
HAL Id: hal-01545421
https://hal.science/hal-01545421v1

Preprint submitted on 22 Jun 2017 (v1), last revised 25 Sep 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A rotation-based branch-and-price approach for the
nurse scheduling problem

Antoine Legrain, Jérémy Omer, Samuel Rosat

To cite this version:
Antoine Legrain, Jérémy Omer, Samuel Rosat. A rotation-based branch-and-price approach for the
nurse scheduling problem. 2017. �hal-01545421v1�

https://hal.science/hal-01545421v1
https://hal.archives-ouvertes.fr


A rotation-based branch-and-price approach for the nurse scheduling
problem
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Abstract

In this paper, we describe an algorithm for the personalized nurse scheduling problem. We focus on the
deterministic counterpart of the specific problem that has been described in the second international nurse
rostering competition. One specificity of this version of the problem is that most constraints are soft,
meaning that they can be violated at the price of a penalty. The feasible space is thus much larger,
which involves much more difficulty to find the optimal solution. We model the problem as a an integer
program (IP) that we solve using a branch-and-price procedure. This model is, to the best of our knowledge,
comparable to no other from the literature, since each column of the IP corresponds to a rotation, i.e., a
sequence of consecutive worked days for a nurse, and not to a complete individual roster. We tackle instances
involving up to 120 nurses and 4 shifts over an 8-weeks horizon by embedding the branch-and-price in a
large-neighborhood-search framework. Initial solutions of the large-neighborhood search are found by a
rolling-horizon algorithm, well-suited to the rotation model.

Keywords: nurse scheduling problem, column-generation, decomposition, branch-and-price,
large-neighborhood search, rolling horizon

1. Introduction

1.1. The nurse scheduling problem
For several years, hospitals have been facing increasing shortages in most western countries, either in

terms of finance or resources: beds, nurses, etc. Hence, they are often unable to provide the expected level
of service. These difficulties can be tackled in two different ways: either increase, or make better use of the
available resources. Given the slow increase of the budget allocated to healthcare, hospitals have no other
choice than improving the use of their resources. Among the main challenges is the shortage of nurses.

We tackle here the nurse scheduling problem (NSP), i.e., the design of the schedule of a nursing service so
as to satisfy the needs of the hospital and all operational constraints at minimal cost. In the NSP, the cost
of a schedule is the sum of penalties such as extra-hours, under-coverage, etc. A fair deal of the complexity
of the NSP can be attributed to the personalized aspect of the rosters: the same schedule may indeed have
very different costs if given to one nurse or another, because they have different contracts or preferences on
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days off. The NSP has been widely studied for more than two decades. The reader is referred to [6] for a
review on models and solution methods. Among the numerous approaches, we focus here on those based on
integer programming techniques.

In most integer programs (IPs) that model the NSP, the columns of the constraint matrix correspond
to individual rosters, and the linear constraints to global requirements such as minimal staffing levels. Most
constraints are therefore partitioning equalities (or covering inequalities), each of them ensuring that a given
task is performed by a sufficient number of nurses. Due to the length of the planning horizon and the number
of different tasks that may be performed by each nurse, it is impossible to enumerate all columns beforehand
and solve the resulting IP with integer programming algorithms such as branch-and-bound. To palliate this
numerical obstacle, one restricts the number of columns in the problem at first and, at each node of the
branch-and-bound tree, the linear relaxation is solved by column generation; the resulting algorithm is
called branch-and-price. For more details on the implementation of branch-and-price techniques, the reader
is referred to [2]. In scheduling applications, the generation of new columns is usually based on the solution
of a shortest path problem with resource constraints (SPPRC); its solution either yields a new column of
negative reduced cost or asserts that the optimal solution of the restricted linear relaxation is optimal for
the nonrestricted version. The reader can find an overview of column-generation algorithms in [8] and a
comprehensive review on SPPRC in [14].

To the best of our knowledge, the first published attempt to tackle the NSP by means of branch-and-
price dates back to 1998 [15]. The authors develop a generic framework that handles a large variety of
families constraints. New columns are generated by solving a SPPRC that involves up to seven different
constraints. In [1], the authors stress the personalized facet of the problem. New schedules are generated
by a swap heuristic and their feasibility is checked a posteriori (whereas SPPRC generally only produces
feasible schedules). The authors of [16] use a two-phase algorithm for the roster-generation procedure: they
only solve the SPPRC when a heuristic procedure fails to find columns of negative reduced cost. They
also undertake a detailed study of 15+ different branching rules on one or several variables. The pricing
subproblem can also be solved with constraint programming, as in [13]. Finally, in [5], columns are generated
by solving a SPPRC with an innovative heuristic based on dynamic programming (the heuristic part can
however be deactivated for an exact solution). They also stress the importance of dual variables stabilization
techniques to reduce the number of calls to the subproblem. Among other important works is [3] where the
authors treat nurse and surgery scheduling by branch-and-price in an integrated approach.

1.2. Main contributions
In this article we deal with a static version of the NSP described in the second international nurses

rostering competition (INRC–II). The methods we implement are motivated by the following two properties
of this version of the NSP. First, every nurse is different, because he/she has his/her own past planning,
preferences for days off, and work contract. This would make most techniques based on an aggregation
of similar nurses inefficient. What is more, there is only a small part of hard constraints. The remaining
constraints can all be violated at the price of a penalty. As a consequence, it is relatively easy to find feasible
schedules, but very difficult to find an optimal one (and prove that it indeed is optimal). We thus developed
a solution approach that takes these specificities into account.

Modeling approach. All previously-mentioned works that solve the NSP with branch-and-price algorithms
share the same modeling approach: the pricing subproblem generates complete rosters and decision variables
indicate wether these complete rosters are to be used in the solution. In our work, we do not generate com-
plete rosters but partial rosters, that are called rotations (this denomination comes from the transportation
industry where similar modelling is commonly used, see [11]). A rotation describes a sequence of worked
shifts on consecutive days that should be preceded and followed by at least one rest day; it does not specify
the skill used by the nurse on each shift. The IP then builds complete schedules for the nurses from the
existing rotations, and allocates the skills that they must perform. Personalized rotations are then generated
by solving a SPPRC for each nurse.

To the best of our knowledge, it is the first attempt to address the NSP with a rotation-based model.
Our motivation for choosing this approach is to counter the effect of soft constraints by reducing the size
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of the search space and decrease the complexity of the subproblems. This change of paradigm also led to
the development of new branching rules (Section 4.3) and to structural modifications of the network of the
pricing step (Section 4.2). The separation of the allocations of shifts and skills is independent from the
partial-roster approach. This decomposition, as well as the flow-model that we introduce to solve the skills
allocation problem (Section 3.3) are also part of the methodological contributions of this work.

Large-neighborhood search and rolling horizon. In the aim of solving large instances, we embed the branch-
and-price procedure within an adaptive large neighborhood search procedure (ALNS) described in Section 5.
The ALNS is a local search where the neighborhood of a feasible solution is obtained by sequentially
destroying and repairing a part of the solution. The repair phase is classically overdone by solving to
optimality a reduced counterpart of the problem where the non-destroyed part of the solution is fixed. In
our implementation of the ALNS, we either destroy the complete schedules of a limited number of nurses or
partial schedules of a larger number of nurses. Local improvements of the initial solution are then realized
by solving the restricted problem corresponding only to the destroyed schedules with our branch-and-price
algorithm.

We also develop several primal heuristics based on our branch-and-price procedure to find the initial
solution of the ALNS. Among them is a rolling-horizon method which sequentially computes weekly schedules
in chronological order until the complete planning horizon is scheduled. One of the key challenges in rolling-
horizon methods is the accurate estimation of the impacts of the decisions on the future. When computing
the schedule of a given week, we thus include the following weeks in the problem but we relax the integrality
constraints of variables corresponding to the future to accelerate the algorithm.

Implementation and numerical results. The algorithms described in this article are implemented in C++
and call only free and open third party libraries. The resulting code is publicly shared1 for reproduction of
the results, future comparisons, improvements and extensions.

Our numerical tests are all based on the instances of the INRC–II. These instances consider 30 to 120
nurses whose schedules must be computed over a planning horizon of either four or eight weeks. The demands
relate to up to four different skills and each day is divided into four shifts. We conduct an experimental
comparison of several initialization methods for the LNS, and study the sensitivity of the LNS to the choice
of the search neighborhoods. Although we were not able to prove the optimality of the solutions found for
these instances, we show that a rolling horizon method can be advantageously used to find an initial solution
with an average integrality gap of 19.3%, and the LNS is able to reduce this value to an average 10.9% gap.

1.3. Organization of the paper
The remainder of this paper is organized as follows. The exact description of the NSP that our method

can solve is given in Section 2. The rotation-based model of the NSP and the resulting formulation (IP) are
described in Section 3. In Section 4, we briefly describe the branch-and-price algorithm and the underlying
decomposition, and we specify the branching strategies and the pricing method we implemented. The
LNS procedure, including the rolling-horizon method to find the initial solution and the choice of the
neighborhood, is expounded in Section 5. In Section 6, we report numerical results that demonstrate the
relevance of our approach. Section 7 provides concluding remarks.

2. Description of the problem and notations

The specific version of the NSP we consider is based on that proposed by Ceschia et al. [7] in the INRC–
II. While the problem is stated as a dynamic one in [7], where only a part of the information is given at each
stage of the solution process, here we consider its static version where all information is available beforehand.

We wish to compute the schedules of a set N of nurses over a planning horizon of M weeks (or K = 7M
days). The nurses can perform different skills and each day is divided into shifts. The sets of all skills and

1The code implementing the methods described in this article is publicly shared on the Git repository https://github.
com/jeremyomer/StaticNurseScheduler
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shifts are respectively denoted Σ and S. For the sake of readability, indices are standardized in the following
way: nurses are denoted as i ∈ N , weeks as m ∈ {1 . . .M} , days as k ∈ {1 . . .K} , shifts as s ∈ S and skills
as σ ∈ Σ. Finally, (k, s) denotes the shift s of day k, and is abusively called “shift (k, s)”. All other data is
summarized in Table 1.

Nurses
L−i , L+

i min./max. total number of worked days over the planning horizon for nurse i
CD−i , CD+

i min./max. number of consecutive worked days for nurse i
CR−i , CR+

i min./max. number of consecutive rest days for nurse i
Bi max. number of worked week-ends over the planning horizon for nurse i
βi 1 if nurse i must work zero or both days on week-ends, 0 otherwise
Πi set of shifts (k, s) that nurse i wishes to have off
Shifts
CS−s , CS+

s min./max. number of consecutive assignments on shift s
F̄ set of forbidden shift successions
Demand
Dsk
σ min. demand in nurses performing skill σ on shift (k, s)

Oskσ optimal demand in nurses performing skill σ on shift (k, s)

Table 1: Summary of the input data.

Remark (Initial state). For practical reasons, it is necessary that the algorithm can handle an initial state,
e.g., the information on the end of a previously worked time period. For the sake of clarity, we do not
take it into consideration in the description of the method although our software handles it; the incumbent
modifications on the models and the algorithm are straightforward and of no particular interest for the reader.

The exhaustive enumeration of every constraint that can be found in the literature on NSPs would
form a never-ending list that we do not intend to handle. We choose the set of constraints proposed by
the organizers of the INRC–II in [7] for the following main reasons: (1) they all are usual constraints that
nursing services face in practice and (2) they allow us to tackle the benchmark released by the organizers
of this competition. This benchmark contains a huge number of instances (scenarios can be generated at
will by combining weeks together), including large instances (up to 120 nurses) and enough constraints to
make the instances close to industrial ones. Some constraints are hard, i.e., they may never be violated by a
feasible solution; others are soft, i.e., they may be violated at the cost of a penalty. The objective function
that we minimize is the sum of these penalties.

The specificity of this benchmark is that most constraints are soft. This eases the search for a feasible
solution, but it makes the pursuit of optimality more difficult. The constraints and their types (hard/soft)
are described in Table 2. The unit weight (i.e. the penalty) associated with a soft constraint SX in the
objective function is denoted as cX . For constraint S2, the unit weights for consecutive working days and
consecutive shift are respectively denoted c2a and c2b.

3. Rotation-based model for the nurse rostering problem

The aim of this section is to describe the NSP as an IP whose main decision variables correspond to the
choice of the rotations performed by each nurse. First, we provide some vocabulary needed in the rotation-
based formulation (Section 3.1). Assuming that the rotations can be enumerated, it is necessary to build a
valid sequence of rotations and rest periods that covers the entire planning horizon for each nurse, and to
choose the specific skill used by each nurse on each worked shift. These two sub-problems are formulated
as flow models in Sections 3.2 and 3.3. The complete model described in Section 3.4 includes these flow
constraints and the soft constraints relative to the complete planning horizon (S6 and S7).
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Hard constraints
H1 Single assignment per day: A nurse can be assigned at most one shift per day.
H2 Under-staffing: The number of nurses performing skill σ on shift (k, s) must be at least equal to

the minimum demand Dsk
σ .

H3 Shift type successions: If (s1, s2) ∈ F̄ , a nurse cannot work on shift s1 on one day, and on shift
s2 on the next day.

H4 Missing required skill: A nurse can only cover the demand of a skill that he/she can perform.
Soft constraints
S1 Insufficient staffing for optimal coverage: The number of nurses performing skill σ on shift

(k, s) must be at least equal to the optimal demand Oskσ . Each missing nurse is penalized according
to the unit weight but extra nurses above the optimal value are not considered in the cost.

S2 Consecutive assignments: For each nurse i, the number of consecutive assignments should be
within [CD−i , CD+

i ] and the number of consecutive assignments to the same shift s should be within
[CS−s , CS+

s ]. Each extra or missing assignment is penalized by the unit weight.
S3 Consecutive days off : For each nurse i, the number of consecutive days off should be within

[CR−i , CR+
i ]. Each extra or missing day off is penalized by the unit weight.

S4 Preferences: Each assignment of a nurse i to an undesired shift (s, k) ∈ Πi is penalized by the
unit weight.

S5 Complete week-end: Every nurse i that has the complete weekend value set to true (βi = 1),
must work both days of the week-end or none of them. If he/she works only one of the two days
Saturday or Sunday, it is penalised by the unit weight.

S6 Total assignments: For each nurse i, the total number of assignments (worked days) must be
within [L−i , L+

i ]. The difference (in either direction), multiplied by the unit weight, is added to the
objective function.

S7 Total working week-ends: For each nurse i, the number of week-ends with at least one assigne-
ment must be less than or equal to Bi. The number of worked week-ends over that limit multiplied
by the unit weight is added to the objective function.

Table 2: Constraints handled by the software.

3.1. Rotations: definitions and notations
To formulate our mathematical model for the NSP, we first introduce some notations and vocabulary.

The roster of a nurse is his/her schedule for the planning horizon, i.e., a list of assignments (day, shift and
skill) that the nurse should perform during the planning horizon. A day with no assignment is a rest day
(sometimes denoted as day off ). Each individual roster satisfies constraints H1, H3 and H4, and the set of
all rosters satisfies H2. A rotation is a list of shifts (k, s) from the roster that are performed on consecutive
days, and preceded and followed by a rest day. It is important to note that a rotation does not contain
any information about the skills performed on these shifts. A roster is therefore a sequence of rotations,
separated by nonempty rest periods, to which skills are added (see Example 1).

A rotation is feasible if it respects the single assignment and succession constraints H1 and H3. Besides,
the cost of a self-standing rotation can only cover the penalties associated with the soft constraints S2, S4
and S5. Indeed, the penalties associated to the other soft constraints either require the nurse’s schedule
over the complete planning horizon (rest periods, total assignments/week-ends), or data about the complete
pool of nurses (staff coverage).

Example 1. Consider the following single-week roster:

Day 0 1 2 3 4 5 6

Shift Early Day Rest Rest Night Night Rest
Skill performed HN HN - - N HN -

,
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where N stands for nurse and HN for head nurse. The rotations of this roster, highlighted on the table above,
are ((0, Early), (1, Day)) and ((4, Night), (5, Night)).

For i ∈ N , the set of every feasible rotation for nurse i is denoted Ωi and the cost of rotation j ∈ Ωi is
denoted as cij . Our model for the NSP is based on the computation of feasible rotations for each nurse. In
the rest of the present section, we suppose that we can enumerate the set of all rotations Ωi for every nurse
i ∈ N . In practice, rotations are generated and added to the problem iteratively, as described in Section 4.2.

Furthermore, the type of a nurse i, denoted ti, is the subset of Σ that contains the skills that this nurse
can perform. For any skill σ ∈ Σ, Nσ denotes the set of nurses that are able to perform σ. Similarly, for
any type t ∈ T , Nt denotes the set of nurses with the exact type t. Finally, the set of types that include
skill σ is denoted as T σ.

3.2. A flow model for the creation of individual rosters
In this section, we describe how we build a roster over the complete planning horizon from the set Ωi of

feasible rotations for nurse i ∈ N . We use a directed network over which the problem of building the skill-
less roster of a given nurse i can be modeled as a single-unit flow problem. This network is called rostering
graph of nurse i. By skill-less roster, we mean that it does not specify which skill the nurse performs on the
shifts he/she works.

In essence, a vertex of this weighted graph corresponds to a day and an arc corresponds either to a
rotation or to a rest period. A path from the source to the sink therefore yields a sequence of rotations
separated by rest periods, hence a roster. The detail of the vertices and arcs of the rostering graph of a nurse
is given on Table 3. The flow conservation constraints are given with the complete model in Section 3.4
(constraints (1b)–(1d)). The cost of a path is the sum of the penalties that can be represented as weights on
the arcs. As a consequence, it aggregates the individual costs of rotations and rest periods (soft constraints
S2, S3, S4 and S5), but it cannot reflect the soft constraints S6 and S7 that deal with the complete
planning horizon. Moreover, this graph deals with one specific nurse, so it does not include the linking
staffing constraints. These two remaining groups must be added to the model on top of the flow constraints
(see Section 3.4). An example of rostering graph is given in Figure 1 for a 7-days planning horizon and
CR+

i = 4.

Vertices source, sink One source node, one sink node.
rest nodes For each day k, one rest node Rik.
work nodes For each day k, one work node Wik.

Arcs rotation arcs [xij ] For each rotation j ∈ Ωi starting on day ks and ending on day
ke, one arc (Wike , Riks) with cost cij (S2 + S4 + S5) is added.
When several rotations share the same starting and ending days,
parallel arcs added.

min. rest arcs [rikl] For each pair of days (k, l) ∈ {1 . . .K} 2 such that k < l and
(l − k) ∈

{
1, . . . ,CR+

i

}
, one arc (Rik,Wil) is added with cost

c
i(l−k)
3 = max{0, c3

(
CR−i − (l − k)

)
} (min. consecutive days off

penalty associated with S3).
max.rest arcs [rik] For each day k ∈

{
CR−i , . . . , (K − 1)

}
, one arc (Wik,Wi(k+1))

with cost c3 is added. These arcs are only used when the maxi-
mum consecutive number of rest days CR+

i is exceeded.
artificial flow arcs Arcs from the source to Ri1 and Wi1, and arcs from RiK and

WiK to the source are added at no cost.

Table 3: Description of the vertices and arcs of the rostering graph of nurse i ∈ N . The notations indicated between brackets
are the names of the corresponding flow variables used in the model of Section 3.4.
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Ri1 Ri2 Ri3 Ri4 Ri5 Ri6 Ri7

Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7

S
1

T
1

Figure 1: Example of a rostering graph for nurse i ∈ N over an horizon of K = 7 days, where the maximum number of
consecutive rest days is CR+ = 4. The rotation arcs are the plain arrows, the rest arcs are the dotted arcs, and the artificial
flow arcs are the dashed arrows.

3.3. A flow model for the allocation of the skills
The rostering graph does not determine the skill a nurse uses on a given worked shift. Rather than

allocating them individually, for each shift (k, s) and skill σ, we determine the number nsktσ of nurses of
type t that perform skill σ on shift (k, s), for all t ∈ T . This information is sufficient, because the nurses
with the same type that work on the same shift are locally equivalent (i.e., equivalent on this particular
shift) since they can perform exactly the same skills – by definition of a type.

Recall that T σ denotes the set of types including skill σ. Introducing zskσ ≥ 0 as the number of missing
nurses to reach the optimal demand Oskσ (0 if this optimal demand is satisfied), the skill-related constraints
can thus be written as follows:

H2
∑
t∈T σ n

sk
tσ ≥ Dsk

σ , ∀s, k, σ, [under-staffing]

H4
∑
i∈Nσ,j a

sk
ij xij −

∑
σ∈ΣT t n

sk
tσ = 0, ∀s, k, t, [missing required skill]

S1
∑
t∈T σ n

sk
tσ + zskσ ≥ Oskσ , ∀s, k, σ, [optimal staffing]

where askij = 1 if the rotation j ∈ Ωi of nurse i covers shift (k, s) and 0 otherwise. The penalty associated
with constraint S1 is thus c1

∑
s,k,σ z

sk
σ .

Proposition 1. Assume that all xij take integral values. Then, any extreme solution nsktσ of the set of linear
constraints above ( H2, H4, S1) is also integral.

Proof. From the integer programming theory, we know that all extreme solutions to a min-cost flow problem
with integral inputs/outputs are integral. We show here that the allocation of skills can be described by a
min-cost flow problem in a bipartite graph with integral inputs/outputs. The two sets of vertices of this
bipartite graph are T and Σ. For a type t and a skill σ, (t, σ) is an arc of the graph if and only if σ ∈ t.
The incoming flow at node t is

∑
i∈Nσ,j a

sk
ij xij , and the flow exiting node σ must be greater or equal to Dsk

σ .
Since these terms are integral, the proposition holds. An example of such a graph is given in Figure 2.

3.4. Integer Programming formulation
In this section, we summarize our IP for the NSP, based on the rotations previously defined. The complete

model is given by the equations (1a)–(1l). Unless stated otherwise, the indices belong to the following sets:
i ∈ N , k, l ∈ {1 . . .K} , s ∈ S, t ∈ T , σ ∈ Σ, and for each nurse i, j ∈ Ωi. The greek letters indicated
between brackets (α, β, γ and δ) denote the dual variables associated with these constraints. Only the
dual variables associated with constraints where xij variables appear are needed in the rotation-generation
procedure, therefore, we only provide notations for those. It includes the aformentioned flow constraints
from the rostering graph of Section 3.2, and the allocation constraints of Section 3.3.

Parameters and variables. All the parameters and variables used in the IP are described in Table 4. The
complete list of parameters should also include the input data given in Table 1.
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t1 =
{HN, N}

t2 =
{N, C}

t3 =
{C}

HN

N

C

=
∑

i∈Nt1 ,j

ask
ij
xij

=
∑

i∈Nt2 ,j

ask
ij
xij

=
∑

i∈Nt3 ,j

ask
ij
xij

nsk
t1,HN

nsk
t1,N

nsk
t2,N

nsk
t2,C

nsk
t3,C

≥ Dsk
HN

≥ Dsk
N

≥ Dsk
C

Figure 2: Example of a graph for the skill allocation problem. Here, the set of skills is Σ = {Head Nurse (HN), Nurse (N),
Caretaker (C)}, and the three possible types are t1 = {Head Nurse, Nurse}, t2 = {Nurse, Caretaker}, and t3 = {Caretaker}.
Dashed arcs show the flow constraints that must be satisfied (H4 on the left, and H2 on the right of the figure).

Parameters
cij sum of the soft penalties S2, S4 and S5 associated with rotation j of nurse i
cikl3 soft penalty S3 associated with the rest arc (Wik,Wil)
askij = 1 if nurse i works on day k, shift s in rotation j, 0 otherwise
akij = 1 if nurse i works on day k in rotation j, 0 otherwise (i.e., =

∑
s a

sk
ij )

bmij = 1 if weekend m is worked in rotation j of nurse i, 0 otherwise (i.e., = max(a7m−1
ij , a7m

ij ))
f−ij , f

+
ij first and last worked days of rotation j of nurse i

Variables
xij ∈ {0, 1} = 1 if and only if rotation j is part of the schedule of nurse i
rik ∈ {0, 1} = 1 if and only if nurse i rests on day k and has already rested for at least CR+

i

consecutive days before k (cost: c3)
rikl ∈ {0, 1} = 1 if and only if nurse i has a rest period from day k to l − 1 including at most

CR+
i consecutive days (cost: cikl3 )

w+
i (w−i ) ∈ N number of days worked above (below) L+

i (L−i ) by nurse i
vi ∈ N number of weekends worked above Bi by nurse i
nskσ ∈ N number of nurses performing skill σ on shift (k, s)
nsktσ ∈ N number of nurses of type t performing skill σ on shift (k, s)
zskσ ∈ N number of missing nurses performing skill σ on shift (k, s)

Table 4: Parameters and variables of the IP (Formulation 1).

Objective and constraints. The objective function (1a) is the sum of 5 terms: the cost of the chosen rotations
in terms of consecutive assignments and preferences (S2, S4, S5), the minimum and maximum consecutive
rest days violations (S3), the total number of assignments violation (S6), the total number of worked week-
ends violation (S7), and the insufficient staff for optimal coverage (S1). Constraints (1b)–(1d) are the flow
constraints of the rostering graph of each nurse i ∈ N . Constraints (1e) and (1f) measure the distance
between the number of worked days and the authorized number of assignments: the nonnegative variables
w+
i and w−i respectively represent the number of missing days when the minimum number of worked days

L−i is not reached and the number of worked days over the maximum allowed when the total number of
days worked exceeds the maximum L+

i . Constraints (1g) measure the number of worked weekends exceeding
the maximum Bi (corresponding variable: vi ≥ 0). Constraints (1h)–(1j) ensure a valid allocation of the
skills among nurses of a same type for each day and shift and have already been presented in Section 3.3.
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Constraints (1k) and (1l) ensure the integrality and the nonnegativity of the decision variables. From
constraint (1i), we know that the zskσ are integer whenever the nsktσ are. Furthermore, from Proposition 1,
we know that the integrality of the nsktσ is a consequence from that of the xij . Therefore, xij ∈ N and
zskσ , n

sk
tσ ∈ R is sufficient to ensure the integrality of all these variables.

min
∑
i,j

cijxij︸        ︷︷        ︸
S2,S4,S5

+
∑
i,k

(
c3rik +

∑
l

cikl3 rikl

)
︸                                ︷︷                                ︸

S3

+ c6
∑
i

(w+
i + w−i )︸                   ︷︷                   ︸

S6

+ c7
∑
i

vi︸      ︷︷      ︸
S7

+ c1
∑
s,k,σ

zskσ︸         ︷︷         ︸
S1

(1a)

subject to:

[H1,H3]
max(K+1,k+Ri)∑

l=k+1
rikl −

∑
j:f+

ij
=k−1

xij = 0, ∀i,∀k [αRik] (1b)

[H1,H3] rik − ri(k−1) +
∑

j:f−
ij

=k

xij −
k−1∑

l=max(1,k−Ri)

rilk = 0, ∀i, ∀k [αWik ] (1c)

[H1,H3]
K∑

l=1,K+1−Ri

rilK + riK +
∑

j:f+
ij

=K

xij = 1, ∀i [αi(K+1)] (1d)

[S6]
∑
j,k

akijxij + w−i ≥ L
−
κi , ∀i [β−i ] (1e)

[S6]
∑
j,k

akijxij − w+
i ≤ L

+
κi , ∀i [β+

i ] (1f)

[S7]
∑
j,m

bmijxij − vi ≤ Bκi , ∀i [γi] (1g)

[H2]
∑
t∈T σ

nsktσ ≥ Dsk
σ , ∀s, k, σ (1h)

[S1]
∑
t∈T σ

nsktσ + zskσ ≥ Oskσ , ∀s, k, σ (1i)

[H4]
∑
i∈Nt,j

askij xij −
∑

σ∈ΣT t

nsktσ = 0, ∀s, k, t [δskt ] (1j)

xij ∈ N, zskσ , nsktσ ∈ R, ∀i, j, s, k, t, σ (1k)
rikl, rik, w

+
i , w

−
i , vi ≥ 0, ∀i, k, l (1l)

4. Solution of the integer program by branch and price

A branch-and-price algorithm embeds a column generation within a classical branch-and-bound scheme
to solve linear programs with integrality constraints. In this framework, every linear relaxation that occurs
in the branching tree is solved by column generation and specific branching rules are designed. The reader
looking for more details on both column generation and branch and price is referred to the textbook of
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Desaulniers et al. [8]. In Section 4.1, we describe the overall column generation scheme that we implemented
to solve the linear relaxation of Formulation (1a)–(1l). In Section 4.2, we describe our model for the pricing
subproblem. In Section 4.3, we detail the branching rules implemented in the branch-and-price algorithm.

4.1. Description of the column generation procedure
Suppose that for each nurse i ∈ N , a restricted number of rotations Ri ⊆ Ωi has already been generated.

The restricted master problem (RMP) is equal to the IP of Formulation (1a)–(1l) where Ωi is replaced by
Ri for all nurses i ∈ N . For the sake of simplicity, we assume that the linear relaxation of RMP, RMPLR,
is feasible – a feasible solution can always be obtained by adding artificial variables at prohibitive cost. Let
xLR be an optimal solution of RMPLR. The subproblem described in the following sections is then solved
to search for rotations of Ωi \ Ri with negative reduced costs. If at least one rotation of negative reduced
cost is generated for at least one nurse i, it is added to the restricted formulation; if none is found, xLR is
then proved to be optimal for the linear relaxation of Formulation (1a)–(1l).

The resulting decomposition of the constraints corresponding to our IP is summarized on Table 5. The
subproblems generate new rotations, while the master problem implements Formulation (1a)–(1l). The
only constraint that appears on both ends of the decomposition is the single-assignment-per-day constraint
H1: in the master problem, no pair of rotations with an assignment on the same day should be selected
for the same nurse, and in the subproblem, no rotation with two assignments on the same day should be
constructed.

Master Problem Subproblem
H1 Single assignment per day H1 Single assigmnent per day
H2 Under-staffing H3 Shift type succession
H4 Missing required skill S2 Consecutive assignments
S1 Optimal coverage S4 Preferences
S3 Consecutive days off S5 Complete week-end
S6 Total assignments
S7 Total working week-ends

Table 5: Decomposition of the constraints in the master and sub-problem.

4.2. Pricing subproblem
The pricing subproblem for the generation of rotations with negative reduced costs is modeled as an

SPPRC whose description is given below. The hard constraints of the subproblem are enforced by the
structure of the network, whereas the master problem’s dual costs and the penalties associated with the
preference and complete-week-end soft constraints define the arcs costs, as described in Section 4.2.1. As for
the consecutive assignments constraints they both correspond to the consumption of resources (consecutive
assignments) along the path defining a rotation. Due to the presence of upper and lower bounds and to
the possibility of violating these at the cost of a penalty, the soft constraints S2 require a special treatment
to be considered in an SPPRC. The corresponding modification we apply to the network are described in
Section 4.2.2, and we assess the resulting complexity of the best existing labeling algorithms on the resulting
network in Section 4.2.3.

4.2.1. Overview of the pricing problem network
We lay here the foundations of the pricing problem and present a basic version of the network of the

SPPRC. The graph that we describe here is very similar to many others met in scheduling applications.
For shift (k, s), a node Wks is created and each path from source to sink that goes through Wks involves
working on (k, s). The vertices and arcs of the network are detailed in Table 6 and a small example is given
in Figure 3
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Vertices [source], [sink] One source node, one sink node.
[shift nodes] For each day k and shift s, one node Wks.

Arcs [starting arcs] For each shift (k, s), one arc from source to Wks.
[successions] For each day k ≥ 1 and allowed shift succession (s1, s2) < F̄ , one arc(

W(k−1)s1 ,Wks2

)
.

[ending arcs] For each shift (k, s), one arc from Wks to sink.

Table 6: Description of the vertices and arcs of the basic version of the pricing network.

day 1

EARLY

LATE

NIGHT

day 2 day 3 day 4 day 5 day 6 day 7

SOURCE

SINK

to all
nodes

from all
nodes

Figure 3: Example of a network of the subproblem where S2 is not considered. Here, K = 7, S = {EARLY, LATE, NIGHT}
and the forbidden successions are F̄ = {(LATE, EARLY) , (NIGHT, EARLY) , (NIGHT, LATE)}.

By construction of the network of Figure 3, any path from the source to the sink corresponds to a
feasible rotation. To prove that an optimal solution of RMPLR, xLR, is optimal for the linear relaxation of
Formulation (1a)–(1l), it must be shown that no rotation, wether involved in RMPLR or not, is of negative
reduced cost at xLR. The idea is to compute the reduced cost of a rotation by simply adding up the costs
of its arcs in the network of the subproblem (Figure 3). A feasible rotation of lowest reduced cost is then a
shortest path from the sink to the source.

Proposition 2. Let j ∈ Ωi be a feasible rotation for nurse i ∈ N , ((kb, skb) , (kb + 1, skb+1) , . . . , (ke, se))
be the sequence of worked shifts in the rotation, and N j

we be the number of week-ends with at least one
assignment in the rotation. The reduced cost of rotation j is

c̄ij = cij︸︷︷︸
S2,S4,S5

+αWikb + αRike︸           ︷︷           ︸
(1b)−(1d)

+
(
β+
i + β−i

)
(ke − kb + 1)︸                              ︷︷                              ︸

(1e)−(1f)

+ γiN
j
we︸   ︷︷   ︸

(1g)

+
ke∑
k=kb

δskki︸       ︷︷       ︸
(1j)

, (2)

where the variables α, β, γ and δ are dual variables of Formulation (1a)–(1l).

Proof. The variable that corresponds to the rotation j ∈ Ωi in Formulation (1a)–(1l) is xij . It is then
sufficient to observe that the first term of (2) is the cost of the rotation and the remaining terms are the
sums of the dual variables associated with the constraints of (1a)–(1l) where xij appears weighted by the
coefficients of xij in these constraints.

Among the terms that define c̄ij (Equation (2)), the soft penalties S4, S5 and all dual costs can be
added directly as arc costs to the network presented before. The costs associated with the nonrespect of
the nurse’s preferences S4 result in the addition of a penalty c4 on all arcs whose endpoint is an undesired
shift. The penalty associated to the complete week-end constraint S5 is paid only if the rotation starts on
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a Sunday or ends on a Saturday, hence a cost c5 is added to every arc from the source to Sunday shifts and
from Saturday shifts to the sink. Now, for the dual costs, (β+

i + β−i ) must be paid for each assignment,
and δskki is paid for an assignment to shift (k, s), so we add (β+

i + β−i ) + δskki to the cost of the arc with
endpoint Wks for all (k, s). Then, αWikb and αRike correspond to the starting and ending shift of the rotation
so they are respectively added to every outgoing arc from the source and every incoming arc to the sink.
Finally, to penalize the number of week-ends with at least one assignment, we add γi to every incoming arc
to a Saturday shift and to every arc from the source to any week-end shift.

Contrary to the above costs, the penalties associated with the constraints on consecutive assignments
S2 cannot be attributed to one specific shift. Instead, they require to count the total number of shifts in
the rotation and the number of consecutive assignments to the same type of shift, and then penalize the
possible violations of lower and upper bounds on these values.

4.2.2. Modifications of the pricing network for consecutive assignments constraints
The classical method for “counting” a value over a path (e.g., the number of days) is to add a resource

that measures this value on the arcs; the aggregate value is then the sum of the values of the resource on the
arcs of this path [14]. The standard version of the SPPRC deals with acyclic digraphs where the resources
are weighted with positive integer values, and the aggregate value must remain below a given upper bound.
Lower bounds are usually associated with the start of time windows in delivery problems, but the vehicles
are allowed to wait for the beginning of the time window, which does not correspond to any reality in our
application. Instead, we need to deal with both lower and upper bounded soft constraints.

Upper and lower bounded soft constraints have already been considered in an SPPRC to solve variants
of the vehicle routing problem where it is forbidden to “wait” at a node. Dumas et al. [9] include soft time
windows to schedule deliveries in a network where the paths are already fixed. Braekers and Janssens [4]
modify a labeling algorithm to be able to apply dominance rules with soft time windows, and they apply
their algorithm to small toy instances. Qurashi et al. [19] solve the same variant of the SPPRC using several
heuristics without any guarantee of optimality and the same authors solve an IP to find an exact solution of
the problem [20]. The limit is that they fail in solving problems routing problems with more than 7 vehicles
and 25 customers.

Overall, the algorithmic impact of considering upper and lower bounded soft constraints is twofold. First,
the complexity for the standard SPPRC is O

(
A
∏
r∈RMr

)
, where A is the number of arcs in the network,

R is the set of resources, and Mr is the upper bound on resource r ∈ R [12]. This result relies on the
infeasibility of paths with resource values larger than the upper bound in the standard SPPRC. In our
case, though, soft constraints mean that the values of the resources can take higher values than the upper
bounds. Second, the labeling algorithms that efficiently solve the standard SPPRC rely on dominance rule
to converge quickly. Since the consecutive assignments are both upper and lower bounded, one can never
conclude on the dominance of one path towards another based on the value of a resource: a smaller number
of assignments is better with respect to the maximum, but worse with respect to the minimum, and the
inverse is true for a larger number of assignments.

For the above-mentioned reasons, we had rather modify the pricing network to reduce subproblems to a
standard SPPRC in a larger graph.

We describe here the modifications of the network that allow us to handle the penalties on the min/max
of consecutive days worked on the same shift (addition of network layers and arcs) and the min/max of
consecutive days worked (enumeration of short rotations and addition of a resource). The nodes and arcs
of the resulting network are described in Table 7. We then assess the complexity of the solution algorithm
for the subproblems in Section 4.2.3.

Remark. The above-mentioned difficulties with lower and upper bounded soft constraints also influenced
our choice not to generate full rosters but only rotations: each of the consecutive worked days/shifts/rest
days soft constraints require the addition of two resources (or additional network layers). In the rotation-
based model, rest days are set in the RMP, thus sparing the additional complexity in the solution of the
subproblem.
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Consecutive assignments to the same shift. The penalty for N consecutive assignments to a given shift s is
c2b
(
CS−s −N

)
if N < CS−s , 0 if CS−s ≤ N ≤ CS+

s , and c2b
(
N − CS+

s

)
if N > CS+

s . Instead of adding one
resource to penalize N when it is below CS−s and another when it is above CS+

s , we model this constraint
by adding network layers and arcs as follows. We duplicate each work node (Wks,∀(k, s)) CS+

s times; the
duplicates are denoted as Wn

ks, n = 1, . . . ,CS+
s . A path going through node Wn

ks will then correspond to a
rotation in which (k, s) is assigned and is either the n-th consecutive shift s, or at least the n-th one when
n = CS+

s .
For each type of shift s, the work nodes form a block Ws. We draw an example focussing on a specific

block on Figure 4. The arcs entering the block Ws denote the beginning of a sequence of assignments to the
shift s, and the arcs exiting from the block denote the end of this sequence. The first CS+

s − 1 assignments
to the shift s are associated with the plain arcs (Wn

ks,W
n+1
(k+1)s), and the subsequent assignments correspond

to the dotted horizontal arcs (WCS+
s

ks ,W
CS+

s

(k+1)s). A cost c2b is then added to the horizontal arcs because they
are used only when more than CS+

s consecutive assignments of the shift have occurred, whereas the costs
of the plain and diagonal arcs takes no penalty due to S2. Notice that the arcs exiting from the block only
leave from vertices WCS+

s

ks , k ∈ {1, . . . ,K}. To end a sequence of assignments to s before CS+
s consecutive

assignments, the path must then borrow a vertical dashed arc, which allows us to model the penalty incurred
if the number of consecutive shifts is too small (≤ CS−s ).

W 1
1

W 2
1

W 3
1

W 4
1

W 1
2

W 2
2

W 3
2

W 4
2

W 1
3

W 2
3

W 3
3

W 4
3

W 1
4

W 2
4

W 3
4

W 4
4

W 1
5

W 2
5

W 3
5

W 4
5

W 1
6

W 2
6

W 3
6

W 4
6

W 1
7

W 2
7

W 3
7

W 4
7

SOURCE

SINK

OTHER SHIFTS (day k − 1)

OTHER SHIFTS (day k + 1)

Figure 4: Example of a network of the subproblem of nurse i for a single shift s where S2 is considered. Parameters: K = 7,
CS+

s = 4, and CD−
i = 2.

Consecutive worked days. For nurse i ∈ N , the consecutive-worked-days penalty associated with a rotation
of length L is c2a

(
CD−i − L

)
if L < CD−i , 0 if CD−i ≤ L ≤ CD+

i , and c2a
(
L− CD+

i

)
if L > CD+

i . Given
that CD−i is small in practice (2 or 3), we handle the lower bound by enumerating the rotations of length
L < CD−i by dynamic programming. The reduced cost of these short rotations (L < CD−i ) is thus computed
as a preprocessing, and we modify the pricing network so that the arcs outgoing from the source correspond
to a sequence of CD−i consecutive worked days (called starting arcs in Table 7). No path in the network
represents a short rotation anymore and, therefore, there is no need to check the lower bound CD−i in the

13



network. We study the resulting complexity of this approach in Section 4.2.3.
To handle the upper bound, we then add a resource that counts (a lower bound on) the length of the

rotation. The value of this resource is CD−i on the starting arcs, 1 on the arcs that represent a worked day,
and 0 on the others (i.e., the vertical dashed arcs of Figure 4 and the arcs to the sink). If the aggregate
value of this resource at the end of the path exceeds CD+

i , the corresponding penalty is added to the cost
of the rotation. The vertices and the arcs of the subnetwork associated with one specific shift s, as well as
the cost associated with the consecutive assignment constraints are summarized in Table 7.

Vertices [artificial nodes] One source, one sink.
[shift nodes] For each day k and all 1 ≤ n ≤ CS+

s , a node Wn
ks.

[penalty nodes] For n = CD+
i , . . . ,K, a node CDn.

Arcs [starting arcs] For each possible sequence of exactly CD−i days ending with exactly n
consecutive occurrences of shift s, for all days k ≥ CD−i , an arc from
the source to Wn

ks. This arc corresponds to a rotation beginning on day
k− (CD−i −1) that reaches day k with an ongoing capital of n consecutive
days worked on shift s.
Cost: Consecutive cost attributable to shifts prior to the n consecutive
ones + all other costs attributable to shifts in the CD−i days.

[repeat s] For all k ≥ CD−i + 1, for all 2 ≤ n ≤ CS+
s , one arc (Wn−1

(k−1)s,W
n
ks)

corresponds to the nurse working on shifts (k, s) when already working on
(k − 1, s).

[exceed s] For all k ≥ CD−i + 1, one arc (WCS+
s

(k−1)s,W
CS+

s

ks ). These are similar to the
previous ones, but only apply when the nurse has already worked at least
CS+

s consecutive days on shift s.
Cost: c2b (the nurse has already exceeded CS+

s consecutive shifts s).

[end s] For all k ≥ CD−i , for all 0 ≤ n ≤ CS+
s − 1, one arc (Wn

ks,W
CS+

s

ks ). These
arcs contain the cost of working less than CS−s consecutive days on shift
s (or 0 if CS−s ≤ n ≤ CS+

s − 1).
Cost: c2b ×max

{
0, n− CS−s

}
.

[change shift] For all k ≥ CD−i + 1, and all shifts s′ such that (s, s′) is not a forbidden
succession, one arc (WCS+

s

(k−1)s,W
1
ks′).

[ending arcs] For all k ≥ CD−i , one arc from W
CS+

s

ks to the sink.

Table 7: Description of the vertices and arcs of a single-shift subnetwork of the pricing problem for shift s ∈ S and nurse i ∈ N .
Arc costs correspond only to those attributable to consecutive assignments constraints, and they are indicated only when they
are nonzero.

4.2.3. Assessment of the complexity of the SPPRC in the network of the subproblem
For an assessment of the complexity of the subproblem, we first need to count the number of arcs in the

pricing network. The total number of starting arcs is given in Lemma 1.

Lemma 1. The number of starting arcs ξi in the network of the subproblem of nurse i satisfies

ξi ≤ |S|
(
K − CD−i + 1

)
CD−i (3)

Proof. The starting arcs all correspond to a sequence of CD−i assignments so they are all equivalent with
respect to the resource on consecutive assignments. As a consequence, it is only necessary to keep the
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starting with minimum cost among those that income to a given work node Wn
ks. What is more, for a

given shift s, no more than CD−i consecutive assignments to s can be done in the sequence represented by
a starting arc, so there is no starting arc incoming to a work node Wn

ks for n > CD−i . For each shift s ∈ S,
and each day k ∈

{
CD−i , . . . ,K

}
, we thus have at most 1 starting arc incoming to Wn

ks for n ≤ CD−i and
none to the other vertices of the network. The enumeration of the vertices with at most one incoming arc
give the result.

Note that Equation (3) is indeed an inequality (and not an equality in general) because some of the
starting arcs enumerated above may not exist. For example, if a shift EARLY can only be performed after
another shift EARLY, then no short rotation of 2 days can end with a single EARLY task, and W 1

k,EARLY is never
reached by a starting arc. Therefore, Equation (3) cannot be written as an equality.

Lemma 2. The number of arcs in the pricing network of nurse i satisfies

|Ai| = O
(
K × |S| × (|S|+ CD−i + 2 max

s∈S
{CS+

s })
)

(4)

Proof. The total number of arcs in the pricing network is exactly

|Ai| =ξi + |S| (K − CD−i ) (5a)

+
∑
s∈S

(K − CD−i )× (CS+
s − 1) (5b)

+
∑
s∈S

(K − CS+
s ) (5c)

+
∑
s∈S

(K − CD−i )× (CS+
s − 1) (5d)

+ (|F| − |S|)× (K − CD−i − 1), (5e)

where F is the set of allowed shift successions (i.e. the complement of F in S2). The term (5a) stands for
starting arcs and arcs incoming to the sink, (5b) counts the working arcs, (5c) is the number of horizontal
dotted arcs on Figure 4, (5d) is the number of vertical dashed arcs on Figure 4, and (5e) is the number of
arcs between different shift blocks. We get the result of the lemma by keeping only the positive terms and
observing that there is at most |S| × (|S|+ 1) shift successions allowed.

The complexity of the dynamic programming algorithms for an SPPRC in an acyclic network with
nonnegative integer weights is O

(
A
∏
r∈RMr

)
, where A is the number of arcs in the network, R is the

set of resources, and Mr is the upper bound on resource r ∈ R [12]. We can thus infer the complexity of
dynamic programming for the column generation subproblem.

Theorem 1. Consider a nurse i ∈ N . Then a minimum reduced cost rotation for i can be computed by a
dynamic programming algorithm with a complexity in

O
(
K2 × |S| ×

(
|S|+ CD−i + 2 max

s∈S
{CS+

s }
))

(6)

Proof. It is sufficient to state that a rotation with minimum reduced cost can be computed by solving an
SPPRC in an acyclic network with nonnegative integer weights including |Ai| arcs and one resource. The
upper bound on the resource is indeed K (and not CD+

i ), because the corresponding constraint is soft.
Therefore, a rotation can include at most K worked days.

Remark. For a given application, the values of |S|, CD−i and CS+
s will not vary much, so an asymptotical

study of the complexity should only consider K as variable. What is more, the penalty for working more than
CD+

i consecutive days is among the highest penalties in the instances of our benchmark, so the rotations with
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a large number of extra consecutive assignments will generally be dominated in the dynamic programming
algorithm. Hence, the complexity is most likely to be an asymptotical

O
(
K × CD+

i × |S| × (|S|+ CD−i + 2 max
s∈S
{CS+

s })
)
.

Typical contractual values are |S| = 4,CD−i = 3,CD+
i = 5 and CS+

s = 3, so the execution of the subproblems
is in practice in O (310K) .

4.3. Branching rules
In this section, we describe the two branching rules implemented in our branch-and-price algorithm. We

then detail how the branching rule is chosen at each node of the branch-and-bound tree. Finally, we present
a heuristic used for the determination of feasible (integral) solutions. In the descriptions of the branching
rules, we consider a specific node N of the branch-and-bound tree and denote xLRN the optimal solution of
the linear relaxation at node N .

4.3.1. Branching on days
For every nurse i and day k, denote as

gik =
∑

(l1,l2):≤k<l2

ril1l2 + rik

the value indicating whether the nurse i is resting on day k (gik = 1), or not (gik = 0). Assume that xLRN
is such that the value of gik is fractional for some nurse i and day k. We create two branches from node N
to ensure that gik is integer. In the first one (the work branch), nurse i is compelled to work on day k, and
in the other one (the rest branch), he/she is compelled to rest. The corresponding constraints added to the
master problem are, respectively,

gik = 0 (7)

and
gik = 1. (8)

In the rest branch, no more rotation should be generated that makes nurse i work on day k; this is easily
handled by removing all arcs concerning day k in the subproblem of nurse i, and it even accelerates the
solution of the subproblem since the network becomes smaller. In the work branch, the subproblem remains
unchanged.

Remark. The rotation-based model is particularly well-fitted to this branching rule. In the rest branch, one
only discards rotations that include day k, but all other rotations remain in the problem. That is, none
of the efforts made in the previous column-generation iterations that aimed at generating good patterns for
the other days are wasted (e.g., rotations that cover the end of the schedule if k is in the beginning of the
horizon).

4.3.2. Branching on shifts
The value of gik can be integer for all nurses i and days k while still having fractional variables in xLRN .

For an exhaustive enumeration of the feasible schedules, we thus implement a branching rule, similar to the
previous one, that affects working shifts. For all nurses i, days k and shifts s, denote as Ωiks ⊆ Ωi the subset
of the rotations for nurse i for which the nurse works on shift (k, s), and as hiks =

∑
j∈Ωiks xij the value

indicating whether nurse i works on shift (k, s) (hiks = 1) or not (hiks = 0).
If nurse i works partially on shift (k, s), i.e., if hiks is fractional, we create one branch where he/she

works on (k, s), and another where he/she does not. The corresponding constraints added to the master
problem are, respectively,

hiks = 0 (9)
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and
hiks = 1. (10)

This branching rule is very similar to the previous one: the work shifts play the role of the rest shifts in
the previous rule. The consequences on the master and subproblems are very similar to those described in
the previous section.

4.3.3. Choice of the branching strategy
The nodes of the branch-and-price tree are explored in the following order: if children are created, explore

one of them, otherwise, go back to the highest non-explored node of the tree. The sequence of exploration
that starts from the highest nonexplored node and ends at a leaf (never going back to a higher node) is
called a dive. At each node of the tree, the choice of the branching rule is done as follows:

• Priority is always given to branching on days over branching on shifts.

• When branching on days, we choose the most balanced fractional value. That is, the pair nurse-day
(i, k) that satisfies

(i, k) = arg min
(i,k)∈N×{1...K}

fik, (11)

where fik = ‖gik − 0.5‖ if k is a week day, and fik = ‖gik − 0.5‖ − 0.1 if k is a weekend day. This
corrective term gives a slight advantage to weekend days because they are involved in more soft
constraints and therefore have more influence on the objective value.

• When branching on shifts, the same selection method is used (replace fik by fiks = ‖hiks − 0.5‖ if k
is a weekday and hiks = ‖giks − 0.5‖ − 0.1 if k is a weekend day).

• The order in which the two children branching nodes are inserted is random.

4.3.4. Primal heuristic based on variable fixing to obtain feasible solutions
The solutions of the linear relaxations solved at the nodes of the branching tree are often fractional, so it

is important to regularly run heuristics to determine integer solutions that improve the upper bound. Such
heuristics are usually called primal heuristics. Our heuristic performs the following steps:

(i) For some threshold C ∈ ]0, 1[, for all i ∈ N choose a set of rotations Θi that do not overlap (i.e.,
contain no assignment on the same day) and are all separated by at least one rest day, such that∑

i∈N

∑
j∈Θks

i

(1− xLRij ) ≤ C, for all shifts(k, s), (12)

where Θks
i ⊆ Θi is the set of rotations in Θi that involve working on shift (k, s) (Θks

i is either empty,
or a singleton).

(ii) For all i ∈ N and all j ∈ Θi, fix xij = 1.

(iii) Solve the problem with fixed variables (using column generation). If it is infeasible, the heuristic failed
to find a solution. If it is feasible and the optimal solution is integer, return this solution. If it is
feasible and the optimal solution is fractional, go to step (i).

The condition (12) is useful to fix only a small number of rotations that involve working on the same shift
(k, s) and thus reduce the risk that the problem becomes infeasible.

The primal heuristic is run in the following two cases: (1) after the initial solution of the root node and
(2) from the highest nonexplored node after each 2q-th dive (q integer).
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5. An adaptive large neighborhood search for large instances

Although the branch-and-price procedure presented in the previous sections allows the optimal solution
of small problems, as such it is not best-suited for large instances. When the number of integer variables
is too high, the size of the branching tree explodes and evaluating every node turns out to be extremely
time-consuming. Therefore, we embed this branch and price in an adaptive LNS (ALNS) procedure based
on the solution of smaller IPs, or equivalently, on the successive fixing and release of some of the variables
(see [17] for a recent review on LNS).

An LNS algorithm is an iterative process that destroys a part of the current solution at each iteration and
reconstructs it in the hope for an improvement. In the destruction phase, a subset of the variables are freed,
while the rest is fixed to its current value; the choice of the fixed/free variables defines a neighborhood. In
our implementation, the repair phase uses the branch-and-price method presented in the previous sections
at the sole exception that only a subset of the variables are free to change value, the others being fixed.
Typically, for the NSP, one can destroy the schedule of a subset of the nurses (freeing the corresponding
rotations). Then, without changing the other nurses’ schedules, the subset of destroyed schedules can be
optimized by branch and price. This results in the solution of much smaller problems, involving a subset of
the variables only (less nurses, less days, etc.), rather than the whole problem. The algorithm is therefore
based on the repetition of the following two steps, until a stopping criterion is reached (time, number of
iterations, number of iterations without improvement, . . . ):

1. Destroy: Use a destruction operator to determine a set (called FREE) of variables to free
and fix the others (set FIXED) at their value in the current solution;

2. Repair: Solve the NSP by branch and price where all variables in FIXED are fixed to their
value in the current solution. If the solution is improved, store it as the new current solution.

Using branch and price as the repair function is a double-edged sword: on the one hand, we benefit from
the guarantees of an exact method, well suited for smaller problems, but on the other hand, the destruction
operator must be compatible with the column-generation procedure. In practice, if the generation of new
columns is made impossible by the structure of the destruction operator, the method is obviously doomed
to failure. Interestingly, our model based on rotations yields a wider range of choices of neighbourhoods
than a classical roster-based modelling.

In Section 5.1, we propose several different destruction operators (i.e., different neighborhoods) that adapt
to the generation of rotations. What is more, we take advantage of the definition of several destruction
operators by choosing the operator randomly at each iteration with probabilities that depend on their
previous successes/failures. The corresponding roulette wheel procedure is described in Section 5.2. In
Section 5.3, we describe a rolling-horizon procedure that we use to determine the initial solution fed to the
ALNS.

5.1. Destruction operators
For the process of destructing the current solution, we propose two main strategies: destroy the schedule

of a small set of nurses, or destroy the schedules of a larger set of nurses over a restricted time period. For
both strategies, the nurses whose schedules are partially or completeley destroyed are called free nurses, and
the others are called fixed nurses. In terms of implementation, if the schedule of a free nurse is completely
destroyed, the variables associated with the rotations of the free nurse, and all the allocation and covering
variables are set free. In contrast, the variables associated with the rotations of the fixed nurses are fixed to
their current value.
Remark (Allocation variables). One should note the following: the aforementionned problem is not equiva-
lent to solving a smaller problem for a restricted nursing service because allocation variables remain free and
they concern all nurses. Therefore, there is a certain degree of flexibility in the allocation that one assigns to
the free nurses, and two different re-optimized schedules for the free nurses may in practice satisfy a different
partial demands. This difference is compensated by a change in the allocation of the fixed nurses, because
only their rotations are fixed, but not their skill allocations.
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Thanks to the rotation-based model, the partial destruction of schedules can also be handled easily,
because the rotations are much shorter than complete schedules. Given a starting and an ending date
k1 < k2, the partial schedules from k1 to k2 are destroyed by freeing every rotation starting on any day k
satisfying k1 ≤ k ≤ k2, as well as the corresponding allocation and covering variables, and all workload-
related variables (resp., n, z, v, and w). To repair the solution, we adapt the branch-and-price algorithm by
generating rotations that can start only between days k1 and k2. In practice, we modify the subproblem’s
network by deleting the starting arcs corresponding to rotations that start before k1 or after k2.

For a unified presentation of the destructors, we denote as NW the number of schedule weeks destroyed
per free nurse, and NN the number of free nurses. Preliminary tests showed that there is no benefit in
partial destruction of only one week in the schedule: with the rest of the schedules fixed, the problem
is too constrained to make any improvement during the repair step. As a consequence, for a simpler
implementation, we pick NW in {2, 4, 8} for an eight-weeks horizon and in {2, 4} for a four-weeks horizon.
The number of nurses is then chosen to get a constant total number of destroyed schedule weeks (NN×NW ).
The product NN ×NW is a parameter of the ALNS, whose influence is studied in Section 6.2.3.

As for the choice of the free nurses, we propose the following destruction strategies that depend on the
number of free nurses, NN .

i. D Random(NN): NN nurses are randomly selected among all the nurses;
ii. D Type(NN,T): NN nurses are randomly selected among those of the nurses with type T ;
iii. D Contract(NN,C): NN schedules are randomly selected among the nurses that share the same

contract C. The contract of a nurse i is defined by the values of
(
L−i , L

+
i ,CD−i ,CD+

i ,CR−i ,CR+
i , Bi, βi

)
.

5.2. Choice of the destruction operator: roulette-wheel procedure
To select the destruction strategy of the nurses, and the number of weeks destroyed per nurse, we call

the roulette-wheel procedure introduced in [18] twice at each iteration of the ALNS. To choose between
D Random, D Type and D Contract for instance, each destruction operator d is assigned a value πd that
starts at 5. Every time the operator d is selected and yields an improvement, πd is incremented by 1. At
the beginning of each ALNS iteration, the destruction operator is selected randomly, where each operator
d having a probability πd/ (

∑
d′ πd′) of being selected. The number of weeks NW is then selected likewise,

and so are the type T and the contract C when D Type or D Contract are selected.
In contrast, the sampling probability of the free nurses is not adjusted according to a roulette wheel

procedure inside a given distribution operator (D Random/D Type/D Contract). Nevertheless, the probability
distribution for the nurses random selection is not uniform and is adjusted dynamically. A bias is added
to increase the likelyhood to draw schedules where the number of assignments is not within a small margin
from the average number of assignments per nurse. The motivation is to increase the possibility of obtaining
a better workload repartition and decreasing the under/over workload and worked week-ends penalties.

5.3. Improving the initialization: rolling-horizon algorithm
The initial solution of the ALNS is found by running a rolling-horizon method over the planning horizon.

Rolling-horizon methods come from the control theory area (Model Predictive Control) and are originally
meant to solve problems where future data is uncertain (wether unknown, noisy or depending on external
forces) [21]. In our implementation of this method, the planning horizon is chronologically partitioned
into three time windows: past, control horizon (present and near future) and prediction horizon (further
future) (see Figure 5). The variables that refer to past days are fixed, those of the control horizon are set
to be integer, and those of the prediction horizon are relaxed, i.e., they are allowed to be fractional. The
control horizon is the time period that we are actually scheduling, whereas the prediction horizon gives us
an estimation of the impact and influence of the decisions taken for the control horizon on the future. After
this problem has been solved, the windows are shifted towards the future by a chosen step called sampling
horizon, until the algorithm reaches the end of the complete planning horizon.

The same kind of idea has been successfully implemented to tackle large aircrew pairing problems in [22]
and led to substantial improvements. In the presence of uncertainty, rolling horizon performs best when
the dynamics of the problem are slow. Here, the demand does not change between each step of the process
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planning horizon

Step 1 control (ILP) predictive (LP)

Step 2 past (fixed) control (ILP) predictive (LP)

Step 3 past (fixed) control (ILP) predictive (LP)

...

Step n past (fixed) control (ILP)

Figure 5: Rolling-horizon procedure. Variables corresponding to rotations starting in the past, control, and predictive horizon
are respectively fixed, integer, and relaxed (i.e., may be fractionnal).

and we can say that there is no external dynamics, hence the algorithm should perform efficiently. As a
matter of facts, the only dynamics generated is that of the influence of the history (the last days of the past
horizon) over the beginning of the control horizon.

6. Experimentations

6.1. Instances and benchmark
Instances. We test our algorithm on the instances of the INRC–II competition2. The size of the service
ranges from 30 to 120 nurses that can perform up to 4 different skills. The length of the planing horizon is
either 4 or 8 weeks and each day is divided in up to 4 shifts. The data of each instance is not contained
in a single file, but as follows: one file describes the available staff (number of nurses |N |, contracts, etc.),
another one contains the working status of the nurses at the begining of the horizon (history), and M files
that each contains the demand for one of the weeks (recall that M is the number of weeks in the horizon).
For each size of staff and horizon length, a single staff file, three different history files and 10 different
week-demand files are available. This allows a huge number of combinations and the potential generation
of thousands of instances. Each instance is named by the same pattern that completely describes the files
defining it: n[|N |]w[M ] [history] [demand files]. As an example, the instance n030w4 1 6-2-9-1 describes a
30-nurses instance, over a 4-weeks planing horizon, with history file number 1, and week-demand files 6, 2,
9, and 1.

Benchmark. We consider a benchmark of 40 instances: for each staff size

|N | ∈ {30, 35, 40, 50, 60, 70, 80, 100, 110, 120} ,

we consider two instances of four weeks, and two instances of eight weeks. More precisely, we use a subset
of the instances that were created for the evaluation of the competing teams of the INRC–II competition
(see [7]). All the instances are listed in Table 8 alongside with the best results found by our algorithm.
Under the label “instance” are the names of the instances, “LB*” and “UB*” respectively denote the best
lower and upper bound that we found, and “Gap” is the corresponding integrality gap, i.e., the value of
(UB* − LB*)/LB*.

2All these instances are available online at http://mobiz.vives.be/inrc2/
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|N | M = 4 M = 8

instance LB* UB* Gap (%) instance LB* UB* Gap (%)

30 n030w4 1 6-2-9-1 1615 1685 4.3 n030w8 1 2-7-0-9-3-6-0-6 1920 2070 7.8
n030w4 1 6-7-5-3 1740 1840 5.7 n030w8 1 6-7-5-3-5-6-2-9 1620 1735 7.1

35 n035w4 0 1-7-1-8 1250 1415 13.2 n035w8 0 6-2-9-8-7-7-9-8 2330 2555 9.7
n035w4 2 8-8-7-5 1045 1145 9.6 n035w8 1 0-8-1-6-1-7-2-0 2180 2305 5.7

40 n040w4 0 2-0-6-1 1335 1640 22.8 n040w8 0 0-6-8-9-2-6-6-4 2340 2620 12.0
n040w4 2 6-1-0-6 1570 1865 18.8 n040w8 2 5-0-4-8-7-1-7-2 2205 2420 9.8

50 n050w4 0 0-4-8-7 1195 1445 20.9 n050w8 1 1-7-8-5-7-4-1-8 4625 4900 5.9
n050w4 0 7-2-7-2 1200 1405 17.1 n050w8 1 9-7-5-3-8-8-3-1 4530 4925 8.7

60 n060w4 1 6-1-1-5 2380 2465 3.6 n060w8 0 6-2-9-9-0-8-1-3 1970 2345 19.0
n060w4 1 9-6-3-8 2615 2730 4.4 n060w8 2 1-0-3-4-0-3-9-1 2260 2590 14.6

70 n070w4 0 3-6-5-1 2280 2430 6.6 n070w8 0 3-3-9-2-3-7-5-2 4400 4595 4.4
n070w4 0 4-9-6-7 1990 2125 6.8 n070w8 0 9-3-0-7-2-1-1-0 4540 4760 4.8

80 n080w4 2 4-3-3-3 3140 3320 5.7 n080w8 1 4-4-9-9-3-6-0-5 3775 4180 10.7
n080w4 2 6-0-4-8 3045 3240 6.4 n080w8 2 0-4-0-9-1-9-6-2 4125 4450 7.9

100 n100w4 0 1-1-0-8 1055 1230 16.6 n100w8 0 0-1-7-8-9-1-5-4 2005 2125 6.0
n100w4 2 0-6-4-6 1470 1855 26.2 n100w8 1 2-4-7-9-3-9-2-8 2125 2210 4.0

110 n110w4 0 1-4-2-8 2210 2390 8.1 n110w8 0 2-1-1-7-2-6-4-7 3870 4010 3.6
n110w4 0 1-9-3-5 2255 2525 12.0 n110w8 0 3-2-4-9-4-1-3-7 3375 3560 5.5

120 n120w4 1 4-6-2-6 1790 2165 20.9 n120w8 0 0-9-9-4-5-1-0-3 2295 2600 13.3
n120w4 1 5-6-9-8 1820 2220 22.0 n120w8 1 7-2-6-4-5-2-0-2 2535 3095 22.1

Average 4 weeks 12.6 Average 8 weeks 9.1

Table 8: Best results obtained on the benchmark.

6.2. Numerical results
The tests were all performed on a single thread of an Intel(R) Core(TM)i7-3770 CPU @ 3.40GHz pro-

cessor. Our implementation calls only free third-party softwares (not only free for academics, but also for
potential industrial users). We use the branch-and-price framework BCP in which the chosen linear solver is
CLP3, and the subproblems are solved with the resource constrained shortest path from the Boost library4.
We also conducted comparative tests using other linear solvers (e.g., CPLEX or Gurobi) but none of them
was significantly better, which gives another motivation for the choice of the open-source option. The source
code of the software, and the parameter files corresponding to the tests described below are shared on the
git repository https://github.com/jeremyomer/StaticNurseScheduler under an open licence.

The figures reproduced in this section represent the repartitions of integrality gaps and computational
times using Tukey boxplots: the bottom and top of a box are the first and fourth quartile, the band inside
a box is the median and the ends of the whiskers are the highest (lowest) values within 1.5 interquartile
from the top (bottom) of the box (see [10] for a more detailed description). In Figures 6 and 7, Gap0 =
(UB0 − LB*)/LB* designates the gap of the initial solution, where UB0 is the best upper bound at the end
of the initialization. Similarly, Gap = (UB − LB*)/LB* designates the gap of the best solution obtained
after the LNS has been run. We refer as Imp to the improvement obtained by applying the LNS to the
initial solution, i.e., Imp = (Gap0 −Gap)/Gap0 = (UB0 −UB)/(UB0 − LB*).

For a better evaluation of the ALNS, it is necessary to have some time left after the initialization, so
we set a time limit higher than that of the INRC–II. We also use a formula that depends on the number
of nurses and weeks to compute the time limit, but we settled for M × [60 + 6 |N |] seconds instead of the
M × [10 + 3 (|N | − 20)] seconds suggested in the INRC–II. Finally, under label tinit is the percentage of the
allowed time spent in the initialization procedure; the rest of the time is dedicated to the improvement of
the initial solution by the ALNS.

Besides the numerous tests presented in the following sections, we also run the branch-and-price without
any heuristic improvement (e.g., no ALNS nor rolling horizon) with a much larger time limit (24 hours).
We did that to see if the branch-and-price itself was able to reach optimality with sufficient time. The best

3BCP and CLP are part of the COIN-OR project. They are available, respectively, at http://www.coin-or.org/projects/
Bcp.xml and http://www.coin-or.org/Clp/

4The boost graph library is available at http://www.boost.org/doc/libs/1_61_0/libs/graph/doc/index.html
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lower bounds reported in Table 8 (under “LB*”) were all obtained from these 24 hours executions, but it
never produced the best upper bound (“UB*”). Overall, optimality could be proved only for smaller test
instances with up to 21 nurses and a four weeks planning.

6.2.1. Influence of the control period on the rolling horizon initialization
In Figure 6, we study the influence of the length of the control horizon on the performance of the

algorithm. We ran the software for all possible values, i.e., one to four weeks for the 4-weeks instances, and
one to eight weeks for the 8-weeks instances. At each iteration of the rolling horizon procedure, the problem
is solved with branch and price until optimality is reached or until two successive executions of the primal
heuristic of Section 4.3.4 provide no improvement in the upper bound. The sampling horizon is equal to one
week in all our tests.

First, from Figures 6a and 6b, one sees that short control horizons do not yield good initial solutions.
This can be explained as follows. When the control horizon is short, only a few variables are constrained
to be integer during each solution step. Therefore, when the horizons are shifted towards the future, the
variables that were relaxed and become integer may take very different values from the (fractional) ones they
had in the previous step. This may induce a loss of quality that reflects a bad anticipation when the control
horizon is too short. This is particularly true because of the succession constraints H3. From Figures 6c
and 6d, one sees that the best results are obtained with rolling horizons of 3 and 8 weeks for 4-weeks and
8-weeks instances, respectively. Figures 6e and 6f show that the longer the control horizon, the more time is
spent in the initialization. This meets expectations since many more variables are constrained to be integer
when the length of the control period increases, thus making these problems harder to solve.

6.2.2. Performance of the initialization method
In Figure 7, we study the impact of the initialization method. We consider four methods for obtaining an

initial solution. In Feasible, 2-Dives and Repeat, the initial solution is obtained by running the branch-
and-price procedure and stopping it, respectively, after the first feasible solution is obtained, after the primal
heuristic of Section 4.3.4 has been run twice, and after two successive executions of the primal heuristic of
Section 4.3.4 provide no improvement in the upper bound. In the Rolling strategy, the rolling-horizon
procedure is applied with the control horizon length that gave the best results in the previous section. The
ALNS is then run with these initial solutions.

In Figures 7a–7d, we observe that the best method is the rolling horizon method, both in terms of quality
of the initial solution (Gap0), and of the solution obtained after the ALNS is run (Gap).

From figures 7e and 7f, one sees that much more time is spent in the initialization for the Repeat and
Rolling strategies, particularly on the 8-weeks instances. Given the quality of the corresponding solutions,
the larger time spent for a good initialization is obviously worth the loss of time spent in the ALNS.

6.2.3. Influence of the destruction operator on the LNS
In this Section, we compare the destruction operators of the ALNS that are presented in Section 5.1.

The results are displayed in Figures 8a–8d, where we focus on the best upper bound found by the solution
algorithm.

On Figures 8a–8b, we study the impact of the total number of schedule weeks destroyed (NN ×NW ) at
each iteration of the ALNS. For this, we compare five values evenly spread from 32 to 96 weeks. We do not
observe a significant impact of the total number of weeks destroyed. In all the other tests (in this section
and in the previous ones), we set NN ×NW = 48, which seems to be the best if we consider both 4-weeks
and 8-weeks instances.

On Figures 8c–8d, we report the comparison of the following ALNS strategies:

• only partial schedules are destroyed (label: “no partial”),

• only complete schedules are destroyed (label: “only partial”),

• selected nurses always have the same type (label: “D Type”),
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Figure 6: Impact of the size of the control horizon on the rolling-horizon initialization

• selected nurses always have the same contract (label: “D Contract”),

• selected nurses are always picked randomly among all the nurses (label: “D Random”).

In the first two strategies, every destruction operator is allowed for the nurse selection, and in the last three
strategies the schedules can either be completely or partially destroyed. As a reference, we also represent
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Figure 7: Comparison of the initialization methods

the integral gap of the ALNS where every destruction operator is used in the roulette-whell procedure(label:
”48 weeks”). The results first show that there is a significant loss in performance if the partial destruction of
schedules is not allowed, whereas the opposite is not true if schedules are only partially destroyed. Second,
we observe that the performance is even more sensitive to the selection strategy of the free nurses. Overall,
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there is a benefit in considering the three strategies in the ALNS, but the random choice over all the nurses
is significantly better than the other two “smarter” strategies. This is not an original observation in the
field of metaheuristics, where randomness is sometimes the best tool towards unexpected improvements.
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Figure 8: Performance of the ALNS depending on the destruction operator (diagrams for instances of 4 and 8 weeks).

6.2.4. Comparison with the results of the dynamic version of the problem
To conclude the tests, we compare the results described above with the results published at the end

of the INRC–II, which are the only other published results for these instances. These results are for the
dynamic version of the problem, where the weeks are scheduled sequentially without any information on the
demand of future weeks. This comparison is summarized in Table 9. The values indicated for the dynamic
problem are the best results over all the teams and all the random seeds input by the organizers. For the
static version, we provide the best integer solution we found in all our tests and the solutions found by
the ALNS initialized with the rolling horizon and NN × NW = 48 weeks destroyed at each iteration. In
every case, we provide the value of the best integer solution (UB*), and for each static result, we give the
relative improvement of the solution value when considering the static instead of the stochastic version of
the problem (Imp). The best relative improvement can be seen as an estimation of the relative value of
perfect information for these instances.

It is comforting to observe that our best solution of the static version of the problem achieve an overall
15.2% relative improvement with respect to the best solution found in the dynamic version of the problem.
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The results show that the largest improvements are obtained for the 8 weeks instances, which was expected.
In the dynamic version, the schedule of the first week is planned without information about future demand.
It is thus logical that the largest errors due to uncertainty are made for the largest planning horizon. Finally,
we still observe that for three small instances (n040w4 2 6-1-0-6, n050w4 0 0-4-8-7 and n050w4 0 7-2-7-2),
the ALNS does not achieve to improve the best dynamic solution. The reason might be that these instances
were part of the first phase of the competition where the participants could choose the random seeds that
provided the best results among all their tests. As a consequence, these results are the best over thousands
of runs of stochastic algorithms. In contrast, the results of the ALNS reflect only one specific execution of
the algorithm.

dynamic static: best static: ALNS

instance UB* UB* Imp(%) UB* Imp(%)

n030w4 1 6-2-9-1 1755 1685 4.2% 1695 3.5%
n030w4 1 6-7-5-3 1935 1840 5.2% 1890 2.4%
n035w4 0 1-7-1-8 1630 1415 15.2% 1425 14.4%
n035w4 2 8-8-7-5 1255 1145 9.6% 1155 8.7%
n040w4 0 2-0-6-1 1730 1640 5.5% 1685 2.7%
n040w4 2 6-1-0-6 1880 1865 0.8% 1890 -0.5%
n050w4 0 0-4-8-7 1490 1445 3.1% 1505 -1.0%
n050w4 0 7-2-7-2 1480 1405 5.3% 1500 -1.3%
n060w4 1 6-1-1-5 2815 2465 14.2% 2505 12.4%
n060w4 1 9-6-3-8 2950 2730 8.1% 2750 7.3%
n070w4 0 3-6-5-1 2700 2430 11.1% 2435 10.9%
n070w4 0 4-9-6-7 2430 2125 14.4% 2175 11.7%
n080w4 2 4-3-3-3 3535 3320 6.5% 3340 5.8%
n080w4 2 6-0-4-8 3570 3240 10.2% 3260 9.5%
n100w4 0 1-1-0-8 1445 1230 17.5% 1245 16.1%
n100w4 2 0-6-4-6 2100 1855 13.2% 1950 7.7%
n110w4 0 1-4-2-8 2710 2390 13.4% 2440 11.1%
n110w4 0 1-9-3-5 2920 2525 15.6% 2560 14.1%
n120w4 1 4-6-2-6 2435 2165 12.5% 2170 12.2%
n120w4 1 5-6-9-8 2485 2220 11.9% 2220 11.9%

Average 4 weeks 9.9% 8.0%

n030w8 1 2-7-0-9-3-6-0-6 2340 2070 13.0% 2070 13.0%
n030w8 1 6-7-5-3-5-6-2-9 1900 1735 9.5% 1735 9.5%
n035w8 0 6-2-9-8-7-7-9-8 3020 2555 18.2% 2555 18.2%
n035w8 1 0-8-1-6-1-7-2-0 2770 2305 20.2% 2305 20.2%
n040w8 0 0-6-8-9-2-6-6-4 3310 2620 26.3% 2620 26.3%
n040w8 2 5-0-4-8-7-1-7-2 2700 2420 11.6% 2420 11.6%
n050w8 1 1-7-8-5-7-4-1-8 5410 4900 10.4% 4900 10.4%
n050w8 1 9-7-5-3-8-8-3-1 5435 4925 10.4% 4925 10.4%
n060w8 0 6-2-9-9-0-8-1-3 2765 2345 17.9% 2345 17.9%
n060w8 2 1-0-3-4-0-3-9-1 3065 2590 18.3% 2590 18.3%
n070w8 0 3-3-9-2-3-7-5-2 5115 4595 11.3% 4595 11.3%
n070w8 0 9-3-0-7-2-1-1-0 5390 4760 13.2% 4760 13.2%
n080w8 1 4-4-9-9-3-6-0-5 4995 4180 19.5% 4180 19.5%
n080w8 2 0-4-0-9-1-9-6-2 5030 4450 13.0% 4450 13.0%
n100w8 0 0-1-7-8-9-1-5-4 3080 2125 44.9% 2125 44.9%
n100w8 1 2-4-7-9-3-9-2-8 3055 2210 38.2% 2210 38.2%
n110w8 0 2-1-1-7-2-6-4-7 5155 4010 28.6% 4010 28.6%
n110w8 0 3-2-4-9-4-1-3-7 4805 3560 35.0% 3560 35.0%
n120w8 0 0-9-9-4-5-1-0-3 3615 2600 39.0% 2600 39.0%
n120w8 1 7-2-6-4-5-2-0-2 3510 3095 13.4% 3095 13.4%

Average 8 weeks 19.3% 20.6%

Average overall 15.2% 13.6%

Table 9: Best results obtained on the benchmark

7. Conclusions

This article deals with the nurse scheduling problem as described in the context of the international com-
petition INRC–II. Our first contribution is the description of a branch-and-price algorithm procedure based
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on rotations, i.e., a sequence of working days preceded and followed by at least one day off. This decompo-
sition, adapted from aircrew planning, allows to significantly reduce the complexity of the subproblems and
the memory space occupied by the generated columns. We modeled the assignments of days-off and skills
as flow problems which are handled in the master problem. This allows to avoid the individual assignment
of skills and relax the integrality of the skill assignment variables. What is more, a strong effort has been
done to accelerate the solution of the subproblems where negative reduced cost rotations are generated. The
subproblems are finally modeled as shortest path problems with one resource constraint corresponding to
the total number of worked days in the rotation. Based on a theoretical study of the size of the graph, we
could thus infer that in practice, each subproblem (one per nurse) should be executed in linear time with
respect to the length of the planning horizon if a classical labeling algorithm is used.

To achieve good results on large instances, we then described how an ALNS search could be implemented
as primal heuristic in interaction with the branch-and-price. The ALNS uses several destruction operators
that consider different strategies for the choice of the nurses whose schedules are destroyed and for the number
of schedule weeks destroyed. We then describe several primal heuristics to initialize the ALNS, including a
rolling-horizon procedure, where the weekly schedules are computed sequentially in chronological order.

Finally, the experimental tests focus on a benchmark of forty instances published in the INRC–II. The
instances describe the constraints for the schedule of 30 to 120 nurses over 4 and 8-weeks horizons. The
results highlight that the best initialization method is the rolling horizon procedure, even though it takes a
greater fraction of the total computational time. We also carried out a sensitivity analysis of the ALNS to
the choice of the destruction operators. The main conclusion being that there is indeed a benefit in using an
adaptive strategy, even though a random selection of the nurses whose schedules are destroyed also achieves
good results. Finally, we showed that algorithm achieves an average 15.2% improvement with respect to the
best results reported during the INRC–II for the dynamic version of the problem.

Future research should aim at finding optimal solutions of instances with 30 and more nurses. For
this, we think that other decompositions could be considered in the branch-and-price procedure to lower
the integrality gap. One option is the classical decomposition where complete individual schedules are
generated, but other more refined rotation-based decompositions could also be developed. For instance,
additional layers could be added in the master problem flow network to reduce the gap due to the overwork
on week-ends. Another direction of research is the adaptation of the rotation model to other constraints
described in the literature.
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