./? = &T,®, , with &, ®; = I,,,, the ¢; x ¢; identity matrix. Denote &; =
W, 2&,; it satisfies ®TW,;®; = I, Q¥ = &T,®7 and Q"W ®; = &T;, so that GTW,;®; =

Like in [11], we call quadrature design of size n a collection Z,, = {x1,...,x,} of n points of 2~
such that {x;}; = ; ; is included in the support of i; forall j=1,...,nandi=1,...,d.
Consider first a point x; in a quadrature design Z,, with {x;}; = a;; for i = 1,...,d. In

the BLM model (3.10), ¥(x;) = H?Zl ¢iv,(z;;) and the By are independent normal random
variables .4/(0, A) with Ay = []%, Aie,, where the ¢; (z; ) and A, are given by (3.9), with
@i 1(wij) = {®i}jr and vk is the kth diagonal element of T';. To compute s%(x;) we need to

calculate additionally [J%, K/(x; j,x; ), see (3.11), with

Ki(wij,2i5) = {Q'}, +Zﬁz€ i0(@i5) Z%Z{'I’be+zﬁz€ i0(@i5)

£=0

see (3.7).
Consider now any x € 27; its ith coordinate x; being not necessarily in the support of f;. Using
expression (3.4) of canonical extensions, we need to compute

¢i(xi) = T; @] Wik (z;),

the £ component of which gives ¢; ,(7;) to be used in 9,(x;), see (3.9), where
ki (z) = ki(z) + GiG] W,Q;W,Ggi(z) — QiW,;Gigi(z) — GiG] Wik;(z),
foralli=1,...,d and all x € 2, with k;(z) the ¢;-dimensional vector
ki(z) = [K(2,2i1),. .., K(z,2;4)]".
Since ®I'W,G,; = Oy, (pi+1)> We obtain
®i(z;) = T @] Wik;(z;) — T @] W,Q;W,Ggi(;) . (4.2)

The computation of Hle K!(x;,x;) in (3.11) relies on
pi
Ki(z,z) = Ki(z,z) + gl ()GITW,Q;W,;G;g;(z) — 27 (2)GIWik;(z) + Z Oi o Ply(x), (4.3)

foralli=1,...,d and all x € 2j; see (3.7).

Remark 4.2. When p; > 1, if f1; is a quadrature approximation of u; for which orthogonal poly-
nomials P, ¢(-) are known, we shall simply use {G;};, = P, (x (])), although the P ¢(-) are not
orthonormal for ;. However, we must then modify the orthogonal projection (3.2) into

pz i — 8 ( ) gilEM{gi(X)Zi,X}’



with Mg, the p; x p; Gram matrix E,,{g:(X)g! (X)}. (We suppose that y; is such that My, is
invertible.) The expression of K" (z,y) must be modified accordingly, into

Kl(z,y) = Ki(z,y)+gl (2)Mg Eu{Ti . [2](X)g] (X)IMg ' gi(y)
~T; 18] 1(2)Mg gi(y) — gf (2)MZ'T; ., (8] (y)

and (4.1) becomes
Q' = Qi + GMg, G/ WiQiW,G;M,'G] — G M, 'G] W;Q; — Q;W,G;M, ' G/ .
Also, when x is not a quadrature point, (4.2) and (4.3) must be modified into
@i(2;) =T ®] Wik, (z;) — T} @] W,Q;W,G; M, ' gi () (4.4)
and

Ki(z,2) = Ki(z,2)+g] (x)Mg;'GIW;Q;W,G;M_'gi(z) — 2g] ()M, 'G] Wik;(z)
pi
+ Z ﬁi’gpi%g(l’) . <
=0

Remark 4.3. In some situations, several designs have to be considered, all being subsets of a finite
design space 25 = {xW, ..., x(@} c 29, for instance 2¢ may be given by the first Q points of
a low discrepancy sequence in %2 . This is the case in particular when selecting a n-point design
among 2q, see Section 6. Tt is then advantageous to compute all @}({x()};) given by (4.2) and all
K!({xW};, {xU)};) given by (4.3) in advance, for j =1,...,Q and i = 1,...,d. q

4.3 Choice of ¥, { =0,...,p;

The selection of eigenfunctions in (3.10) will rely on the energy of each component, measured by
the associated eigenvalues, see Section 4.4. It is therefore important to choose values of ¥;, for
£ = 0,...,p; large enough to ensure that important polynomial trend functions will be kept in
the model, but not too large to allow the preference of eigenfunctions if necessary. There is some
arbitrariness in this construction, but we think the suggestion below is suitable in most situations.

We shall use stationary kernels K;(-,-), so that we can assume (without any loss of generality)
that K;(z,z) = 1forallz € Z; and each i = 1,...,d. Indeed, in (3.10), we can write the variance of

Bg as 02 Ay and the variance of ) as s%(x) = o2 [Hle Ki(2i, i) = D per, Aéz/}z(x) for some positive
scalar 02, and then estimate o2 from the data; see Section 5.2. From (3.5), we have Y, o; vix < 1,
and we can take ;9 = 1 for all . When p; > 1, in order to favour the selection of low degree

polynomials, we suggest to take ¥; p = Iif with k; = ,yil{(leri)’ so that ¥; o > v forall £ =0,...,p;
and all £ > 1.

4.4 Choice of the truncation set L

In PCE, when considering the tensor product of polynomials up to degree p; in variable z;, the
model can have up to ngl(l + p;) terms. A rather usual approach consists in favouring simple
models by setting a constraint on the total degree D of the polynomial in d variables; the resulting
model has then (dED) parameters (the cardinality of the set {£ = {¢1,... 04} € N?: 2?21 < D}).

Here we suggest to base the selection of terms in (3.10) on the ranking of the eigenvalues Ay. We
first choose a number N < N = H?Zl(pi + ¢; + 1) that sets a lower bound on the size of the model
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(the number of terms we want to consider) — a value of N of the same order of magnitude as the
projected number of evaluations of f(-) seems reasonable. Let Aﬁl >0 > Aﬁk > Aékﬂ > ... denote

the ordered sequence of the Ay = Hle Nig;, with £= {f1,...,£4} € N¢, where we set Agoy,py =0
when ¢; > p; + q; + 1 for some i. Note that ¢, =0 = {0,...,0} and Ay, = 1; see Section 4.3. Our
truncation set is then

Ly = {f,,...,£y; € N% with M the smaller integer > N such that Ag,, <Agy }- (4.5)

Remark 4.4. We do not need to compute all the N values Ay, , and the construction of Ly can be
sequential since the \; , are ordered (by decreasing values) for each i. Also, due to the truncation
operated in the construction of Ly, in theory we do not need to compute all g; eigenpairs in the
spectral decomposition of Section 4.2. The resulting computational gain may be marginal when
each approximation ji; has a small numbers ¢; of components, but may be significant when the j;
correspond to empirical data; see Remark 4.1. N

Remark 4.5. In the special case where all f; are identical and are supported on ¢ points, and
p; = p for all 7, all matrices Q; are identical, and the same is true for Q?", ®,;, I';, etc. The model
(3.10) has m? terms at most, with m = p + ¢+ 1. Each Ay can be written as

Ap=A30 x - x Anm ! (4.6)

m—1

with ag =| {i: 4; = k} | and 327" aj, = d. The Ay can thus take (dj;ﬁzl) different values at most;
there are at least d!/(ag! X - - - am—1!) different v, (-) associated with the same A, given by (4.6). <

4.5 The special case p;, =0

The construction of the BLM is simpler when p; = 0 (i.e., when the trend 7;(-) in (3.1) is a constant,
ni(x) = ayp for all x), for all s =1,...,d. Then, g;(x) =1 for all ¢ and x, and the reduced kernel
K (x,y) is given by

quz (z,y) = Ki(z,y) + EM{KZ'(X7 Y)} - E,U«i{K('r7 X)} - EM{K(yv X)} )
(4.1) becomes

Q' = Qi + 15, (1, WiQiWil,, )1, — 15,1, WiQi — QiWilg 1y,

qi—q; qi—q;

with 1,4, the g;-dimensional vector of ones, and (4.2) and (4.3) respectively become

)

¢i(x) =T @ Wiki(z) - T, @] W;Q;W;l,
and )

K(z,z) = Ki(z,2) + 1L W, QiW,1,, — 2ki(z)" Wil + > 0, Ply(x).
=0

We only need to choose ¥;¢ in (3.9), and we can take 9; o = 1 for all i; see Section 4.3.

4.6 Numerical illustrations

Consider the Matérn 3/2 covariance function, given by K3 o(z, y;0) = (14v/30|z—y|) exp(—v/30|z—
y|); see [32, Chap. 2]|. A zero-mean Gaussian process with this covariance is one-time mean-square
differentiable. Suppose that p; is the uniform measure on [0, 1], and consider the discrete approxi-
mation i1 (¢q1) that puts weight 1/¢; on each of the ¢; points 1 ; = (j—1)/(q1—1),j=1,...,q1. We
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take p1 = 2, and the P; o(-) in (3.6) are the first three orthonormal polynomials for p1: P g(x) = 1,
Pi1(x) = V3(2z — 1) and Py 2(z) = v/5(62% — 62 + 1).

Figure 1-left shows the values of the components of the first three eigenvectors 90/175(9U1,j) =
{®1};, of the reduced kernel for j = 1,...,¢; and ¢ = 1 (triangles), £ = 2 (circles) and ¢/ = 3
(crosses), when ¢ = 20, § = 2 (top) and 6 = 20 (bottom). Their canonical extensions ¢} ,(z),
x € [0,1], obtained from (4.4), are plotted in dashed-line. They are orthonormal for 1i;(20), and
close to being orthonormal and orthogonal to the P;,(x) (plotted in full line) for p;; see Table 1.
The components of the first three eigenvectors obtained when ¢; = 100 are indicated by dots. One
may notice the good agreement with the canonical extensions ¢} ,(z) based on 20 points only. We
shall use ¢; = 100 in the examples of Section 7 to ensure quasi—orthonormality of the 1(-) in (3.10),
see Table 2.

Pio Pii P2 ¢, ©1 2 13
P 1 0 0 ~0 0.0803 ~0

P . 1 0 -0.1468 ~0 0.1447
P o . . 1 ~0 0.1879 =0
Y - - - 09208 ~0 01295
Yo - : : : 09314 =0
oy - - : . 0.927

Table 1: Inner products (¢1,¢, ¢1,¢/)12(2 ) between regression functions used in (3.6) for canonical exten-
sions ¢} ;(+) based on a 20-point quadrature approximation with covariance K3/3(z,y;2) and p uniform on
[0,1] (= 0 means an absolute value less than 1071°).

Pio Pi1 Pia ¥, ©12 013
P 1 0 0 ~0 -0.0180 ~0

Py . 1 0  0.0304 ~0 0.0322
P . . 1 ~0 -0.0408 ~0
Yii - - - 09799  ~0  -0.0320
Prla - : : : 0.9779 ~ 0
oL : . 0.9762

Table 2: Inner products (¢1,¢, ¢1,0/)2(2 ) between regression functions used in (3.6) for canonical exten-
sions ¢} ;(+) based on a 100-point quadrature approximation with covariance K3/o(z,y;2) and p uniform on
[0,1] (= 0 means an absolute value less than 10715).

Figure 1-right shows the values of the A;, in (3.9) for £ = 0,...,10. The eigenvalues ;4
associated with the ¢} ,, see (3.9), are indicated by stars; the values of ¥; , = %7/1(1+p1) = Vf,/f’ in
(3.9) (see Section 4.3) for £ = 0,1,2 are indicated by triangles. We can see that 6 (the inverse of
the correlation length) has a moderate influence on the first eigenfunctions of the decomposition,
but the decrease of eigenvalues is significantly slower for § = 20 (bottom) than for § = 2 (top),
which has a noticeable impact on the prior distribution of Sobol’ indices; see Section 7. The choice
of 6 should preferably agree with prior information on the fluctuations of f(-). In absence of such

prior knowledge, a possible guideline is to select a value of § compatible with the projected number
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Figure 1: First eigenfunctions (left) and eigenvalues (right) for the univariate model with uniform measure
on [0, 1] and Matérn covariance Ks/s(-,-;6), for = 2 (top) and 6 = 20 (bottom).

n of function evaluations: a model with about n components should be able to capture the global
behaviour of f(-) over 2". A value of 6 such that

Zk: Aﬁk H?Zl ( %:qu'+1 )\i,ﬂ)

see (3.9), thus seems reasonable. For instance, when n = 64 and p; = 2 for all i, we obtain here
p(2) ~ 0.9993 and p(20) ~ 0.8290 for d = 2, and p(2) ~ 0.9845 and p(20) ~ 0.5083 for d = 3,
suggesting that 64 evaluations of a function of three variables may not be enough to reproduce its
behaviour with a tensorised model based on Matérn 3/2 covariance with 6 = 20 and second-degree
polynomials in each variable. The posterior distributions of the model parameters 8, and Sobol’
indices depend on 6 and rely on strong assumptions on the underlying model; they should thus
be taken with caution. As Section 7 will illustrate, they can, however, be used as guidelines for
designing experiments adapted to the estimation of Sobol’ indices.

Remark 4.6. Another option, which we shall not develop in this paper due to space-limitation, is to
estimate 6 from the data, by maximum likelihood or cross validation, before the eigendecomposition,
using the tensorised covariance kernel K(x,y;0) = Hle K!(xi,y;;0), where the K/(-,-;0) are given
by (3.7). This requires specifying values for the ¥; ¢, but does not raise particular difficulties when
p; = 0 for all ¢: one may simply take all ¥;¢ equal to 1, see Section 4.3. The problem then boils
down to estimating covariance parameters 6 in a RF model with unknown mean and covariance
[T 1+ K (5,965 0)) — 1. a

The results obtained with the Matérn 5/2 covariance function, Kj/o(7,y;0) = (1+ V50|z —y| +
50%|x —y|?/3) exp(—+v/50|z —y|), for the same values of 6 as above, yield plots hardly distinguishable
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from those presented in Figure 1. Similar experiments with other covariance functions confirm the
intuition that the choice of the kernel among a class of smooth enough stationary kernels has little
influence when considering only a few terms of the eigendecomposition.

Suppose now that d = 2, with g1 = po uniform on [0, 1], and consider the tensorised model
(3.10). We take p; = p2 = 2 and use the covariance Kj3/5(7,y;2) in each dimension, with the
100-point quadrature approximation 71(100). For N = 25, the truncation set Ly defined by (4.5)
is equal to

L25:{ 0011021203042130514230615 }
0101202130402315041326051

The corresponding values of (log of) Ay are shown in Figure 2, see (4.6). The construction of the
95,0, in Section 4.3 implies that Aj gy = yfff /3 for 0,0 € {0,...,3}, which explains the presence
of a triple and a quadruple of identical Az; pairs of identical values are simply due to an exchange

between dimension indices, i.e., Ay gAo ¢ = Ao A1 o1

Figure 2: Eigenvalues A, (log scale) in the tensorised model.

Besides the 9 polynomial components P ¢(z1)Po ¢ (x2), £,¢ € {0,1,2}, the model (3.10) also
contains 16 components that involve (canonical extensions of ) eigenfunctions ap; j(-), fori =1,2 and
J €{1,...,6}. A random realisation of >,y SBetpe(x) in (3.10), with f; independently normally
distributed .47(0, A¢), is presented in Figure 3-left. Increasing N in Ly allows modelling thinner
details in the behaviour of f(-), as illustrated by Figure 3-right which uses N = 125 with the
same collection of eigenfunctions. Clearly, a more precise modelling calls for a larger number of
observations, this is why we suggest to choose N of the same order of magnitude as the projected
number of evaluations of f(-).

5 Estimation of Sobol’ indices and credible intervals

Suppose that n evaluations of f(-) at 2, = {x1,...,x,} C 2™ have been performed, and denote
Yo = [f(x1), . fGe)]”

Also, in the BLM (3.10) with L. = Ly given by (4.5), denote A = diag{Ay,, k=1,..., M}, ¥, the

n x M matrix with j, k term vy, (x;), for j =1,...,n, k=1,..., M, and X,, = diag{s?(x;), j =
1,...,n} with o0?(x) given by (3.11). The parameters 8 = (f,,...,0,,)" have the normal prior
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Figure 3: Random realisations of the model response (3.10) for parameters §, having the normal prior
(0, Ag) and truncation level N = 25 (left) and N = 125 (right) in (4.5). The tensorisation uses K3 /5(z,y;2)
in each dimension with a 100-point quadrature approximation.

A (0,0%2A) and the errors €/, = [¢/(x1),...,€'(x,)] are normally distributed .4#(0,0°%,,), see Sec-
tion 4.3. However, the introduction of a prior on the trend parameters in Section 3.3 was only
motivated by the construction of the tensorised model, and when estimating 3 we shall put an im-
proper prior on the By, that correspond to pure trend components in (3.10); that is, we set Aé_1 =0
for all £ such that £ ; < p; for alli =1,...,d. We denote by Ag the corresponding diagonal matrix.
We also denote by K the set of such k, with [K| = K, and A’ = diag{A,,_: k€ {1,..., M}\K}; R,
is the matrix formed by the columns of ¥,, with indices in K and ¥/, is formed by the remaining
columns to ¥,; « is formed by the K components of 3 with indices in K and 3’ by the other
components of 3, having the prior distribution .4#(0,0?A’).

5.1 Estimation of indices

We estimate 3 by its posterior mean

B =M,'eIT Y,
with M,, the Bayesian information matrix

M, =¥Is 1w, + AT (5.1)

Note that when the data [xg, f(x)] arrive sequentially, classical recursive least squares formulae can
be used to avoid repetitions of matrix inversion. Following the developments in Section 2.2, for any
index set % C {1,...,d} we estimate S, defined in (2.3), by

S de]LN(az/)(Bg)z
Doy = =
de[L}‘V (62)2

where LYy = {{, € Ly : £, # 0} = {ly, ..., Ly} and Ly(%) = {{, € Ly : {; = O0foralli ¢ %},
see Section 4.4. This allows us to estimate all Sobol’ indices Sy and Sy for any index set ¥, see
Section 2. Any such estimate has the form

an ZEkEEN(ﬁAZ@)Z
St = M an )2
S5y

, (5.2)

)
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for some subset Ly of L% , and is thus given by the ratio of two (simple) quadratic forms in ,[:}”.

Note that S™ does not depend on the value of o2.

5.2 Estimation of ¢

The marginal distribution of Y, given a and o2 is normal A (Rpo, 02(2, + ¥, A'®. 7). With
an improper prior on o2 (with density proportional to 1/0?), its posterior distribution is inverse
chi-square with n — K degrees of freedom and such that E{1/02|Y,} = 1/62, with

<92 1

On = K (Yn - Rndn)T(En + ‘Il;lA/lIJ;LT)il(Y” B Rndn)
n —

(the restricted maximum likelihood estimator; see [32, p. 170]), where &" corresponds to the K
components of Bn with indices in K.

Given o2, the posterior distribution 7(83[Y,, c?) of 3 is normal JV(BH, o2 M, 1), with M, given
by (5.1). When the number of degrees of freedom, n — K, of the posterior distribution of o2 is large
enough, we may consider that the posterior 7(3|Y,,) is normal JV(Bn, 62 M, 1), and we shall make
this assumption in the following. Notice in particular that K = 1 when all p; equal zero, see
Section 4.5.

5.3 Distribution of Sobol’ indices

Take any index given by

_ Eﬁke]ﬁN ng
>ohi B,

for some Ly C Ly (which is well defined when B, # 0 for at least one k > 1, see (4.5)). We

consider two different approximations of its posterior distribution. The first one (Section 5.3.1) is

a normal approximation obtained via the delta-method; the second one (Section 5.3.2) is obtained
from the exact distribution of a ratio of two quadratic forms in normal variables.

S:,(B) (5.3)

Remark 5.1. The value of Sy (8) is invariant by a scale transformation of the B, , with the
consequence that when B has the normal prior .4 (0,02A), the prior distribution of SEN (B) does
not depend on the value of o2. N

5.3.1 Normal approximation

Consider the ratio (5.3). Direct calculation gives

0S5~ (B 2
]LN( ) S Ai 137 (54)
o8 B Jg N
with A]I:N the diagonal matrix
A]EN =Up - SENJ’ (5.5)

where Ug = diag{ug,, k = 1,..., M}, uy = 11if { € Ly and is zero otherwise, and J is the
M x M diagonal matrix diag{0,1,...,1}. This yields a normal approximation of the posterior
distribution 7(Sg (8)|Yn), with mean S¢ (3") and variance

. 462 ~n _ ~n
Vi, = [(Bn)TaJBn]Q (B )TA]ENMnlAENﬁ ; (5.6)
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from which we can construct approximate credible intervals for S]EN (B) (by simply considering
critical values for the normal distribution, truncated to [0, 1]). Notice that the estimation of Sobol’
indices (5.3) and the construction of these credible intervals can be data-recursive; see also [12, 13]
for another approach for first and second-order indices.

5.3.2 Exact posterior distribution of Sobol’ indices for normal parameters

We can use the results in [16] and [3] to derive the exact distribution of S¢ (8) defined by (5.3) when

B is normal .4 (8",62M;!). Denoting A = 62 Mgl/QUENMgl/Q and B = 62 M Y2IMG Y2 e
get
Fy (r) = Prob{S; _(8) <7} = Prob{t" (A — rB)t < 0},

where t ~ .4#7(0,Iy7). Next, we construct the spectral decomposition A — rB = PDP”, with
D = diag{61,...,0u}, and compute w = (w1, ...,wr)! = &JIPTM}/QBn. Then,

11 [*®sinB(u)
Fr (=7~ /O o, (5.7)
where
M 2 M 2522
B(u) = 3 321 [arctan(éku) + HW] and y(u) = exp {2 k§:1 [H—W + 5 log(1 4 6 u”)| ¢ ;

see [16]. The density of Sty (B) is given by

1 [ p(u)cos B(u) — ud(u)sin S(u)
/ d

fry(r) = 2 () u,

(5.8)

where S(u) and y(u) are defined above and
p(u) = trace[HF '] + wTF~1(H — «’DHD)F'w, §(u) = trace[HDF!] + 2w’ F'HDF 'w,

with H = PTBP and F = I, + u?D?; see [3].

Using the expressions (5.7) and (5.8) of Fz (r) and fz (r), we can easily construct credible
intervals of minimum length for S (B), e.g. via dichotomy search. For a given a € (0,1), e.g.,
a = 0.05, we find b € [0,1] such that Fy (b) — Fg_[a(b)] = 1 — a, where a(b) < b is such that
fz la(®)] = fz (b) and is also determined by dichotomy search. An illustration is given in Figure 5-
left. Of course, the required integral computations make this construction significantly heavier than
when using the normal approximation of Section 5.3.1.

6 Experimental design

Suppose that we wish to estimate several indices S]EN (B),j=1,...,J, corresponding to different
»J

sets ]fI:ij = ﬂN(%) in (5.3). For instance, to estimate the d first-order total indices S;, i =1,...,d,

we consider the d sets I’[:Nﬂv = {{, € Ly : Ui # 0}; see Section 2.2. We then consider the M x J

matrix
2

S(9) = 5715

A, Bl 1A, B (6.1)

HN-‘N,l EN,J
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formed from the derivatives (5.4) of the J indices of interest. Following developments similar

to those in Section 5.3.1, we can approximate the posterior joint distribution of SH:NI, . ’S]ENJ

by a normal distribution with covariance matrix 62 ST(B M 1S(,Bn), and a good experimental
design %, should minimise a scalar function of ST(ﬁ "YM;;1S(B8"). We suppose that Z,, C 2o =
{xM ... x(@71 a given finite set of candidate points, sece Remark 4.3.

Unsurprlsmgly, due to the nonlinear dependence of S~ (B) in B, an optimal experiment for
the estimation of the S; = (8) depends on the unknown g; ]see for instance, [26, Chap. 8]. This
difficulty can be Clrcumve;lted in different ways. The approach of Section 6.1 is adaptive: after
no evaluations at some prespecified design %, (for instance, a space-filling design in 27; see, e.g.,
[25]), the next design points are chosen sequentially, the choice of x,41 for n > ng being based
on the current estlmated value B A batch-sequential construction can also be used, where the

estimated value B is used for the selection of Xgng+1,--.,X(k+1)n,- Here all batches have the
same size ng, but extension to more general situations is straightforward; in particular, two-stage
design uses Bno for the construction of all x,, for n > ng. One may alternatively try to design each
batch of points optimally (Section 6.2), either with an exchange-type algorithm (Section 6.2.1) or
using the classical machinery of approximate design theory to construct an optimal design measure
&* through the solution of a convex programming problem, see [23|, from which an exact design can
be extracted. This is considered in Section 6.2.2.

6.1 Adaptive design
Denote by €,(8) the J x J matrix

Q.(8) =Ss"(B)M,,'S(83),

with S(3) given by (6.1), so that Qn(Bn) characterises the precision of the estimation of the .J
indices Sy (B) of interest, j = 1,...,J, after n evaluations of f(-).

The ch01]ce of suitable design criteria depends on which aspect of the precision we consider more
appealing. Assuming that the indices of interest are approximately normally distributed, the D-
optimality criterion det(€2,,) is related to the (squared) volume of joint confidence ellipsoids; the
A-optimality criterion trace(€2,) is related to the sum of squared lengths of the principal axes of
these ellipsoids; MV-optimality aims at minimising the maximum of the variances of individual
indices, and the criterion is given by max[diag(€2,)]; see [18].

D-optimality for the estimation of first-order Sobol” indices in PCE models is considered in [4],
and we follow the same line in the more general framework considered here. We suppose that ng
evaluations of f( ) have been performed, such that M,,, is nonsingular. Then, for any n > ng, after
estimation of ,6 from n evaluatlons of f(-), we choose the next design point x,,+1 which yields the
largest decrease of j[,41(8")], with H(-) one of the criteria above.

Straightforward calculations indicate that

¥ ()M, 'S(8")[S"(8")M,,'S(8")] 'S (B")M, (%)

Xn+1 —arg)?el?g; SZ(X)+’¢T(X)M7_11'1,Z)(X) (62)
when minimising det[€, 11 (Bn)],
T _ ST ST T _
xons1 = arg max - CIMa'S(8)ST (B )M, '$(x) (6.3)

x€dg  s2(x) + T (x)My lp(x)
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when minimising trace[§2,,1(8")], and

{ W7 (x)M,'S(8")e;)?
s2(x) + %7 ()M ' (x)

X 1 = arg max 1m
nt gxeﬂfQ j=1,...0

eSS}
when minimising max{diag[Q,+1(8")]}, with ¥ (x) = [1be, (%), ..., ¢, (x)]" and e; the jth canon-
ical basis vector of R’. Note that we may also consider weighed versions of the criteria trace(£2)
and max|[diag(€2)] by introducing weights along the diagonal of €, for instance in order to consider
individual relative precision of the J indices.

Remark 6.1. The presence of independent errors in the model (3.10) has the consequence that
the sequential construction above may yield repetitions of observations at the same design point
When this happens, it may be interpreted as an indication that the approximations involved are
too rough for the number of observations considered and should be refined by (i) considering a finer
set 2o and/or (7i) enlarging the number of components in (3.10), that is, the value of N in (4.5).
Repetitions can always be avoided by considering that s?(x) is infinite for any x already selected.

<

6.2 Optimal design

A locally D, A or MV-optimal n-point exact design Z,(8) is obtained by direct minimisation of
J[2,.(By)] with respect to Z,, for one of the criteria mentioned above and for a given nominal value
Bo of B. This is generally a formidable problem (non-convex, with multiple local minima) when n
and d are large, and the usual approach is to resort to an exchange type algorithm, like the one
considered in Section 6.2.1. Another approach (Section 6.2.2) is to construct an optimal design
measure £* (a probability measure on 27) and then extract an exact design from the support of £*.
We only consider A-optimality in the following.
Direct calculation shows that trace[€2,(8;)] (to be minimised) is proportional to

H[Q,(By)] = trace [C(8y)M,, '] ,

where

c(8) =Y Ar, (BT A (), (6.5)

Ln,;
=1

and where the AEN (B) are given by (5.5) (they depend on B through the indices SEN (B) =
J )

(87U, .B)/(B73B), see (5.3)). Note that {C(8)}1,1 = 0.

In batch sequential design, B, in C(8,) is set to the current estimated value Bn It is also
tempting to try to construct an initial optimal design before any evaluation of f(-), i.e., in situations
where no prior value 3 is available. One may then replace all quadratic forms in 3 that appear
in H[2,(8)] by their expectations, with B normally distributed .#°(0,02A). Direct calculations
shows that this amounts to replacing Q,(3,) by Q,, with

- 4
{Qn}iy =

—-— M. 'A- (B)A- A
o2 trace?(JA) trace[ n ALy, BAL, (BA],

where we have denoted 3 = diag{AZz, k=1,...,M}. We then minimise H(£2,) = trace[CM,]
with B

Ly,;

J
C=A> A2 (B, (6.6)
j=1
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where we used the fact that A and the Ay are diagonal. Note that {6}171 =0 and {é}kk >0
~ ] ~
for k > 2 (since Sz (B) > 0 for all 4, so that {Ag (8)}rx # 0 for all k > 2, see (5.5)).

6.2.1 An exchange algorithm for exact design

Instead of considering the direct minimisation of trace[CM,, ] with respect to Z,,, with C = C(8,)
given by (6.5) for some 3, in batch sequential design, or C = C given by (6.6) in the construction
of an initial design, we consider an exchange-type algorithm, similar to the DETMAX algorithm of
[21]. Let 2, = 2 denote the current design at iteration k of the algorithm and M,, denote the
corresponding Bayesian information matrix. We suppose that &, is such that M, is nonsingular.
Each iteration comprises two steps. We only consider excursions through (n + 1)-point designs, but
excursions through designs of size larger than n 4 1 could be considered as well.
First, we consider an optimal design augmentation, obtained by adding the point

P’ (x)M,,'CM,, 'h(x)
<€ 4 52(x) + 7 (x)My 19 (x)
to Z,, where we set s2(x;) = oo for all x; € Z,, to avoid repetitions of observations at the same
point.

Second, we return to an n-point design by removing a point from 2,7 = 2, U {x,+1}. Denote
by M, the Bayesian information matrix corresponding to Z,. It satisfies

Mglqvb(xn-&-l)/(»bT(Xn-&-l)M_l
Sg(xn—l—l)""‘p (Xn4+1) My 1¢(Xn+1)

and elementary calculation shows that the optimal choice for the point x_ to be removed is given
by

Xp41 = arg m (6.7)

(M)~ =M, " —

x_ = arg min Y’ (x) (M) TC(M,) () .
B xeot s2(x) — YT (x)(M;))~19p(x)

The design P for next iteration is then 2, U {xn+1} \ {x_}. The algorithm is stopped when
H(-) does not decrease between two successive iterations, which generally means that x_ = X;,41.

6.2.2 Exact design via optimal design measures

Construction of an optimal design measure. Let = denote the set of probability measure on
20, a finite subset of 2". Consider the construction of an optimal initial design. For any & in =
and any ¥ € R™, define

1
M) = [ 3 #0070 delo) + 25— (6.9

so that n My, (n) = M, given by (5.1) when p,, = (1/n) > _; dx, is the empirical measure associ-
ated with the design Z,,. An optimal design measure £* is obtained by minimizing the L-optimality
criterion (L for linear)

Hy(€) = trace [CM;l(g)] : (6.9)

with C = C given by (6.6), with respect to & € Z. In batch sequentlal design, we would take
An

C = C(B ) given by (6.5) for the current estimated value B" and substitute M, for Ay

(6.8). Since Z{ is finite, the minimisation of Hy(§) forms a finite-dimensional convex optlmlsatlon
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problem, for which many efficient algorithms are available; see, e.g., [26, Chap. 9]. Iteration k of a
vertex-direction algorithm transfers some mass to x* € Z¢ that minimises the current directional
derivative Fy(&¥,x), here given by

Hy[(1 — 7)€" + y0x] — Hy(€")

Fﬁ(gkvx) = vli{(r)h v
P (%)M, (EF)CM, ! (€F)p(x) .

—1/¢k k —1/¢k
= — 200 —i—trace{Mﬁ (€%)[My(&") — %]Mﬂ (& )c} .
This gives x* = arg maxxe 2, [T (x)M, 1 (€F)CM, ! (€F)4h(x)]/s?(x), compare with (6.7). Note that
we have assumed that My (&) is nonsingular. This can always be achieved trough regularisation,
by re-introducing a weakly informative prior .4 (0, 2 I) on the K parameters o, with a large v,
so that all diagonal terms of A ' become strictly positive in (6.8).

Extraction of an exact design. Let £* denote an e-optimal design measure for the criterion
Hy(-), satisfying minye o, Fiy(£*,%) > —e¢, with € a small positive number. The measure £* is a
discrete measure with a finite number N* of support points, and can be written as

N*
* j— j—
— e = N=Ox,
€ =En =) WrnOxy
k=1

where the weights are ordered by decreasing values: wy.y= > wa.n* > -+ - > wy=.n+. Our extraction
procedure consists in sequentially reducing the support by transferring the smallest current weight
to another support point, suitably chosen (see also Algorithm 1 of [11] for an alternative approach).
The size n of the design extracted is not set a priori, but is in some sense adapted to the truncation
level used to construct the set Ly, see (4.5). The value of ¥ used to construct £* should be of the
same order of magnitude as N, but this choice is not critical. For £y a discrete measure of the
form &y = chvzl wilx,, we denote by {xy, the uniform measure having the same support; that
is, énu = (1/N) fcvzl dx,- The matrix NMy ({n,,) thus corresponds to the Bayesian information
matrix My for the design Zy formed by the support of &y, see (5.1). The construction is described
in Algorithm 1.

Algorithm 1 Greedy algorithm for merging support points

Require: {y+, an e-optimal design measure for Hy(-), a threshold 7 > 1;
set N = N*;
while N > 1 do
compute k* = arg maxkzl,_._7N_1[wT(xk)Mgl(gN)CMgl(gN)'zp(xk)]/SQ(xk);
Compute Eny_1 = Zg:_ll Wy, NOx, Where wy v = wp.n for k # k* and wp N = Wi N +WN:N;

reorder the weights of £x_1 by decreasing values, i.e., write Ey_1 = chvz_ll Wk:N—10x,, With
Wi:N—1 > WaN—1 = -+ > WN-1.N—1; N < N — 1;
if py = trace{ C[NMpy (én,u)] 71}/ trace{C[(N +1)Mn11([N/(N+1)]én+1.4)] "1} > 7, stop;
6: end while
7: return n = N + 1 and ¥, given by the support of Eny1.

We rescale En41.4 into [N/(N +1)]En+1,4 in the test at line 5 of the algorithm, since £x 41, has
one more point than &y, (and thus trace{ C[NMy (ény4,)] 71} > trace{C[(N +1)Mp11(én+1.4)] 7}
for all N), whereas py usually fluctuates around 1 in the first steps with N close to N*; see Figure 13-
right in Section 7 for an illustration. We can also base the selection of an optimal £* at line 3 on
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the comparison between the values of Hy(-), or Hy(-), achieved for all the N — 1 possible mass
transfers, at the expense of a significantly larger computational cost when N* is large.

7 Numerical examples

7.1 Ishigami function

This function depends on three variables and is frequently used as a test-case in sensitivity analysis.
It is given by f(x) = sin(z1)+asin?(x2)+bxs sin(z1), x being uniformly distributed in 2~ = [—, 71]3.
We shall use the values a = 7 and b = 0.1. The first-order indices are equal to

Sy = (brt/5 + 0?78 /50 + 1/2) /A, Sy =a®/(8A),S3 =0

where A = a2/8 + br*/5 + b?78/18 + 1/2, the second-order indices are all zero excepted S13 =
8b278 /(225A). We have, by definition, see Section 2.1,

S1=51+S13, S2=252, S3="513, S;,=51+S52, S;3="513+51and Sy3=25>.

We approximate each marginal of p by the discrete uniform measure that puts weight 1/100 at
each of the points (j—1)/99, j = 1,...,¢ = 100 and use the covariance K3/5(z,y;0), see Section 4.6.
We set p; = 0 for i = 1,2,3 (we have observed that the performances are significantly deteriorated
when setting the polynomial degrees p; to positive values). We estimate the indices by evaluating
f(-) at the first n points of Sobol’ low-discrepancy sequence in [0,1]3, and take N = n in (4.5).

Figure 4-left shows the density (5.8) of the prior distribution of first-order indices S; (the same
for i =1,2,3) for = 2 (solid line) and § = 20 (dashed line). Figure 4-right shows the two posterior
distributions obtained for S; when n = 64, 6 = 2 (solid line) and 6 = 20 (dashed line), B having

N

the normal distribution ,/V(Bn, 62 M, 1); see Section 5.3.2. The true value of S; is about 0.3139;
the model with § = 2 seems able to adequately capture the global behaviour of §(-), whereas prior
weights on components with fast variations are exaggeratedly large when 6 = 20, see the discussion

in Section 4.6, which makes the estimation less precise.

Figure 4: Ishigami function. Left: density (5.8) for S; (first-order indices) when B has the prior distribution
A (0,02A) (see Remark 5.1). Right: density of S; when 3 has the posterior distribution .4 (3", 62 M 1),
n = 64. The covariance for univariate models is K3/5(7,y;2) (solid line) or Ks/5(z,y;20) (dashed line);
S1 ~0.3139.
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Figure 5-left shows the posterior density (5.8) for S7 (solid line, same as in Figure 4-right), the
minimum-length 95% credible interval, and the normal approximation of the posterior (dashed line),
all for 6 = 2. Figure 5-right shows the posterior density (5.8) of St (solid line) and its normal
approximation (dashed line). Figure 6 presents the same information for S 3, when n = 64 (left)
and n = 256 (right). The estimated value §{L given by (5.2) equals 0.3337 and is reasonably close
to the true value S; ~ 0.3139, both the exact posterior and its normal approximation yield 95%
credible intervals that contain Sy, see Figure 5-left. The estimation of second-order indices is more
difficult with n = 64: S;2 tends to be over-estimated (Figure 5-right) and S 3 underestimated
(Figure 6-left), although the situation improves when increasing n (Figure 6-right).

40+ 77N
/

oo

Figure 5: Ishigami function: posterior distributions for n = 64 with covariance K3/o(z,y;2). Left: posterior
density (5.8) for S; (solid line) and minimum-length 95% credible interval; normal approximation (dashed
line); Sy ~ 0.3139. Right: posterior density (5.8) for S; 2 (solid line) and its normal approximation (dashed
line); the true value is zero.

Figure 6: Ishigami function: posterior density (5.8) for Si s (solid line) and its normal approximation
(dashed line) with covariance Ks/o(x,y;2). Left: n = 64; Right: n = 256; S1 3 ~ 0.2437.

Figure 7-left show the evolution of first order-index §?, see (5.2), with B" estimated from

evaluations at successive points of Sobol” sequence. After a batch of ng = 10 evaluations, we use a
n s,
recursive construction for 3, and thus for ST, for n = 11,...,256 (dashed line). The 95% credible
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intervals for the normal approximation (Section 5.3.1) are shown in dashed line, the true value of Sy
corresponds to the horizontal solid line. Figure 7-right presents the same information for Sy (top)
and S3 (bottom). We have taken 6 = 2 in Ky/s(v,y;0), N = 256 in (4.5) and p; = 0 for i = 1,2, 3.
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Figure 7: Ishigami function: estimated first-order indices (dashed line) and normal approximation of 95%
credible intervals (dotted lines) with a tensorised BLM using Kj3/5(x,y;2); the solid line indicates the true
value. Left: Sy; right: S (top) and S3 (bottom).

The function f(+) is fixed, but we may consider the variability of estimated indices when using
different designs. We take 0 = 2 in K3/5(z,9;0), N = n in (4.5) and p; = 0 for i = 1,2,3 in

the construction of the tensorised BLM, and evaluate f(-) at 100 different n-point Lh designs %Sk)
constructed as follows. We first generate 10,000 random Lh designs in 2, and then select the 100
designs having the smallest value of J,(-) defined by

n
Ty(Za) = 3 min x; —xil|*, a <0,
1=1

with 2, = {x1,...,X,}. Jql/q(@n) tends to Jym(Zn) = ming;||x; — x| as ¢ tends to —oo,
but its value depends on the respective positions of all points, contrary to the maximin criterion
Jurm(-). A design optimal for Jy(-) is n'/9-efficient for Jpp, () in the family considered [24]; we
take ¢ = —20 to select designs having good space-filling properties. The left column of Figure 8
presents box-plots (median, 25th and 75th percentiles and minimum and maximum values) of the
errors S — S, for n = 64 (top), 128 (middle) and 256 (bottom) respectively, for first-order, total,
second-order and closed-second-order indices. We can see that the estimation is already reasonably
accurate for small n. Table 3 gives the empirical coverage probabilities (in %), for the 100 random
Lh designs, of approximate 20 credible intervals constructed with the variance VH{LN given by (5.6),

for first-order indices (51, S2,53), total indices (Si,S2,S3), second-order indices (512, 51.3,523)
and closed-second-order indices (S; 9,57 3,553). Although V]E" accounts for uncertainty due to
b b K N

the possible variability of f(-) conditional to evaluations at a fixed design, by considering different
designs of the same type (they are all space-filling and have the same one-dimensional projections)
we try to mimic the behaviour of different f(-) for the same design. The coverage probabilities in
Table 3 are acceptable in most cases (the small values observed for S 3 can be explained by the
presence of a small estimation bias, see Figure 8).

We now consider estimation of indices via (Legendre) polynomial-chaos expansion. When the

total polynomial degree is D, the model contains M = (D ;d) parameters. Figure 9 presents the
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Figure 8: Ishigami function: box-plots of estimation errors of first-order, total, second-order and closed-
second-order indices for 100 random Lh designs with n = 64 (top), n = 128 (middle), n = 256 (bottom).
Left column: tensorised BLM; right-column: polynomial-chaos model with D = 5 (top), D = 6, (middle)
and D = 8 (bottom).

same information as Figure 7, using the same design points. We take D = 5, which gives a model
An

with M = 56 parameters. We start with a batch of ng = 64 observations and then estimate (3

by recursive least-squares, for n = 65,...,256. When the number of observations is small, we are
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Dy
n=64 92 98 100 97
98 99 67 99
99 97 100 98
n=128 100 93 99 78
9 9 39 93
97 78 96 93
n=256 99 96 99 8
97 96 T3 96
89 8 65 96

S; g, Sm‘ S

Table 3: Empirical coverage probabilities (in %), for 100 random Lh designs, of approximate 20 credible
intervals for (Sl, SQ, Sg), (Sl7 SQ, 53), (51727 Sl_yg, 52,3) and (§172,§1’3,§273) (BLM with K3/2(l’, Y; 2))

over-confident in the model, although it is not flexible enough to estimate the indices correctly;
when n increases, confidence in the model decreases due to a bad fitting with 56 tuning parameters
only. Next, using the same random Lh designs as in Figure 8-left, we select the total degree D
that gives the best estimation (which is possible here since we know the true value of indices). This
gives a model of degree 4 (respectively, 6 and 8), with 35 (respectively, 84 and 165) parameters,
when n = 64 (respectively, 128 and 256). The results (box-plots) are presented in the right column
of Figure 8. Although we have adapted the total degree of the model to the sample size (which
is not an easy task in practice), comparison with the left column indicates that performance are
significantly worse than with the tensorised BLM.
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Figure 9: Ishigami function: estimated first-order indices (dashed line) and normal approximation of 95%
confidence intervals (dotted lines) with a polynomial-chaos model of total degree D = 5; the solid line
indicates the true value. Left: Sp; right: Sy (top) and S3 (bottom).

Finally; we consider the adaptive designs of Section 6.1. Figure 10 shows the evolution of
estimated first order-indices g’f, like in Figure 7, but when the design points x,,, for n = 11,...,256
are obtained from (6.4) with Z¢ fromed by the first 1,024 points of Sobol’ sequence. We observe
that convergence to the true values (solid lines) is faster than with the first 256 points of Sobol’
sequence used in Figure 7. Figure 11-left shows the evolution of variances (5.6) (used to build the
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95% credible intervals in Figure 10); on Figure 11-right the design points Xi1, ..., Xa56¢ are obtained
from (6.2).

09

08|

250

Figure 10: Ishigami function: estimated first-order indices (dashed line) and normal approximation of 95%
credible intervals (dotted lines) with a tensorised BLM using K3/3(x,y;2) and design points given by (6.4);
the solid line indicates the true value. Left: Si; right: S (top) and Ss (bottom).

Figure 11: Ishigami function: estimated variances (5.6) of first-order indices S; (solid line), Sy (dashed line)
and S3 (dotted line) as functions of n, for the design sequences (6.4) (left) and (6.2) (right).

7.2 Sobol’ g-function

The function is given by f(x) = [T, fi(z:) with fi(z) = (|42 — 2| + a;)/(a; + 1) for all i and x
uniformly distributed in the unit cube 2~ = [0,1]¢, the number d of input variables is arbitrary.
The index corresponding to any index set % = {i1,142,...,is} C {1,...,d} is equal to

R
_ . -2
Sqy = > | |13(azj+1)
J:

where D = Hle [14+ 3 (ai+1)72] = 1. We use a; = i in the example. Note that f(-) is not
differentiable. We take p; = 0 for all i and Kj3/9(z,y;2) for the construction of the BLM.
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Consider first the case d = 2. The design space 2 is formed by the first 1,024 points of Sobol’
sequence. We take N = 20 in (4.5). Figure 12-left shows the adaptive design x11, ..., X128 produced
by (6.3) for the estimation of first-order indices S and So, when x1,...,x1¢ correspond to the first
10 points of Sobol’ sequence. We set s(x) = oo after the evaluation of f(x) to avoid repetitions, see
Remark 6.1. Note that the design obtained is not evenly spread over 2" due to the adaptation to the
function considered. After the 10 evaluations at x1,...,X19 we may also construct a locally optimal
design for the next evaluations, using the approach of Section 6.2.2. We substitute Mg for Ay Lin

(6.8), with ¢ = 20, and take C = C(Bw) given by (6.5). The optimal design measure, obtained
with a vertex-exchange algorithm with ¢ = 1077, is supported on 20 points. The greedy merging
algorithm of Section 6.2.2 (with 7 = 1.1 and the selection of an optimal k* at line 3 based on the
comparison between values of Hy(+)), suggests to remove 6 support points. The design obtained is
presented on Figure 12-right.
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Figure 12: Left: adaptive design (without repetitions, see Remark 6.1) constructed with (6.3) for the
estimation of first-order indices in Example 7.2 with d = 2 (dots); n = 128, the first 10 points (stars)
correspond to Sobol’ sequence. Right: two-stage design, with the first ng = 10 points (stars) identical to
those on the left part, and the next 14 points (dots) extracted from an optimal measure £* that minimises
trace[C(Bno)Mﬁ(é)}, with M, substituted for Ay’ in (6.8); (¥ = 20, e = 107°, £* is supported on 20
points).

Next, we construct an initial optimal design for the minimisation of the criterion (6.9) with
¥ = N = 20. Note that the construction is independent of the function f(-) considered. The e-
optimal measure £* (e = 107°) is now supported on 44 points, and the algorithm of Section 6.2.2 with
7 = 1.1 suggests to remove 26 points from £*, see Figure 13-right. The design &g extracted is shown
on Figure 13-left, where the disk areas are proportional to the weights w; of §1s. Similar behaviours
are observed in other situations (different values covariance functions for the BLM, different choices
for N and ¢, estimation of different indices, etc.): the designs obtained are typically well spread
over 2, suggesting that the improvement in terms of the precision of the estimation of indices with
respect to a more standard space-filling design is questionable.

Consider finally the case d = 10. Figure 14 shows box-plots of the estimation errors Sn— S of
first-order and total indices obtained for 100 random Lh designs with n = 512 points generated as in
Section 7.1. The estimation is much more precise with the BLM model (left) than with polynomial-
chaos expansion with total degree D = 3 (right) — the model has 286 parameters, the model for
D = 4 would have 1001 parameters. The true value of the indices are given in Table 4, inspection
of Figure 14-left indicates that the estimation of first-order and total indices is already reasonably
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Figure 13: Exact design (18 points) produced by the method of Section 6.2.2 for the estimation of first-
order indices in Example 7.2 with d = 2 and ¥ = N = 20. Left: design extracted from the e-optimal design
measure £* (e = 1075); £* has 44 support points (not shown), the disk areas are proportional to the weights
w; of £13. Right: evolution of py+_j as a function of k.

accurate for n = 512 when using the BLM model (although we only have p(#) ~ 0.6130 for § = 2
and all p; equal to zero, see (4.7), and although f(-) is not differentiable). The empirical coverage
probabilities, computed as in Section 7.1, are at least 99% for all first-order and total indices.
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Figure 14: Sobol’ g-function for d = 10 and n = 512: box-plots of estimation errors of first-order and total
indices for 100 random Lh designs. Left: tensorised BLM with Kj5/5(x,y;2), p; = 0 for all i and N = n in
(4.5); right: polynomial-chaos model with total degree D = 3.

8 Conclusions and further developments

A metamodelling approach has been proposed for the estimation of Sobol’indices. It relies on
Karhunen-Loéve expansions and combines the flexibility provided by Gaussian-process models with
the easy calculations offered by models based on families of orthonormal functions. The computa-
tional cost is moderate (it mainly corresponds to the diagonalisation of a few matrices of limited
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i 1 2 3 4 S 6 7 8 9 10
S;  0.4183 0.1859 0.1046 0.0669 0.0465 0.0342 0.0261 0.0207 0.0167 0.0138
S; 04631 0.2150 0.1229 0.0792 0.0552 0.0407 0.0312 0.0247 0.0200 0.0165

Table 4: First-order and total indices for Sobol’ g-function with d = 10 and a; = 7 for all 4.

dimension), and a normal approximation of the posterior distribution of indices is readily available.
It can be used to construct experiments adapted to the estimation of Sobol’ indices, and various
approaches have been considered: sequential, batch sequential, construction of an initial design.
Several points deserve further investigations. The examples shown indicate that the method is
efficient for estimating the indices accurately from a moderate number n of function evaluations,
but we have not investigated its convergence properties. Consistent estimation can be obtained
by letting N (the number of regression functions in the model) and the ¢; (number of points in
the one-dimensional quadrature approximations) grow fast enough with n, but we do not know
the optimal growth rate. Moreover, for fixed n, the choice made in the paper (g; constant and
N = n) is surely suboptimal. We observed that the inclusion of orthonormal polynomial terms in
the model (i.e., taking p; > 1) deteriorates the performance of the method. A general confirmation
of this phenomenon would be useful, especially as computations are significantly simpler when all
p; equal zero. We have used a covariance function with a fixed value of the range parameter 6, with
a suggestion for choosing 6 in agreement with the projected value of n, see (4.7). The estimation
of 6 based on function evaluations seems a reasonable alternative; see Remark 4.6. It would also
be interesting to consider the Bayesian Local Kriging approach of [27]|, without localisation (i.e.,

Bayesian Model Averaging [15]), using a (small) set of T different covariance models K -(t)(-,~),

(2
and possibly different polynomial degrees pgt), t =1,...,T, for each dimension i. Finally, the
construction of optimal experiments adjusted to the estimation of Sobol’ indices has been considered
in Section 6. Adaptive constructions seem promising, in the sense that they provide (slightly) faster
convergence of the estimated indices than more usual low-discrepancy sequences. On the other
hand, (initial, off-line) optimal designs exhibit a rather classical space-filling property, and therefore
do not seem superior to standard uniform designs.
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