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ABSTRACT 
 
 
 We propose a new model to calculate the interlaminar stresses in a multilayered medium. It is well 
known that the classical analysis methods of multilayered materials do not give enough information about the 
interlaminar stresses that causes damages. The model we propose describe the multilayered medium as a surface 
with as many particles in each point of the surface as the number of layers in the medium. For this reason, it is 
named multiparticle modelisation of multilayered materials (M4 in the following of the text). It permits to 
calculate directly  the stresses as interaction between particles at the same point of the surface. In a certain sense, 
the M4 model belongs to the same family than the well known Shear-lag model (Garett & Bailey 9) (Macquire & 
al. 10) and the Pagano’s global-local model (Pagano & al 14). It is more general than the shear-lag’s one and 
simpler than the Pagano’s global-local model. We present in this paper the equations of the model and we 
establish analytical solution for a cylindrical bending multilayered plate problem. Through this example, we 
show that we can have a good prediction of displacements and shear stresses and that the M4 model is a 
pertinent tool to study interlaminar stresses.  
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INTRODUCTION 
 
 
Classical Plate Theories (Love-Kirchhoff, Reissner-Mindlin) do not allow to calculate the 
interlaminar stresses or the edge stresses (edge effects) in the multilayered composite 
materials. These stresses are important in the delamination of composite materials and other 
damaging processes. For this reason, several authors have been interested by the study of 
these interlaminar stresses and have proposed analytical solutions in particular cases (Pagano 
12), or numerical tridimensionnal models to process more general cases (Rybicki 16) (Renieri & 
Herakovich 15) (Wang & Crossman 19) (Spilker & Chou 18). These approaches have shown the 
concentration of the normal stress between two layers in the vicinity of edges with sometimes 
a weak singularity of the fields (Sanchez Palancia 17). General tridimensional analysis with 
finite element method are difficult to use because they need a very thin mesh and a long time 
of calculation. 



Then, many authors have adopted simplified approaches aiming to make less calculations. A 
first family of these simplified approaches consists in using plate theory (that do not verify 
therefore 3D boundary conditions) and determining in the vicinity of the edges corrective 
stress and strain fields to balance the equilibrium error at the edge (Allix 1) (Dumontet 5). 
These methods are generally simple and predictive, but they need two consecutive 
calculations, so it is interesting to look for other simplified methods that solves the problem 
with a single analysis. From one end of such a family of models to the other, we find the very 
classical shear-lag’s model (Garett & Bailey 9) and the different Pagano’s simplified models 
13 and the global local Pagano’s model 14. These models have in common the fact that the 
multilayered medium is geometricaly described as a surface and that the fields of the different 
layers are distinguished. We can say then that they are multiparticle models in the sense that 
in each point of the surface describing the multilayered medium, they have as many particles 
as the number of layers. These particles are simple points in the case of the shear-lag model. 
In the case of the Pagano’s models, they are more complex.  
One of the main characteristic of such multiparticle models of multilayered materials is the 
number of generalized displacements or, what is the same, the number of equilibrium 
equations.  
In the case of the shear-lag model, this number is 2n (where n is the number of layers): the two 
plane components of the mean in-surface displacement in each layer. 
In the case of the Pagano’s model, this number is 7n: the 3 components of the mean 
displacement of each layer, the 2 components of the layer normal rotation and the first and the 
second momentum of the normal component of displacement through the thickness of each 
layer (the physical sense of these last two fields is not as direct as the five previous ones). 
 
In this paper, we present an other multiparticle model of multilayered materials with 2n+1 
generalized displacement fields and equilibrium equations. Due to the relatively low number 
of fields, our model is far more simpler than the Pagano’s ones, but it is complex enough to 
take into account the bending of the multilayered medium that the shear-lag model doesn’t 
take into account. The prediction of the M4 2n+1 model is discussed in comparison with the 
prediction of other models in the case of a simple problem of a multilayered plate bending. 
 
 
The M4 2n+1  model 
 
 
The Multiparticle Modelisation of Multilayered Materials (M4) has been developed to 
facilitate the study of damages such as delamination or transverse micro-craking (Ehrlacher 
& al 6 7) (Caron 3) (Foret 8). We present in this part the M4 2n+1 model hypothesis as well as 
its equations. 
We consider the object (multilayered plate or shell) as a surface of (see figure 1). If n is 
the number of layers, there are n material particles in each point of the surface. 
 



 
 

 
 
 
 
 
 
 
 
 
 

figure 1: The multilayered plate and its boundaries 
 
The multilayered plate can be described as an open cylindrical domain  of . Its base is 

. Let’s note ,  and  ( hi =
hi
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+

2
) respectively the lower, the upper and the 

median height of the layer number i ( ) and  its thickness.  
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let’s note  the boundary of . The boundary of  can be divided in three parts: 
 
v The boundary of the plate   

v The upper face   Γ+ =ω × hn
+{ }  

v The lower face    
 
The multilayered plate is submitted to the following external forces: 
 
v Volumic forces in :   where  is a  point of  
 
v Surfacic forces on Γ :   
 
v Surfacic forces on :   
 
v Surfacic forces on :   
 
Let’s develop the M4 2n+1 model by using the virtual power principle for the static case. The 
kinetic fields are given by n velocity fields. We choose a virtual velocity field for which each 
layer of the laminate has its own in-surface motion, but with the same orthogonal velocity for 
all the layers: 
 
  (1) 
 
The external virtual power  and the internal virtual power  can be written as follows: 

Ω  

Γ  

Γ+ 

Γ  - 

e3 

e 1 

e 2 



 

  (2) 

 

By noting   and   ( ; ), and 

  and   we have: 

 

  (3) 

 
The internal virtual power can be written as follows: 
 
    (4) 

 
The choice of the virtual velocity field leads to: 
 

 (5) 

 
By taking into account the virtual in-surface velocity field discontinuities at the interfaces 
between layers and the virtual velocity field form,  becomes: 
 

  (6) 

 
In the expression of the virtual internal power, we recognize the following generalized stress 
fields: 
 

      (7) 

the components of membranar stress tensor in the layer number i. 



 
 Qα (x, y) = σα3(x, y, z)dzh1

−

hn
+

∫        α=1,2      (8) 

the components of the vertical shear in the multilayered plate. 
 
       (9) 
the interlaminar shear stresses at the interface number i,i+1 (i=1,n-1).  
 
By introducing (7), (8) and (9) in (6) the internal virtual power becomes:  
 

  (10) 

 
The application of the virtual power principle in the static case leads to equilibrium equations 
(11) and boundary conditions (12): 
 

   (11) 

 
where  and  (α=1,2). 
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where  is the normal vector at a point (x,y) of the boundary . 
 
We can see from the equilibrium equations that the two first equations are the same that in the 
Shear-lag analysis. Nevertheless, the equation related to the orthogonal direction doesn’t exist 
in the Shear-lag model. We have then 2n+1 equilibrium equations in our model and the Shear-
lag has 2n. 
 
In order to identify the generalized constitutive law, we need to imagine the form of the stress 
field components. We will then assume that the 3D stress field components can be 
approximated by polynomial functions of z. We can notice that because the layer thickness in 
multilayered plates is generally very small, the in-surface 3D stress field components 

 can be approximated by  that is constant in z in each layer: 
 



 σαβ
app (x, y, z) ≈ 1

ei
Nαβ

i (x, y)      z ∈ hi
-,hi

+⎡⎣ ⎤⎦       i=1,n        α,β=1,2   (13) 

 
By using the 3D equilibrium equations, we find that the shear stress field components 

 can be approximated by  that is linear on z in each layer. As 
 and ,  is then a piecewise linear function of z: 

 

  (14) 

 
The relation (14) leads to the next form for the vertical shear in the multilayered plate (8): 
 

      (15) 

 
The component  of the stress tensor can therefore be aproximated with the help of the 
third 3D equilibrium equation by a parabolic function of z in each layer. We are not interested 
in what follows by the expression of  because it does not appear in the internal virtual 
power. Furthermore, its contribution to the elastic energy will be neglected. 
 
The generalized strain appears as the associated factors of the generalized stresses in the 
internal virtual power when the virtual velocity field is taken equal to the displacement field. 
If the displacement field is: 
 
 u(x, y, z) == uα (x, y, z)eα +w(x, y, z)e3     α=1,2       (16) 
 
and if we note the average components of the displacement field: 
 

     (17) 

 
The internal power for this displacement field is: 
 

  (18) 

 
We can identify the following generalized strain associated to the membranar stress tensor in 
each layer: 
 



      (19) 

 
that we call the in-surface deformation tensor in each layer. We can also identify the 
generalized strain associated to the interlaminar shear stress at each interface:  
 

    (20) 

 
that we call the shear deformation at each interface between two layers. 
 
We can notice that in the Shear-lag analysis, the shear deformation is only related to the 
difference of the in-surface displacements and not to the derived expressions of the orthogonal 
displacement. 
 
The identification of the generalized constitutive law is then classical. Let’s write the elastic 
energy associated to the real stress field . 
 

    (21) 

 
where  are components of the compliance tensor of the layer number i. Each layer being 
orthotropic, this expression can be written as (if we assume that the axis 3 is an orthotropic 
axis): 
 

   (22) 

 
Let’s assume that the contribution of  to elastic energy is negligible. After replacing  by 
its approximation in function of the components of the generalized stress fields (equation 18 
& 19) of the M4 2n+1 model, the approximate elastic energy can be written as: 
 

 (23) 

 
The approximate constitutive law of the M4 2n+1 model is finally written: 
 

         (24) 



     (25) 

 
We have put in obviousness in this model a coupling between the different interfaces in the 
compliance matrix of the M4 2n+1 model. That makes an other difference with the shear-lag 
analysis that has no coupling between interfaces. 
 
Finally, we’ve just built a model for which the generalized stresses are the membranar stress 
tensor for each layer (7) and the interlaminar shear stress vector for each interface (9). These 
generalized stresses have to verify equilibrium equation (11) and boundary conditions (12). 
The associated generalized strains are the in-surface deformation tensor in each layer (19) and 
the shear deformation vector at each interface between layers (20). The approximate 
constitutive law is given by equations (24) and (25). 
 
We can notice that we have choosen a virtual motion (1) that do not take into account the 
flexure of each layer. The model we build will of course take into account the flexure of the 
whole multilayered plate 
 
With the M4 2n+1 model we have just presented, it is possible to establish analytical solutions 
for simple cases which can be used to validate the M4 2n+1 model. The example we present 
consists in comparing for a multilayered medium constituted of a (0°,90°,0°) laminate, the 
deflexion and the shear stresses obtained by the M4 2n+1 model and by classical multilayered 
plate theories. 
 
 
EXAMPLE : CYLINDRICAL BENDING 
 
In this example, we compare the deflection and the shear stresses obtained for a multilayered 
plate submitted to cylindrical bending by the M4 2n+1 model, by the Love-Kirchhoff and the 
Reissner multilayered plates models (Berthelot 2) and by the exact solution of Pagano 11. We 
choose for that a multilayered plate constituted of a (0°, 90°, 0°) laminate infinitly width and 

loaded by a pression  applied on its upper face. The Figure number 2 

presents the plate geometry and the table 1 the constitutive material used by these authors. 
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Figure 2 :  Plate geometry  

 
 

table 1: The constitutive material 
E1 E2 = E3 ν12 = ν23 G12=G13 G23 

25 106 psi 106 psi 0,25
 
 0,5 106 psi 0,2 106 psi 

 
 
We number layers from 1 to 3 from the bottom to the top. Let’s note h/4 the thickness of the 
layer 1 and 3 and h/2 the thickness of the layer 2. According to the plate geometry and to the 
loading symetries, the displacement fields (17) can be simplified to: 
 
  (26) 
 
By using the equilibrium equations (11), boundary conditions (12), the generalized 
constitutive law (24), (25) and the form of displacement (26), we obtain, after solving a 
differential system the maximum deflexion and the maximum interlaminar shear stresses: 
 

   (27) 

 

       (28) 

 

where  and  and  are the shear modulus in the (x 1x 2) plan. 

 
The maximum deflexion obtained with the M4 2n+1 model can be compared to the maximum 
deflexion obtained by several classical plate theories: 
 
v The Love-Kirchhoff plate multilayered theory (Berthelot 2) leads to the following 
maximum deflexion: 
 

        (29) 

 
v The Reissner plate multilayered theory (Berthelot 2) leads to the following maximum 
deflexion:  
 

     (30) 

 



where k is a corrective factor introduced in the transverse behaviour relationship to take into 
account in different ways some effects of the vertical shear in multilayered plates. In the 
literature (Berthelot 2) we often find these different values of k - k=1, 2/3 and 5/6 -. 
 
v The Pagano’s exact solution in cylindrical bending 11. 
 

 
 

figure 3 : Evolution of the maximum deflexion for different theories 
 

The figure 3 presents all these maximum deflexions for different  ratios. These curves 

show that: 
- The maximum deflexions obtained with the Reissner multilayered plates model with k=5/6 
and Pagano’s analytical solution are pratically equal. 
- The M4  2n+1 model gives a very good approximation of the maximum deflexion for small 

 ratios. 

- For large  ratios, the maximum difference between the M4 2n+1 model and Pagano’s 

analytical solution is 4%. This result was expected because the M4 2n+1 model does not take 
into account the bending energy of each layer. The bending of the multilayered plate is taken 
into account through the interlaminar shear stress. If we increase the number of plies, the 
difference between the predictions of the M4 2n+1 model and Pagano’s analytical solution will 
diminish. 
Furthermore, the interlaminar shear stresses are obtained directly and we can also compare the 
evolution of the stress ( ) in the thickness of the laminate. The figures number 4 and 5 
present the shear stress  calculated with the M4 2n+1 model and with the Pagano’s exact 

solution at the edge (x1=0) for two different  ratios ( =4 and 10). 

 



 
figure 4 : Evolution of the shear stress  in the thickness  

at the edge (x1=0) . 

 
figure 5 : Evolution of the shear stress  in the thickness  

at the edge (x1=0) . 

 



We can notice that the M4 2n+1 model gives a good prediction of the shear stress evolution in 

the thickness even for thick multilayered plates (i.e. when the  ratio is small). We 

remarque also that the approximate maximum shear stress calculated with the M4 2n+1 model 
is greater than the exact shear stress determined by Pagano. The M4 2n+1 model prediction is 
in the security side because the model overestimates the interlaminar shear stress. 
 
 
CONCLUSION 
 
 
We have proposed in this paper a new model to calculate the interlaminar stresses in a 
multilayered medium, the M4 2n+1 model. It is more general than the shear-lag’s (Garett & 
Bailey 9) and simpler than the Pagano’s global-local model (Pagano & al14). We have 
presented the equations of the model and established an analytical solution. 
In the presented example, we have shown that the M4 2n+1 model gives good prediction of the 
maximum deflexion and the shear stress for a cylindrical bending multilayered plate problem. 
The case of a (0°, 90°, 0°) laminate was studied. 
Otherwise, it is possible to build other models with an increasing number of generalized 
displacements. In (Chabot 4), many models are developped showing that while we increase to 
number of kinematic fields, we obtain a better description of the interlaminar stresses. In this 
family of models, the M4 2n+1 model is a pertinent tool because we can have a quick and good 
estimation of interlaminar shear stresses. 
 
 
REFERENCES 
 
 
1. Allix O, Modélisation du comportement des composites stratifiés, Thèse de Doctorat de 
l'Université Pierre et Marie Curie, 1989. 
2. Berthelot JM., Matériaux composites, Ed Masson, 1992. 
3. Caron J.F., Fissuration tranverse des matériaux composites, thèse de l’Ecole Nationale des 
Ponts et Chaussées, 1993. 
4. Chabot A., Analyse des efforts d’interface entre les couches des matériaux composites à 
l’aide de Modèles Multiparticulaires des Matériaux Multicouches (M4), thèse de l’ENPC, 
1997. 
5. Dumontet H, Homogénéisation et effets de bords dans les matériaux composites, Thèse 
d'Etat de l'Université Pierre et Marie Curie, 1990. 
6. Ehrlacher A., Chabot A. & Naciri T, Prévision de l'initiation du délaminage, Rapport de fin 
de contrat SNECMA n°486 (CERAM ENPC), 1994. 
7. Ehrlacher A., Naciri T., Chabot A. & Caron J.F., Analyse des efforts d’interface à l’aide de 
la Modélisation Multiphasique des Matériaux Multicouches (M4), 9ème Journées Nationales 
sur les Composites (JNC9), SAINT-ETIENNE, 22/24 Novembre 1994 
8. Foret G, Effets d’echelle dans la rupture des composites unidirectionnels, thèse de l’Ecole 
Nationale des Ponts et Chaussées, 1995. 
9. Garett K.W., Bailey J.E., Multiple transverse fracture in 90° cross-ply laminates of a glass 
fibre-reinforced polyster, J. Mat. Scien., Vol. 12, 1977. 
10. Macquire B., Petitpas E., Valentin D., Experimental and theoretical damage accumulation 
in glass-epoxy tubes under torsion loading, Composites Polymers, Vol. 5, N°3, 1992. 



11. Pagano N.J., Exact solutions composites laminates in cylindrical bending, J. Composite 
Mat., Vol. 3, 398-411, 1969. 
12. Pagano N.J., Exact solutions for rectangular bidirectional composites and sandwich 
plates, J. Composite Mat., Vol. 4, 20-34, 1970. 
13. Pagano NJ., Stress Fields in composite laminates, Int. J. Solids & Struct., Vol. 14, 385-
400, 1978. 
14. Pagano N.J., Soni S.R., Global-local variationnal model, Int. J. Solids Structures. Vol. 19, 
n°3, 207-228, 1983. 
15. Renieri G.D., Herakovich C.T., Nonlinear analysis of laminated fibrous composites, VPI-
E-76-10, Virginia Polytechnic Institute and State University, 1976. 
16 Rybicki E.F., Approximate three-dimensional solutions for symmetric laminates under 
inplane loading, J. Composite Materials, Vol. 5, 1971. 
17. Sanchez-Palancia E., Problèmes mathématiques de la mécanique. Influence de 
l’anisotropie sur l’apparition de singularités de bord dans les problèmes aux limites relatifs 
aux matériaux composites, C. R. Acad. Sc., t. 300, Série I, n°1, 1985. 
18. Spilker R.L., Chou S.C., Some new results on edge effect in symmetric composite 
laminates, J. of Composite Materials, vol. n°11, 92-106, 1980. 
19. Wang A.S.D., Crossmann F.W., Some new results on edge effect in symmetric composite 
laminates, J. Composite Materials, Vol. 11, 1977. 
 


