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Abstract

Array constraints are essential for handling data
structures in automated reasoning and software ver-
ification. Unfortunately, the use of a typical finite
domain (FD) solver based on local consistency-
based filtering has strong limitations when con-
straints on indexes are combined with constraints
on array elements and size. This paper proposes
an efficient and complete FD-solving technique for
extended constraints over (possibly unbounded) ar-
rays. We describe a simple but particularly pow-
erful transformation for building an equisatisfiable
formula that can be efficiently solved using stan-
dard FD reasoning over arrays, even in the un-
bounded case. Experiments show that the proposed
solver significantly outperforms FD solvers, and
successfully competes with the best SMT-solvers.

1 Introduction

Context. Automated reasoning and deduction systems are
increasingly used in the domain of software verification, typ-
ically for checking the adequacy between program behav-
ior and a formal specification. Numerous theories and pow-
erful tools have been developed to prove different kinds
of properties of a program [De Moura and Bjgrner, 2008;
Barrett et al., 2011]. The most popular approach consists
in rewriting verification problems as satisfiability problems,
that can then be solved using SMT solvers. Another path in
the quest of an efficient and expressive solving is the use of
Constraint Programming over Finite Domains (FD) [Bardin
and Gotlieb, 2012; Bardin and Herrmann, 2008; Charreteur
et al., 2009; Marre and Blanc, 2005]. FD has been proved
useful for reasoning about complex structures crucial to soft-
ware verification, such as floating point numbers [Botella
et al., 2006], modular arithmetic [Gotlieb et al., 2010] and
bitvectors [Bardin et al., 2010]. Multi-theory and verification-
oriented FD frameworks are also starting to emerge [Marre
and Blanc, 2005].

Our problem. One aspect that is still lacking in constraint-
based approaches to verification is an efficient handling of
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data structures. In many cases, constraints on such struc-
tures can be modeled using the theory of arrays [Kroen-
ing and Strichman, 2016]. One difficulty is that, unlike
other theories (e.g., bitvectors, modular arithmetic), arrays
do not provide many opportunities for efficient application
of local-consistency based filtering techniques that are at
the core of FD approaches. Instead, solving array con-
straints often requires reasoning on the global structure of
formulas. Previous works [Hentenryck and Carillon, 1988;
Charreteur et al., 2009; Bardin and Gotlieb, 2012] on this
theory enabled to build FD tools to handle the fixed-size case,
i.e., when arrays are known to have a fixed, finite size. They
allowed to tackle some verification focused problems, such
as test case generation. However, in many applications rele-
vant to verification, such as unit verification, there is typically
much fewer information available about data structure sizes.
These sizes are sometimes known to be smaller than a (po-
tentially big) given bound (bounded case), or no information
is available about the size (unbounded case). Overall, FD-
based techniques extend poorly to the bounded case while the
unbounded case is considered out of scope.

Challenge and Goals. We tackle the problem of find-
ing efficient FD-based techniques for reasoning about fixed-
size, bounded and unbounded arrays, as typically found in
verification-oriented problems. We pay particular attention to
the following points:

e Efficiency: The overhead when dealing with large ar-
rays should be reasonable;

e Completeness: Our technique should handle complex
constraints (array equality, unbounded size) in a com-
plete way;

o Expressiveness: It should be compatible with express-
ing other constraints on elements and indices, for exam-
ple arithmetic constraints.

Contribution. First, we introduce array reduction, a for-
mula transformation that takes as input a quantifier-free for-
mula containing (possibly unbounded) arrays, and outputs
an equisatisfiable reduced formula using only fixed-sized ar-
rays. Thus the reduced formula can be solved using finite-
domain solvers implementing array constraints [Gotlieb,



Table 1: Handling extended array constraints

[ [ CP [ SMT [ CP+R]
fixed-size yes yes yes
arrays size-dep with N.O.
bounded-size yes yes yes
arrays size-dep with N.O.
weak propag
unbounded no yes yes
arrays
arithmetic yes yes yes
on indices with N.O.

. CP+R: constraint programming, with our array reduction

. size-dep: complexity depend on array size

. N.O.: Nelson-Oppen solver combination [Nelson and Oppen,
1979] (expensive)

2009; Bardin and Gotlieb, 2012], with no modification to the
propagators. Moreover, the sizes of the reduced arrays have
no relation with the sizes of the arrays in the input formula,
but only depend on the number of indices used in the input
formula.

Second, we demonstrate that our encoding is efficient
(Section 4.4), in the sense that the algorithm itself is cheap
and that the obtained search space is significantly reduced
w.r.t. alternative resolution methods for arrays — mainly be-
cause our approach builds deeply on the many symmetries of
the theory of arrays.

Third, we implement this technique inside fdcc [Bardin
and Gotlieb, 2012] and evaluate it (Section 5). We show that
our technique allows one to solve previously unsupported for-
mulas, typically over unbounded arrays. In addition, the re-
sulting solver significantly outperforms FD reasoning in the
case where all arrays have fixed sizes because of the powerful
state space reduction opened during the transformation, and
it also competes favorably with state-of-the art SMT solvers,
especially when arrays have small sizes.

Overall, we achieve a promising trade-off between effi-
ciency and expressiveness (see Table 1) with the native sup-
port of size/domains and handling of arithmetic on indices.

2 Motivation

Let us consider the following formula, where S' is an integer
constant, ¢ is an array, and ¢, j are integers (indices):

¢ = size(t) = SAt[i] < t[j]Ani=j

The formula ¢ has in fact no solution since ¢[i] < t[j] im-
plies that these two array accesses are different, while ¢ = j
implies that they are equal. Constraint-based approaches typi-
cally rely on encoding the two array accesses t[i] and ¢[] with
ELEMENT constraints. However, the local filtering-based rea-
soning of constraint solvers is insufficient to detect this con-
flict. Therefore an exhaustive labeling will be required to
conclude unsatisfiability of ¢, essentially making the solving
time dependent on the size S of the array.

For addressing such limitations, we introduce in this work
a formula transformation that accounts for the fact that many

array related conflicts are size independent, while preserving
the ability to reason about sizes for arithmetic purposes. It
consists of three main steps: separation of array literals from
arithmetic literals in ¢ (purification), rewriting of size con-
straints as additional arithmetic constraints, and introduction
of proxy variables to reason separately on array indices as
array theory objects and arithmetic objects. The transforma-
tion eventually produces a reduced form for ¢, denoted ¢".
An example is given hereafter. The two proxy variables are
¢" and j". The renaming of ¢ in ¢" makes it clear that these
two arrays are not identical. The consistency constraint is
t=7i =7".

PTE e<fAi=jNi,jE1.8 A
size(t") =2 A" = e At [T =f A
i=jei"="Ni"=1ANj"€1.2

Note that S only appears in ¢" to define domains for ¢ and
j. Our transformation captures the idea that, since ¢ has only
two array accesses (in ¢ and j), considering an array with S
elements is not useful — intuitively, the vast majority of these
elements will be unconstrained. In traditional FD approaches,
arrays are typically modeled using a list of variables, corre-
sponding to every array element. With our transformation, we
can drastically reduce the search space.

3 Background

The Theory of Arrays [Kroening and Strichman, 2016] is
concerned with indexed data structures equipped with access
and update operators. The pure theory of arrays is built on
three sorts Arr, indices Ind, and elements Elem, and two
operators:

select : Arr x Ind — Elem
store : Arr x Ind x Elem — Arr

where select(t, ) is the value at index ¢ in array ¢, while
store(t, i, e) is an array identical to ¢, except in i, where the
value e is now present. Formally, the theory is defined over
the signature ¥4 = {select, store, =, #}, and has the fol-
lowing axioms :

Vi, ji = j — select(t,i) = select(t, j) (1)
Vi, j.i = j — select(store(t,i,e),i) = e )
Vi, j.4 £ j —> select(store(t,i,¢e),j) = select(t,7) (3)

Yet simple, this theory is hard to solve: the satisfiabil-
ity problem for the conjunctive fragment is already NP-
complete [Downey and Sethi, 1978]. The extensional theory
of arrays is a common extension of the latter theory where
(dis)equalities between entire arrays can be expressed. It is
defined by adding the axiom of extensionality :

t =t «— Vi, j.select(t,i) = select(t, 7) 4)

Finally, we encode size constraints by adding an operator
size : Arr — N U {oo}, satisfying the following axioms:

Vi, t't =t — size(t) = size(t') (5)

Vi, i, e.size(t) = size(store(t,i,€)) (6)



In order to avoid dealing with undefined values, we only
consider in the following formulas with the well-defined ac-
cess property. A formula has the well-defined access prop-
erty if it is guaranteed that array accesses will always oc-
cur within the array bounds. An arbitrary formula can be
made to have this property by adding the well-defined ac-
cess condition 1 < i < size(t) for every term select(t, 1)
and store(t,,_) it contains, in the vein of type correctness
conditions from the PVS proof assistant [Owre et al., 1999].

Let ¢ be a formula in the theory of arrays. A model for
¢, or ¢-model, is a first order interpretation satisfying ¢. ¢
is said to be satisfiable if it has a model, and is otherwise
unsatisfiable.

CSPs. A valuation 6 over a set of variables Var £
{v1, ..., U }, each associated to a domain Dy, ..., D,, is a map-
ping from variables to values, such that, for each i, 8(v;) €
D;. A constraint ¢ over variables vars(c) is defined by a set
of valuations over vars(c), these valuations being called solu-
tions to c. A Constraint Satisfaction Problem (CSP) is a tuple
(Vars, Dom, C'), where Vars is a finite set of variables, Dom
is a mapping from variables to finite domains, and C'is a set
of constraint, where each constraint is defined over a subset
of Vars. A solution to a CSP ( Vars, Dom, C) is a valuation
6 over Vars, such that, for each v € Vars, 6(v) € Dom(v),
and for every constraint ¢ € C, 0 ,4,(c) is a solution to c.

A CSP that has at least one solution is called satisfiable,
otherwise it is called unsatisfiable. Deciding a CSP consists
in determining if it is satisfiable or not.

Procedures for solving CSPs are called finite domain con-
straint solvers (FD in the rest of the paper). The key idea
is local filtering: propagators remove from the variables’ do-
mains the values that cannot participate in any solution. Local
filtering can lead to spectacular pruning of the search space,
and has enabled FD solvers to tackle complex combinatorial
problems, where brute force is not an option.

Encoding Array problems as CSP. The usual approach to
deal with array accesses in FD is by using the global con-
straint ELEMENT [Hentenryck and Carillon, 1988]. This
constraint is well known, and numerous implementations are
available [Carlsson et al., 1997; Tack et al., 2006; Nether-
cote et al., 2007]. For an index 7, an element e, and an ar-
ray A, modeled with n FD-variables representing every ar-
ray element (thus only fixed size arrays can be encoded),
ELEMENT(%, A, ) is true iff Ai] = e. Filtering algorithms
for ELEMENT can usually ensure at least domain consistency
over ¢ and bound consistency over e and all the A[k] [Carls-
son et al., 19971, at a cost quadratic in . In [Charreteur et al.,
20091, another global constraint is proposed to deal with array
updates, also with a propagation cost quadratic in the array
size. By combining these global constraints with a congru-
ence closure algorithm, the fdcc solver has been implemented
and evaluated on randomly generated formula [Bardin and
Gotlieb, 2012]. However, labeling-based search and local
reasoning are ill-conditioned for large or unbounded arrays.
That is why the transformation proposed in this paper is a
necessary complement to any FD reasoning over arrays.

4 Formula transformation

In this section we detail the process of obtaining a reduced
form for a formula containing extended array constraints. Our
transformation takes as input a quantifier-free formula ¢ con-
taining fixed-size, bounded and/or unbounded arrays with ac-
cess and update constraints, array (dis)equalities as well as
other arbitrary FD-constraints on elements and indices. ¢
may contain disjunctions, and is assumed to be provided in
negational normal form. The transformation outputs an eq-
uisatisfiable formula ¢" containing only fixed-size arrays,
amenable to efficient FD reasoning.

4.1 Key insights

The transformation takes advantage of the following key in-
sights into the theory of arrays. The first two insights are
well-known in SMT (but not used in FD approaches), while
the last two insights are at the core of our contribution.

1. Distinguished array cells. Each array cell that is not
referred to by an index expression in the formula does not
impact the status of a given interpretation (model or not);
i.e. two interpretations differing only on unreferenced ar-
ray cells are equivalent. Hence, we can restrict our reasoning
to referred array cells only, whose number is always finite
and independent from array size (for quantifier-free formu-
las). This is a first step toward handling unbounded arrays
with finite reasoning.

2. Equality-based reasoning. In pure array theory, only the
(dis-)equality of index expressions are important — not their
exact values. This is the basic enumeration strategy for solv-
ing pure array formulas (without domains nor size), requiring

to enumerate 2V° different cases — but being absolutely in-
dependent from the domain of indices (/N is the number of
index expressions).

3. Implicit equality encoding. (new) With pure arrays, we
can use an alternative method: bound every array to size N
(the number of index expressions), and choose for indices val-
ues between 1..N, in order to encode in an implicit way the
dis-equalities of index expressions. The technique is correct
and complete (this is proved in section 4.3), and shows two
advantages over equality-based reasoning:

o finite-encoding: the formula contains now only fixed-
size arrays, and we can solve it through standard FD
approaches — even if the original formula was on un-
bounded arrays;

e cfficiency: we can refine the technique in order to have
a search space of (N/In(N))™, which is considerably
smaller than for explicit equality-based reasoning.

4. Proxying / array isolation. (new) In the case of extended
array constraints, we need an additional step of proxying, or
array isolation, in order to keep the FD-reduction on arrays
while allowing arbitrary constraints over index expressions.
The idea is to separate the array-based reasoning on index
expressions from other non-array reasoning on those index
expressions, by introducing a proxy-variable e” € 1..N for
each index expression e, and ensuring overall formula con-
sistency through a new dedicated (FD) constraint. Hence, ar-
rays can be dealt with through the implicit encoding (the ")



while constraints over indexes are dealt with by the original
problem variables.

4.2 Core technique: array reduction

Our array reduction consists in four elementary steps, mostly
involving rewriting or introducing new literals, and producing
a series of equisatisfiable formulas.

Step 1: Preprocessing (purification) The first step of the
transformation is standard and consists in rewriting liter-
als containing both array operators and arithmetic operators,
such as select(t,i + 1) — = y into conjunctions of literals
that contain only one type of operator, introducing new vari-
ables where needed. For the previous literal, a purified form is
select(t, j) = eNj = i+1Ae—x = y. Note that = is to be un-
derstood as logical equality, and variables are assumed to be
declared beforehand. Purification is a well known technique
in SMT and is required in solver combination framework such
as Nelson Oppen. It induces a linear growth of the input for-
mula. We also flatten array constraints so as to make their
arguments atomic. For example, e = select(store(t,i,e),7)
is rewritten as ' = store(t,i,e) Ae = select(t', j), introduc-
ing one array variable . We call ¢y, the formula obtained
after these operations. Finally, we rewrite array disequalities
t # t' as select(t, j) # select(t', j), introducing a fresh vari-
able j for every such disequality.

Step 2: Size constraint elimination We now proceed to
remove every size constraints from ¢4;rqy, by encoding their
semantics directly in the arithmetic part of the formula. De-
note Arr the set of array atoms occurring in @qyrqy, and for
every array t € Arr introduce a fresh variable s;.

e replace every occurrence of size(t) with s,
e replace every array equality t = ¢ witht =t/ A s; = sy

e replace every array equality ¢’ = store(t, i, e) with ¢’ =
store(t,i,e) N sy = sy ANi € L.sy

e replace every constraint e = select(t,i) with e =
select(t,i) Ni € 1..8¢

We call ¢, the formula obtained after eliminating size
constraints from ¢pe.

Step 3: Index reduction In ¢.;,,, we denote Ind =
{i1,...,in, } the set of index variables, that is the variables
that appear as the second argument in a select or store con-
straint. For each one of these variables, say i;, we intro-
duce a fresh variable i%, and call Ind"™ = {if, iy, } the
reduced indices associated with Ind. The first step of in-
dex reduction consists in replacing every term of the form
select(t, i) in ¢erim with select(t,i},), and similarly every
term store(t, iy, e) with store(t,i},e). We emphasize that
only the occurrences of indices as the second argument of an
array constraint are replaced with their reduced counterparts.
In particular, arithmetic constraints on indices remain un-
changed. The idea is to isolate the arithmetic reasoning on in-
dices, which is concerned about precise values, from the array
reasoning, which is merely concerned about (dis)equalities.

Partially replacing indices with reduced indices amounts to
under-constraining the problem, and as such, index reduction
is not sound, that is, it may introduce solutions that do not
satisfy the original formula. In order to ensure that the re-
duced indices are consistent with the original ones, we add
the following consistency constraints:

iy, = 1] < i =1, foreach k <!

The number of consistency constraints is quadratic in
N;. Section 4.4 will show how to handle consistency ef-
ficiently in a FD solver using the new global constraint
consistent([i7, ..., iy ], [i1, -, iN;])-

As an additional stép, we rename every array ¢ in @i, as
t" (we refer to them as reduced arrays). This step is purely
syntactic and optional, yet it helps avoiding confusion when
we discuss the generation of ¢-models from ¢"-models.

We call ¢; .. the formula obtained as a result of index re-
duction on ¢y, .

Step 4: Size fixing All arrays in ¢; . are unbounded, since
size constraints were eliminated. Moreover, all array accesses
occur on reduced indices, and the reduced indices appear
nowhere except in array constraints and equality constraints
(consistency constraints). For these reasons, it is possible to
add the following fixed sizes for arrays and domains for re-
duced indices :

e add constraint size(t") = N; for every reduced array
o add domain constraints i}, € 1.. max;<(i]) + 1

The domain constraints presented here are sophisticated
and allow for efficient solving of ¢". Using the weaker do-
main 1..N; (implied by the size constraints) for every reduced
index also leads to a sound transformation. The stronger do-
mains are obtained using the fact that the values of the re-
duced indices can be freely interchanged, as long as their ar-
rangement with respect to equality is preserved. Technically
speaking, the set of reduced indices admits all value symme-
tries. Using the stronger domain form amounts to statically
breaking these symmetries.

4.3 Correctness
Array reduction enjoys the following theoretical properties :

Theorem 1 (Equisatisfiability). ¢ and ¢" are equisatisfiable.

Sketch of proof We focus on the equisatisfiability of ¢ezim and
¢" (equisatisfiability of ¢ and ¢pure is well-documented, and ¢Ppure
and ¢.im are equisatisfiable by the definition of size constraints).
We first consider the case where @i, is a conjunction of literals,
and let I be a ¢eiim-model. For every non-array variable in v €
vars(petim ), we define I (v) £ I(v). Since ¢erim and ¢ have the
same arithmetic literals, we only need to define I" for reduced arrays
and indices, and check that it satisfies array literals, and consistency
constraints. We define :

e 21

I"(iy,) I7(i]) if 3 < k, I(in) = 1(i1)
max;<x(1(i])) +1 otherwise

It is easy to check, by induction, that I"(i},)s are well defined,

and that this definition satisfies the consistency constraints as well

> f1>



as the domain constraints for reduced indices. Now let ¢ be an array
variable in ¢eim. I(t) is an integer sequence (¢x)k>o (all arrays in
@elim are unbounded). We will define I"(t") as the finite sequence
(t7)1<k<n, such that :
th Bty HAIE) =k
20 otherwise

It is again easy to check that I"(¢") is well defined and satisfies
the size constraint size(t") = N;. It remains to show that I" satis-
fies array literals in ¢". This step is easy, remarking that for every
index 7 and array ¢ in ¢, t7(;) = t}rw), and unreferenced array el-
ements all have value 0 in reduced array models, hence high level
properties like array equalities are preserved. As a consequence, if
@etim 1s satisfiable, then so is ¢". The proof that ¢.;im, is satisfiable
when ¢" is has the same structure (it is actually simpler since a ¢"
already provides values for non-reduced indices). When ¢e;m, is not
a conjunction of literals, the same proof applied to a satisfied clause
in its disjunctive normal form shows that the result still holds. [

Theorem 2 (Model extension). ¢”-models can be extended to
¢-models, that is, models that agree on every variable com-
mon to ¢ and ¢"

Sketch of Proof Let I” be a ¢"-model. We obtain a ¢eyim-
model I¢j;, as follows :

o I.iim(v) £ I"(v) for every non-reduced variable

o Ieim(t) £ (tr)x>o for array variables, where :

Lrr(ig) for each k

A
=t ar)
290 otherwise

The proof that Ic;.m, is well defined, and actually a model for
@elim is similar to the previous proof. Remarking that vars(¢) C
vars(Geiim), a p-model I is defined as follows :

o I(v) £ Iyim(v), for every non array variable v € vars(¢)
o I(t) £ t(1<k<1.,;,, () for array variables
The proof that [ is a ¢-model is routine. [

Theorem 3 (Finite reasoning). ¢" can be solved using FD
techniques, especially consistency constraints.

Proof Arithmetic literals come with finite domains. FD solving
for arithmetic is well documented. Arrays and indices in ¢" all have
fixed size and finite domains (introduced at transformation time),
hence array accesses and updates can be modeled using existing
FD techniques. Consistency constraints are finite in number, and
all have the form ¢" = j” < ¢ = j. This constraint can be encoded
in most FD frameworks using reified constraints. Section 4.4 shows
a more efficient handling. [J

4.4 Efficiency

We discuss how to efficiently maintain consistency while
solving ¢". For that goal we introduce the global consistent
constraint. This constraint takes as input two lists of variables
having the same length n. Two list of values [uq, ..., u,]and
[v1, ..., vy] satisfy the consistent constraint when they have
the same arrangement with respect to equality, that is, when
u; = uj, if, and only if, v; = v;, for every 7 and j in 1..n.
We now show how to propagate the consistent(Lq, Lo)
constraint. The constraint internally maintains two lists [y
and I of integer values 7 such that L[i] (respectively Ls[i])

is assigned. The constraint is woken whenever a variable in
L1 or Ly becomes assigned, and uses the following propaga-
tion algorithm :

woken on L1 [i] < v (alternatively L[] + v);
add ¢ to I; (alternatively I»);
for k,lin I, do
if L1 [k] = L1[I] then
Dom/(Ls[k]) < Dom(Lz[k]) N Dom(L2[l]);
Dom(Ls[l]) + Dom(L2[k]) N Dom(L2[l]);
else
if k is in I3 then

| Dom(Lz[l]) <~ Dom(La[l])\{L2[k]};
end
if [ is in I> then

| Dom(La[k]) + Dom(Lak)\{La[1]}:
end

end
end
similar loop for k, [ in I3

Algorithm 1: Propagator for consistent(L1, L)

Using a global consistency constraint is more efficient than
using reified constraints in our applications. A search strategy
that worked well in practice is to label reduced indices first,
since their domains are generally smaller than other variables
in ¢" and instantiating these variables leads to strong propa-
gation, both in array and consistency constraints.

When using a consistency constraint, the overall size
blowup of ¢" relative to ¢ is only linear.

Theorem 4 (Solution Space Reduction). Every ¢-model can
be obtained as an extension of a ¢.-model. Hence, the solu-
tion space for ¢, is a reduced version of that of ¢, all solu-
tions are preserved but irrelevant indices are abstracted.

Sketch of proof The ¢"-model is constructed using the defini-
tions in the proof of Theorem 1, with minor adaptations. [J

Theorem 5 (Search Space Reduction). Let Ind be the set
of index expressions in ¢ and Ind" the set of reduced index
in ¢". Two ¢"-models not agreeing on Ind" extend to ¢-
models not agreeing on Ind, while the converse does not hold
in general.

Sketch of proof Let Ind” = {i},...,i}, and call I and I’ two
¢"-models such that I(i},) and I’ (i},) differ, for some k. Because of
the domains of reduced indices, we know that, I(i]) = I'(i]) = 1,
and I(7%), as well as I'(43), is either 1 or 2. If they differ, then one
of these models gives the same value to 47 and 5, while the other
does not. With a similar argument we prove by induction that there
will always be two indices ¢ and ;,, such that I(i;) = I(iy,) and
I'(i]) # I'(i]), exchanging the roles of I and I’ if needed. The
result then follows from the fact that I and I’ satisfy the consistency
constraints. [

Search Space Comparison We consider a pure array for-
mula ¢ with unbounded arrays. That is, ¢" has no arith-
metic literal. In this case, deciding the formula only requires



enumerating the valuations for Ind” the reduced indices in
¢". This is because array elements appear only at most in
(dis)equality constraints, so finding values for these elements
from a non-conflicting index valuation is easy. As hinted by
the previous proof, different valuations on Ind” correspond
to different arrangements of Ind” with respect to equality. In
fact, one can show that valuations on Ind" correspond exactly
to arrangements of Ind” with respect to equality (or in other
terms, to equivalence relations over Ind"). Hence there are
B,, such valuations, where B,, is the n-th Bell number, and n
is the size of Ind". As a comparison, many SMT approaches
rely on introducing case splits on the (dis)equality of ¢ and j
for every read-over-write term select(store(t,i,e), j). This

approach introduces 27" case splits in the worst case.
n
It is known that B,, = O ((L) ) [Berend and Tassa,

logn

20101, while 27° = (2™)™. Although this comparison does
not take into account the various optimisations and heuristics
used in practice by SMT solvers and FD solvers, the differ-
ence is significant. For small values of n, the difference in
search space size is already huge, for example By = 52 while

25% > 33.109.

5 Experimental evaluation

Implementation Our implementation is built on top of
fdec [Bardin and Gotlieb, 2012]. fdcc relies on update con-
straints and SICStus clpfd for arithmetic constraints. The im-
plementation is approximately 2000 lines of Prolog, and in-
cludes an interface to the SMT-LIB [Barrett et al., 2015] for-
mat (only array and integer related theories are supported).

Goal and protocol The experiments presented below aims
at evaluating the benefits of array reduction. The goal is to
answer precisely the following questions:

1. Does array reduction indeed lift standard FD techniques
to unbounded formulas?

2. How useful is array reduction when implemented on top
of FD solvers for solving formulas with bounded arrays?

3. How does array-augmented FD solvers perform w.r.t.
top-class SMT solvers, especially do we manage to
bridge the gap between FD and SMT?

We consider a benchmark of 2200 formulas obtained as
follow. First we take the 550 array formulas from the SMT-
COMP benchmark, the standard competition in SMT solving
— with formulas coming essentially from hard verification-
oriented industrial and academic case-studies. We consider
here only pure array formulas (no additional arithmetic con-
straints). They typically include up to a hundred variables
and dozens of array constraints (including long store chains),
with the largest ones containing more than one hundred ar-
rays, 60 distinct indices and a thousand constraints (includ-
ing 120 array updates). Most formulas include extensionality
constraints, but no size constraint. Then, we automatically
duplicate these formulas with additional size constraints of
10, 100, 1000. These sizes, and small ones in particular, are
representative of the ones found in real programs.

In our experiments, we compared fd which is the standard
clpfd library of SICStus Prolog augmented with an imple-
mentation of the store operator using the global constraint in-
terface [Charreteur et al., 2009], fdcc [Bardin and Gotlieb,
2012] which augments clpfd with congruence closure rea-
soning over arrays, fd” and fdcc” which are similar to fd and
fdcc but augmented with array reduction. The augmented fea-
tures for these four tools are fully implemented in Prolog on
top of clpfd. We could not use MiniZinc [Nethercote et al.,
2007] and Gecode [Schulte and Tack, 2005] as these solvers
do not provide any constraint for handling the store operator
which is present in all the formulas. For the sake of complete-
ness, we also ran four SMT-solvers which are among the best
competitors of the SMT competition: Yices [Dutertre, 2014],
MathSAT [Cimatti et al., 2013], CVC4 [Barrett et al., 2011]
and the Microsoft Z3 solver [De Moura and Bjgrner, 2008]
!. These SMT-solvers are among the best-known approaches
for the theory of arrays, they result from more than 10 years
of intensive development by teams of experienced engineers
and are finely tuned for SMTCOMP.

We compare each solver on the number of successfully re-
solved formulas (solver answers were checked against each
other and the formula oracle, no conflict was reported ), with
a time-out set to 30 seconds — this is a rather low value, yet
it is representative of timeouts used in some verification set-
tings, where thousands of constraints must be solved. The
results for a time-out of 120 seconds are also shown without
discussion, since there is only very little difference. Experi-
ments were run on a Intel(R) Core(TM) i7-5600U (2,6 GHz)
(2 cores), 16GB RAM, running Linux Fedora 22.

Results and conclusion Results are presented in Table 2.

First, it can be seen that array reduction does allow FD
techniques fo solve unbounded formulas in practice, and ac-
tually it allows to solve a large majority of the formulas
(526/550 for fd" and fdcc™).

Second, array reduction allows a dramatic improvement of
standard FD techniques on fixed-size arrays (between 2.5x
and 6.5x more formulas), and the larger size, the larger im-
provement (for size 1000, fd" solves 526 formulas, while
fd alone solves only 79 formulas); interestingly, the reduc-
tion allows also to bridge the gap between fd and fdcc. For
small array sizes. fd-like cheaper propagation even gives fd"
a slight advantage (544 vs 536) since it can exhaust all val-
uations for reduced indices more quickly. Yet, array reduc-
tion does not amount to adding full symbolic reasoning to
FD solvers, and there are classes of formulas (not represented
in SMT-COMP) that require fdcc’s global reasoning to be
solved.

Finally, array reduction allows FD to compete with the
best SMT approaches: our technique clearly surpasses SMT
on small size arrays — at worst 536 vs at best 463 (small
sizes yield many pigeonhole-like problems, notoriously hard
to solve with SMT), while it is only slightly inferior on larger-
size and unbounded formulas — 526 vs 550. Arrays of small

Yices, MathSAT, Z3 and CVC4, in this order, achieved the four
first places in the 2016 SMT-COMP.



sizes are ubiquitous in real-world programs, hence they are of
particular importance in practice.

Table 2: Comparison (FD, SMT solvers, and our approach)

size cved

#f ‘ fd ‘ fdcc fd” ‘ fdec” 73

math | yices
sat

Time out 30 s

10 | 550 212 | 222 544 | 536 451 463 | 376 376
100 | 550 123 137 526 | 526 538 550 | 550 550
1000 | 550 79 92 526 | 526 538 550 | 550 550
oo | 550 XXX | XXX 526 | 526 547 550 | 550 550
Time out 120 s

10 | 550 212 | 222 544 | 540 460 463 | 376 376
100 | 550 123 137 540 | 526 547 550 | 550 550
1000 | 550 99 113 526 | 526 547 550 | 550 550
oo | 550 XXX | XXX 526 | 526 548 550 | 550 550

. fd" and fd: Constraint solver, with and without array reduction
. fdec™ and fdcc: Hybrid solver, with and without array reduction
. size: array size — #f: n. of formulas — timeout: 30 seconds

6 Related work

Standard SMT and FD approaches for arrays and how they
relate to our reduction-based method have already been pre-
sented and discussed through the paper (especially, see Ta-
ble 1, Sections 3 and 4.1).

FD While array accesses have been dealt with for a long
time through constraint ELEMENT [Hentenryck and Carillon,
19881, only very few work consider array updates [Gotlieb,
2009]. For example, both Minizinc [Nethercote et al., 2007]
and Gecode [Schulte and Tack, 2005] propose the former
but not the latter. All these approaches are size-dependent
and cannot deal with unbounded arrays. While string con-
straints [Jaffar, 1990] are highly expressive, size constraints
are often weak or not well treated. Indeed, solving con-
straints over regular expressions extended with arithmetic is
often undecidable. Depending on the approach, sizes must be
bounded, sizes must be unbounded, or the decision procedure
does not guarantee termination. The fdcc approach [Bardin
and Gotlieb, 2012] complements the standard local filtering-
based FD reasoning on array with global symbolic reasoning
to produce an efficient solver for fixed-size arrays. Array re-
duction and fdcc are complementary. Finally, array reduction
is not about automatically finding symmetries in a given CSP.
Rather, we take advantage of existing symmetries for reduc-
ing the initial problem to an efficient finite-domain problem.

SMT Standard symbolic approaches for pure arrays com-
plement symbolic read-over-write preprocessing (in the vein
of fdcc) with enumeration on (dis-)equalities, yielding a po-
tentially huge search space.

New array lemmas can be added on-demand or in-
crementally discovered through an abstraction-refinement
scheme [Brummayer and Biere, 2009]. Size and arith-
metic constraints can in principle be recovered through the
Nelson-Oppen solver combination scheme [Nelson and Op-
pen, 19791, but the communication cost can be much more
expensive than satisfiability checking [Bruttomesso et al.,
2009] on non-convex theories — such as array theory, as

it requires to propagate all implied disjunctions of equal-
ities. Delayed theory cooperation [Bozzano et al., 2005;
Bruttomesso et al., 2009] requires only equality propagation,
at the price of adding new Boolean variables for all potential
variable equalities. Model-based theory cooperation [Marre
and Blanc, 2005] aims at mitigating this overhead through
lazy equality propagation. Decision procedures have been de-
veloped for expressive extensions of the array theory, such as
the array property fragment [Bradley et al., 2006], which en-
ables limited forms of quantification over indices, and arith-
metic constraints. While such theories are more expressive
than our extended array constraints, the associated decision
procedures are highly expensive (translation to Presburger
arithmetic). Moreover, these techniques require indices to be
integers (bitvectors, for example, are not supported), while
our approach is mostly independent of the elements’ and in-
dices’ types (only equality and disequality are required over
elements, while indices additionally require an ordering).

7 Conclusion

This papers introduces a formula transformation that can pro-
duce a fixed-size array formula equisatisfiable to any formula
with extended array constraints, including extensional un-
bounded arrays, and combination with arithmetic constraints
on indices and elements. In addition, the transformation in-
duces a powerful search space reduction and has remark-
able properties including a strong correspondence between
the models to the input and transformed formulas. This work
opens the way for automated constraint-based reasoning on
large classes of data structures, with reasonable theory combi-
nation costs, and follows the trend initiated in previous works
of proposing CP as a viable alternative to the well established
techniques in automated proof, relying largely on the use of
DPLL based SMT solvers.
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