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 ) and the Pagano's global-local model (Pagano & al 14 ). It is more general than the shear-lag's one and simpler than the Pagano's global-local model. We present in this paper the equations of the model and we establish analytical solution for a cylindrical bending multilayered plate problem. Through this example, we show that we can have a good prediction of displacements and shear stresses and that the M4 model is a pertinent tool to study interlaminar stresses.

INTRODUCTION

Classical Plate Theories (Love-Kirchhoff, Reissner-Mindlin) do not allow to calculate the interlaminar stresses or the edge stresses (edge effects) in the multilayered composite materials. These stresses are important in the delamination of composite materials and other damaging processes. For this reason, several authors have been interested by the study of these interlaminar stresses and have proposed analytical solutions in particular cases (Pagano 12 ), or numerical tridimensionnal models to process more general cases (Rybicki 16 ) (Renieri & Herakovich [START_REF] Renieri | Nonlinear analysis of laminated fibrous composites[END_REF] ) (Wang & Crossman [START_REF] Wang | Some new results on edge effect in symmetric composite laminates[END_REF] ) (Spilker & Chou [START_REF] Spilker | Some new results on edge effect in symmetric composite laminates[END_REF] ). These approaches have shown the concentration of the normal stress between two layers in the vicinity of edges with sometimes a weak singularity of the fields (Sanchez Palancia [START_REF] Sanchez-Palancia | Problèmes mathématiques de la mécanique. Influence de l'anisotropie sur l'apparition de singularités de bord dans les problèmes aux limites relatifs aux matériaux composites[END_REF] ). General tridimensional analysis with finite element method are difficult to use because they need a very thin mesh and a long time of calculation.

Then, many authors have adopted simplified approaches aiming to make less calculations. A first family of these simplified approaches consists in using plate theory (that do not verify therefore 3D boundary conditions) and determining in the vicinity of the edges corrective stress and strain fields to balance the equilibrium error at the edge (Allix 1 ) (Dumontet 5 ). These methods are generally simple and predictive, but they need two consecutive calculations, so it is interesting to look for other simplified methods that solves the problem with a single analysis. From one end of such a family of models to the other, we find the very classical shear-lag's model (Garett & Bailey 9 ) and the different Pagano's simplified models [START_REF] Pagano | Stress Fields in composite laminates[END_REF] and the global local Pagano's model [START_REF] Pagano | Global-local variationnal model[END_REF] . These models have in common the fact that the multilayered medium is geometricaly described as a surface and that the fields of the different layers are distinguished. We can say then that they are multiparticle models in the sense that in each point of the surface describing the multilayered medium, they have as many particles as the number of layers. These particles are simple points in the case of the shear-lag model. In the case of the Pagano's models, they are more complex. One of the main characteristic of such multiparticle models of multilayered materials is the number of generalized displacements or, what is the same, the number of equilibrium equations. In the case of the shear-lag model, this number is 2n (where n is the number of layers): the two plane components of the mean in-surface displacement in each layer. In the case of the Pagano's model, this number is 7n: the 3 components of the mean displacement of each layer, the 2 components of the layer normal rotation and the first and the second momentum of the normal component of displacement through the thickness of each layer (the physical sense of these last two fields is not as direct as the five previous ones).

In this paper, we present an other multiparticle model of multilayered materials with 2n+1 generalized displacement fields and equilibrium equations. Due to the relatively low number of fields, our model is far more simpler than the Pagano's ones, but it is complex enough to take into account the bending of the multilayered medium that the shear-lag model doesn't take into account. The prediction of the M4 2n+1 model is discussed in comparison with the prediction of other models in the case of a simple problem of a multilayered plate bending.

The M4 2n+1 model

The Multiparticle Modelisation of Multilayered Materials (M4) has been developed to facilitate the study of damages such as delamination or transverse micro-craking (Ehrlacher & al 6 7 ) (Caron 3 ) (Foret 8 ). We present in this part the M4 2n+1 model hypothesis as well as its equations. We consider the object (multilayered plate or shell) as a surface of (see figure 1). If n is the number of layers, there are n material particles in each point of the surface.

figure 1: The multilayered plate and its boundaries

The multilayered plate can be described as an open cylindrical domain of . Its base is . Let's note , and
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Let's develop the M4 2n+1 model by using the virtual power principle for the static case. The kinetic fields are given by n velocity fields. We choose a virtual velocity field for which each layer of the laminate has its own in-surface motion, but with the same orthogonal velocity for all the layers:

(1)

The external virtual power and the internal virtual power can be written as follows:
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(2) By noting and ( ; ), and and we have:

(3)

The internal virtual power can be written as follows:

(4)

The choice of the virtual velocity field leads to:

(5)

By taking into account the virtual in-surface velocity field discontinuities at the interfaces between layers and the virtual velocity field form, becomes:

In the expression of the virtual internal power, we recognize the following generalized stress fields: (7) the components of membranar stress tensor in the layer number i.

Q α (x, y) = σ α 3 (x, y, z)dz h 1 - h n + ∫ α=1,2 (8) 
the components of the vertical shear in the multilayered plate.

(9) the interlaminar shear stresses at the interface number i,i+1 (i=1,n-1).

By introducing ( 7), ( 8) and ( 9) in (6) the internal virtual power becomes: (10) The application of the virtual power principle in the static case leads to equilibrium equations (11) and boundary conditions ( 12): (11) where and (α=1,2).
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where is the normal vector at a point (x,y) of the boundary .

We can see from the equilibrium equations that the two first equations are the same that in the Shear-lag analysis. Nevertheless, the equation related to the orthogonal direction doesn't exist in the Shear-lag model. We have then 2n+1 equilibrium equations in our model and the Shearlag has 2n.

In order to identify the generalized constitutive law, we need to imagine the form of the stress field components. We will then assume that the 3D stress field components can be approximated by polynomial functions of z. We can notice that because the layer thickness in multilayered plates is generally very small, the in-surface 3D stress field components can be approximated by that is constant in z in each layer:

σ αβ app (x, y, z) ≈ 1 e i N αβ i (x, y) z ∈ h i -, h i + ⎡ ⎣ ⎤ ⎦ i=1,n α,β=1,2 (13) 
By using the 3D equilibrium equations, we find that the shear stress field components can be approximated by that is linear on z in each layer. As and , is then a piecewise linear function of z:

(14)
The relation ( 14) leads to the next form for the vertical shear in the multilayered plate ( 8):
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The component of the stress tensor can therefore be aproximated with the help of the third 3D equilibrium equation by a parabolic function of z in each layer. We are not interested in what follows by the expression of because it does not appear in the internal virtual power. Furthermore, its contribution to the elastic energy will be neglected.

The generalized strain appears as the associated factors of the generalized stresses in the internal virtual power when the virtual velocity field is taken equal to the displacement field. If the displacement field is: u(x, y, z) == u α (x, y, z)e α + w(x, y, z)e 3 α=1,2 (16) and if we note the average components of the displacement field: (17) The internal power for this displacement field is: (18) We can identify the following generalized strain associated to the membranar stress tensor in each layer: (19) that we call the in-surface deformation tensor in each layer. We can also identify the generalized strain associated to the interlaminar shear stress at each interface:

(20) that we call the shear deformation at each interface between two layers.

We can notice that in the Shear-lag analysis, the shear deformation is only related to the difference of the in-surface displacements and not to the derived expressions of the orthogonal displacement.

The identification of the generalized constitutive law is then classical. Let's write the elastic energy associated to the real stress field . The approximate constitutive law of the M4 2n+1 model is finally written:

(24)

(25)

We have put in obviousness in this model a coupling between the different interfaces in the compliance matrix of the M4 2n+1 model. That makes an other difference with the shear-lag analysis that has no coupling between interfaces.

Finally, we've just built a model for which the generalized stresses are the membranar stress tensor for each layer (7) and the interlaminar shear stress vector for each interface (9). These generalized stresses have to verify equilibrium equation ( 11) and boundary conditions (12).

The associated generalized strains are the in-surface deformation tensor in each layer ( 19) and the shear deformation vector at each interface between layers (20). The approximate constitutive law is given by equations ( 24) and ( 25).

We can notice that we have choosen a virtual motion (1) that do not take into account the flexure of each layer. The model we build will of course take into account the flexure of the whole multilayered plate

With the M4 2n+1 model we have just presented, it is possible to establish analytical solutions for simple cases which can be used to validate the M4 2n+1 model. The example we present consists in comparing for a multilayered medium constituted of a (0°,90°,0°) laminate, the deflexion and the shear stresses obtained by the M4 2n+1 model and by classical multilayered plate theories.

EXAMPLE : CYLINDRICAL BENDING

In this example, we compare the deflection and the shear stresses obtained for a multilayered plate submitted to cylindrical bending by the M4 2n+1 model, by the Love-Kirchhoff and the Reissner multilayered plates models (Berthelot 2 ) and by the exact solution of Pagano [START_REF] Pagano | Exact solutions composites laminates in cylindrical bending[END_REF] . We choose for that a multilayered plate constituted of a (0°, 90°, 0°) laminate infinitly width and loaded by a pression applied on its upper face. The We number layers from 1 to 3 from the bottom to the top. Let's note h/4 the thickness of the layer 1 and 3 and h/2 the thickness of the layer 2. According to the plate geometry and to the loading symetries, the displacement fields ( 17) can be simplified to:

(26)

By using the equilibrium equations ( 11), boundary conditions ( 12), the generalized constitutive law (24), ( 25) and the form of displacement (26), we obtain, after solving a differential system the maximum deflexion and the maximum interlaminar shear stresses:

(27) (28) 
where and and are the shear modulus in the (x 1 x 2 ) plan.

The maximum deflexion obtained with the M4 2n+1 model can be compared to the maximum deflexion obtained by several classical plate theories:

v The Love-Kirchhoff plate multilayered theory (Berthelot 2 ) leads to the following maximum deflexion:

(29)

v The Reissner plate multilayered theory (Berthelot 2 ) leads to the following maximum deflexion:

(30

)
where k is a corrective factor introduced in the transverse behaviour relationship to take into account in different ways some effects of the vertical shear in multilayered plates. In the literature (Berthelot 2 ) we often find these different values of k -k=1, 2/3 and 5/6 -.

v The Pagano's exact solution in cylindrical bending [START_REF] Pagano | Exact solutions composites laminates in cylindrical bending[END_REF] . We can notice that the M4 2n+1 model gives a good prediction of the shear stress evolution in the thickness even for thick multilayered plates (i.e. when the ratio is small). We remarque also that the approximate maximum shear stress calculated with the M4 2n+1 model is greater than the exact shear stress determined by Pagano. The M4 2n+1 model prediction is in the security side because the model overestimates the interlaminar shear stress.

CONCLUSION

We have proposed in this paper a new model to calculate the interlaminar stresses in a multilayered medium, the M4 2n+1 model. It is more general than the shear-lag's (Garett & Bailey [START_REF] Garett | Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyster[END_REF] ) and simpler than the Pagano's global-local model (Pagano & al [START_REF] Pagano | Global-local variationnal model[END_REF] ). We have presented the equations of the model and established an analytical solution.

In the presented example, we have shown that the M4 2n+1 model gives good prediction of the maximum deflexion and the shear stress for a cylindrical bending multilayered plate problem. The case of a (0°, 90°, 0°) laminate was studied. Otherwise, it is possible to build other models with an increasing number of generalized displacements. In (Chabot 4 ), many models are developped showing that while we increase to number of kinematic fields, we obtain a better description of the interlaminar stresses. In this family of models, the M4 2n+1 model is a pertinent tool because we can have a quick and good estimation of interlaminar shear stresses.
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  s note the boundary of . The boundary of can be divided in three parts: v The boundary of the plate v The upper face Γ + = ω × h n + { } The lower face The multilayered plate is submitted to the following external forces: v Volumic forces in : where is a point of v Surfacic forces on Γ :

  the compliance tensor of the layer number i. Each layer being orthotropic, this expression can be written as (if we assume that the axis 3 is an orthotropic axis):(22)Let's assume that the contribution of to elastic energy is negligible. After replacing by its approximation in function of the components of the generalized stress fields (equation18 & 19) of the M4 2n+1 model, the approximate elastic energy can be written as:(23)
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