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H3T 2A7, Canada, www. gerad. ca

Abstract

In this paper, we describe an algorithm for the personalized nurse scheduling problem. We focus on the
deterministic counterpart of the specific problem that has been described in the second international nurse
rostering competition. One specificity of this version is that most constraints are soft, meaning that they
can be violated at the price of a penalty. We model the problem as an integer program (IP) that we solve
using a branch-and-price procedure. This model is, to the best of our knowledge, comparable to no other
from the literature, since each column of the IP corresponds to a rotation, i.e., a sequence of consecutive
worked days for a nurse. In contrast, classical models involve individual nurse schedules over the complete
horizon. We tackle instances involving up to 120 nurses and 4 shifts over an 8-weeks horizon by embedding
the branch-and-price in a large-neighborhood-search framework. Initial solutions of the large-neighborhood
search are found by a rolling-horizon algorithm well-suited to the rotation model.

Keywords: nurse scheduling problem, column-generation, decomposition, branch-and-price,
large-neighborhood search, rolling horizon

1. Introduction

1.1. The nurse scheduling problem
For several years, hospitals have been facing increasing shortages in most western countries, either in

terms of finance or resources: beds, nurses, etc. Hence, they are often unable to provide the expected level
of service. These difficulties can be tackled in two different ways: either increase, or make better use of the
available resources. Given the slow increase of the budget allocated to healthcare, hospitals have no other
choice than improving the use of their resources. Among the main challenges is the shortage of nurses.

We tackle the nurse scheduling problem (NSP), i.e., the design of the schedule of a nursing service so
as to satisfy the needs of the hospital and all operational constraints at minimal cost. A day is divided
into several time frames called shifts, and each nurse has a set of skills corresponding to tasks he/she can
perform. When a nurse works on a given day, he/she is assigned to one shift with a skill he/she possesses.
A day with no assignment is a day off, and a sequence of days off preceded and followed by assignments
is a rest period. The NSP then consists in building a roster for each nurse, i.e., a sequence of assignments
and rest periods covering the planning horizon. Most rostering problems aim at balancing the work among
employees (i.e., each employee should receive a fair amount of worked days). As a consequence the cost
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of the complete schedule usually aggregates an evaluation of the global quality of service it provides with
penalties associated to unbalanced personalized rosters. A fair deal of the complexity of the NSP can be
attributed to the personalized aspect of the schedules: the same schedule may indeed have very different
costs if given to one nurse or another, because they have different contracts or preferences on days off. In
contrast, workforce scheduling problems usually build anonymous rosters thus making the problem easier.
The NSP has been widely studied for more than two decades. The reader is referred to [11] or [7] for a
review on models and solution methods. Among the numerous approaches, we focus here on those based on
integer programming techniques.

In most integer programs (IPs) that model the NSP, the columns of the constraint matrix correspond
to rosters. Most constraints are partitioning equalities (or covering inequalities), each of them ensuring
that a given task is performed by a sufficient number of nurses. Due to the length of the planning horizon
and the number of different tasks that may be performed by each nurse, it is impossible to enumerate all
columns beforehand and solve the resulting IP with integer programming algorithms such as branch-and-
cut. To palliate this numerical obstacle, one restricts the number of columns in the problem at first and, at
each node of the branch-and-bound tree, the linear relaxation is solved by column generation; the resulting
algorithm is called branch-and-price. For more details on the implementation of branch-and-price techniques,
the reader is referred to [2]. In scheduling applications, the generation of new columns is usually based on
the solution of a shortest path problem with resource constraints (SPPRC); its solution either yields a new
column of negative reduced cost or asserts that the optimal solution of the restricted linear relaxation is
optimal for the non-restricted version. The reader can find an overview of column-generation algorithms
in [12] and a comprehensive review on SPPRC in [22].

To the best of our knowledge, the first published attempt to tackle the NSP by means of branch-and-
price dates back from 1998 [23]. The authors develop a generic framework that handles a large variety of
constraints. New columns are generated by solving a SPPRC that involves up to seven different constraints.
In [1], the authors stress the personalized facet of the problem. New schedules are generated by a swap
heuristic and their feasibility is checked a posteriori (whereas SPPRC generally only produces feasible
schedules). The authors of [26] use a two-phase algorithm for the roster-generation procedure: they only
solve the SPPRC when a heuristic procedure fails to find columns of negative reduced cost. They also
undertake a detailed study of 15+ different branching rules on one or several variables. In [6], columns are
generated by solving a SPPRC with an innovative heuristic based on dynamic programming (the heuristic
part can however be deactivated for an exact solution). They also stress the importance of dual variables
stabilization techniques to reduce the number of calls to the pricing problem. They report excellent results
on the benchmark of the first international nurse rostering competition (INRC) [20]. The pricing problem
can also be solved with constraint programming, as in [21]. Gomes et al. [19] enrich their branch-and-
price scheme with a variable neighborhood search to tackle instances from the second international nurse
rostering competition (INRC-II) [8]. They use a classical decomposition by roster for each nurse, but they
report results only for the 4-weeks instances. Another related study is reported in [3], where the authors
treat nurse and surgery scheduling by branch-and-price in an integrated approach without considering the
personalized aspect of the problem.

Several authors used branch-and-price with SPPRC to solve other rostering problems than NSPs. Per-
sonalized rosters are also encountered in airline crew scheduling problems. However, the rotations (i.e.,
a sequence of flights that starts and ends at the same base) are usually pre-computed, and the rostering
problem consists in choosing a sequence of rotations to build a roster for each crew member (see [24] for
more details). In [16], the authors solve large scale instances from Air France. In [18], the authors propose
four different algorithms to solve scheduling problems with multi-skills and heterogeneous workforce. In
contrast, Boyer et al. [4] model the pricing problem with a formal grammar that allows the representation of
richer constraints, and solve them with dynamic programming. This allows the authors to tackle a general
personalized workforce scheduling problem that is more complex than the considered NSP. In particular,
they build the detailed sequence of tasks each employee performs on one day. However, the computational
price is such that they must restrict to one-day schedules for up to 50 employees.

Finally, among exact approaches that are not based on brand-and-price, Santos et al. [34] present a MIP
for the instances of the first INRC and several ways to improve the bounds (especially, the dual ones). They
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prove optimality for several instances.

1.2. Main contributions
In this article we deal with a static version of the NSP described in the INRC–II [8]. Our method

is motivated by the following two properties of this version of the NSP. First, every nurse is different,
because he/she has his/her own past planning, preferences for days off, and work contract. This would
make most techniques based on an aggregation of similar nurses inefficient. What is more, there is only
a small proportion of hard constraints. Other constraints can be violated at the price of a penalty. As a
consequence, in a column-generation context, the number of generated columns increases, and fewer labels
can be removed in the sub-problems. Our solution approach takes these specificities into account.

Modeling approach. All previously-mentioned works that solve the NSP with branch-and-price algorithms
share the same modeling approach: the pricing problem generates complete rosters and decision variables
indicate whether these complete rosters are to be used in the solution. In our work, we do not generate
complete but partial rosters, that are called rotations1. A rotation is a sequence of shift assignments on
consecutive days that are preceded and followed by at least one day off; it does not specify the skill used
by the nurse on each assignment. The IP then builds complete schedules for the nurses from the existing
rotations, and allocates the skills that they must perform. Personalized rotations are generated by solving
a SPPRC for each nurse.

To the best of our knowledge, it is the first attempt to address the NSP with a rotation-based model.
We investigate this approach, because it reduces the number of feasible columns that can be generated and
it decreases the complexity of the pricing problem. This change of paradigm also leads to the development
of specific branching rules (Section 4.3) and to structural modifications in the pricing network (Section 5.3).
The separation of the allocations of shifts and skills is independent from the partial-roster approach. This
decomposition, as well as the aggregation of nurses in skill assignment (Section 5.2) are also part of the
methodological contributions of this work.

Large-neighborhood search and rolling horizon. In the aim of solving large instances, we embed the branch-
and-price procedure within an adaptive large neighborhood search procedure (ALNS). The ALNS is a local
search where the iterates are obtained by sequentially re-optimizing the problem over a subset of variables
while keeping the others unchanged. In our implementation, we either re-optimize complete schedules of a
limited number of nurses or partial schedules of a larger number of nurses.

We also develop several primal heuristics based on our branch-and-price procedure to find the initial
solution of the ALNS. One of them is a rolling-horizon method which sequentially computes weekly schedules
while taking into account an estimation of the impact of current decisions on the future.

Implementation and numerical results. The algorithms described in this article are implemented in C++
and call only free and open third party libraries. The resulting code is publicly shared2 for reproduction of
the results, future comparisons, improvements and extensions.

Our tests are based on the instances of the INRC–II. They involve schedules of 30 to 120 nurses over a
planning horizon of four to eight weeks. The nurses can have four different skills and each day is divided
into four shifts. We conduct an experimental comparison of several initialization methods for the ALNS and
study the sensitivity to the choice of the neighborhoods. Although we were not able to prove the optimality
of the solutions found for these instances, we show that a rolling horizon method can be advantageously
used to find an initial solution with an average integrality gap of 19.3%; the ALNS lowers this value to an
average 10.9% gap. Finally, we compare our results to the best solutions found in the INRC–II, and to three
other published studies. The comparison confirms that our method is able to produce good solutions in a
reasonable computational time for all the instances.

1This denomination comes from the airline industry where similar modelling is commonly used (see [15]).
2The code implementing the methods described in this article is publicly shared on the Git repository [25]
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1.3. Organization of the paper
The exact description of the NSP that our method can solve is given in Section 2. The rotation-based

model of the NSP and the resulting formulation (IP) are described in Section 3. In Section 4, we describe
the branch-and-price algorithm and the pricing problem. We then specify the corresponding implementation
choices in Section 5. The ALNS procedure and the rolling-horizon method that finds the initial solution
are expounded in Section 6. In Section 7, we report numerical results that demonstrate the relevance of our
approach. Section 8 provides concluding remarks.

2. Description of the problem

We consider the NSP proposed by Ceschia et al. [10]. While the problem is stated as a dynamic one
in [10], where only a part of the information is given at each stage of the solution process, here we focus on
its static version where complete information is available beforehand.

We wish to compute the schedules of a set N of nurses over a planning horizon of M weeks (or K = 7M
days). The nurses can perform different skills and each day is divided into shifts. The sets of all skills and
shifts are respectively denoted Σ and S. For the sake of readability, indices are standardized in the following
way: nurses are denoted as i ∈ N , days as k ∈ {1, . . . ,K}, shifts as s ∈ S and skills as σ ∈ Σ. Finally, the
pair p = (k, s) denotes the worked shift s of day k, and is called assignment p. We summarize all other
data in Table 1.

Nurses
L−i , L+

i min./max. total number of worked days over the planning horizon for nurse i
CD−i , CD+

i min./max. number of consecutive worked days for nurse i
CR−i , CR+

i min./max. number of consecutive days off for nurse i
WE+

i max. number of worked week-ends over the planning horizon for nurse i
Πi set of assignments p that nurse i wishes to have off
Shifts
CS−s , CS+

s min./max. number of consecutive assignments on shift s
F̄ set of forbidden shift successions
Demand
Dpσ min. demand in nurses performing skill σ on assignment p
Opσ optimal demand in nurses performing skill σ on assignment p

Table 1: Summary of the input data.

Remark (Initial state). For practical reasons, it is necessary that the model can handle an initial state, e.g.,
the information on the end of a previously worked time period. For the sake of clarity, we do not take it into
consideration in the description of the method although our software handles it; the incumbent modifications
on the models are straightforward and of no particular interest for the reader.

We do not intend to handle every constraint that can be found in the literature on NSPs; we choose
the set of constraints proposed by the organizers of the INRC–II in [10] for the following main reasons:
(1) they all are usual constraints that nursing services face in practice and (2) they allow us to tackle the
benchmark released by the organizers of this competition. This benchmark contains a huge number of
instances (scenarios can be generated at will by combining weeks together), including large instances (up
to 120 nurses) and enough constraints to make the instances close to industrial ones. Some constraints are
hard, i.e., they cannot be violated by a feasible solution; others are soft, i.e., they may be violated at the
cost of a penalty. The objective function that we minimize is the sum of these penalties.

The main feature of this benchmark is that most constraints are soft. All constraints and their types
(hard/soft) are described in Table 2. The unit weight (i.e. the penalty) associated with a soft constraint
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SX in the objective function is denoted as cSX. For constraint S2, the unit weights for consecutive working
days and consecutive shift are respectively denoted cS2a and cS2b.

Hard constraints
H1 Single assignment per day: A nurse can be assigned at most one shift per day.
H2 Under-staffing: The number of nurses performing skill σ on assignment p must be at least equal

to the minimum demand Dpσ.
H3 Shift type successions: If (s1, s2) ∈ F̄ , a nurse cannot work on shift s1 on one day, and on shift

s2 on the next day.
H4 Missing required skill: A nurse can only cover the demand of a skill that he/she can perform.
Soft constraints
S1 Insufficient staffing for optimal coverage: The number of nurses performing skill σ on as-

signment p must be at least equal to the optimal demand Opσ. Each missing nurse is penalized
according to the unit weight.

S2 Consecutive assignments: For each nurse i, the number of consecutive assignments should be
within [CD−i , CD+

i ] and the number of consecutive assignments to the same shift s should be within
[CS−s , CS+

s ]. Each extra or missing assignment is penalized by the unit weight.
S3 Consecutive days off : For each nurse i, the number of consecutive days off should be within

[CR−i , CR+
i ]. Each extra or missing day off is penalized by the unit weight.

S4 Preferences: Each undesired assignment p ∈ Πi of a nurse i is penalized by the unit weight.
S5 Complete week-end: Some nurses must work both days of the week-end or none of them. If

he/she works only one of the two days Saturday or Sunday, it is penalized by the unit weight.
S6 Total assignments: For each nurse i, the total number of assignments must be within [L−i , L+

i ].
The difference (in either direction) is penalized by the unit weight.

S7 Total working week-ends: For each nurse i, the number of week-ends with at least one assignment
must be less than or equal to WE+

i . The number of worked week-ends over that limit is penalized
by the unit weight.

Table 2: Constraints handled by the software.

3. Rotation-based model for the nurse rostering problem

The aim of this section is to describe the NSP as an IP whose main decision variables correspond to
the choice of the rotations performed by each nurse. First, we provide some vocabulary needed in the
rotation-based formulation (Section 3.1). Assuming that the rotations can be enumerated, it is necessary to
build a valid sequence of rotations and rest periods that covers the entire planning horizon for each nurse:
this sub-problem is formulated as a flow model in Section 3.2. The complete model described in Section 3.3
includes these flow constraints, the skills allocation and the constraints relative to the complete planning
horizon (H2, S1, S6 and S7).

3.1. Rotations: definitions and notations
To formulate our mathematical model for the NSP, we first specify some vocabulary in our context and

introduce notation. A rotation is a list of assignments on consecutive days, preceded and followed by at
least one day off. It is important to note that a rotation does not contain any information about the skills
performed on these assignments. A roster is therefore a sequence of rotations, separated by nonempty rest
periods, to which skills are added (see Example 1).

A rotation is feasible if it respects the single assignment and succession constraints H1 and H3. Besides,
the cost of a self-standing rotation corresponds only to the penalties associated with the soft constraints
S2, S4 and S5. The penalties associated with the other soft constraints can only be computed for complete
rosters.
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Example 1. Consider the following single-week roster:

Day 0 1 2 3 4 5 6
Shift Early Day Off Off Night Night Off
Skill performed HN HN - - N HN -

where N stands for nurse and HN for head nurse. The rotations of this roster, highlighted on the table above,
are ((0, Early), (1, Day)) and ((4, Night), (5, Night)).

For i ∈ N , the set of every feasible rotation for nurse i is denoted Ωi and the cost of rotation j ∈ Ωi is
denoted as cij . Our model for the NSP is based on the computation of feasible rotations for each nurse. In
the rest of the present section, we suppose that we can enumerate the set of all rotations Ωi for every nurse
i ∈ N . In practice, rotations are generated and added to the problem iteratively, as described in Section 4.2.

3.2. A flow model for the creation of individual rosters
In this section, we describe how we build a skill-less roster over the complete planning horizon from the

set Ωi of feasible rotations for nurse i ∈ N . By skill-less roster, we mean that it does not specify which skill
the nurse performs on the days he/she works. The problem of building the skill-less roster of a given nurse
i can be formulated as a shortest path problem in a weighted and directed graph called rostering graph of
nurse i.

In essence, a vertex of the rostering graph corresponds to a day and an arc corresponds either to a feasible
rotation or to a rest period. Since the cost of a rest period depends only on its length, there is at most one
rest arc between each pair of vertices. In contrast, there can be a large number of parallel rotation arcs that
will correspond to distinct sequences of assignments. A path from the source to the sink yields a sequence
of rotations separated by rest periods, hence a roster. The detail of the vertices and arcs of the rostering
graph of a nurse is given in Table 3.

Vi source, sink One source node oi, one sink node di.
rest nodes For each day k, one rest node Ri,k.
work nodes For each day k, one work node Wi,k.

Ai rotation arcs For each rotation j ∈ Ωi beginning on day b and ending on day e, one arc (Wi,b, Ri,e)
with cost cj (S2 + S4 + S5) is added. When several rotations share the same
starting and ending days, parallel arcs are added.

min. rest arcs For each pair of days (k, l) ∈ {1, . . . ,K}2 such that k < l and (l − k) ∈{
1, . . . ,CR+

i

}
, one arc (Ri,k,Wi,l) is added with cost max{0, cS3

(
CR−i − (l − k)

)
}

(min. consecutive days off penalty associated with S3).
max. rest arcs For each day k ∈

{
CR−i , . . . , (K − 1)

}
, one arc (Wi,k,Wi,(k+1)) with cost cS3 is

added. These arcs are only used when the maximum consecutive number of days
off CR+

i is exceeded.
artificial arcs Arcs from the source to Ri,1 and Wi,1, and arcs from Ri,K and Wi,K to the source

are added at no cost.

Table 3: Description of the vertices and arcs of the rostering graph of nurse i ∈ N .

The cost of a path is the sum of the penalties that can be represented as weights on the arcs. As a
consequence, it aggregates the individual costs of rotations and rest periods (soft constraints S2, S3, S4
and S5), but it cannot reflect the soft constraints S6 and S7 that deal with the complete planning horizon.
Moreover, one graph is built for each nurse, so they do not include the linking staffing constraints (H2, S1).
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These two remaining groups must be added to the model on top of the flow constraints (see Section 3.3).
An example of rostering graph is given in Figure 1 for a 7-days planning horizon and CR+

i = 4.

Ri,1 Ri,2 Ri,3 Ri,4 Ri,5 Ri,6 Ri,7

Wi,1 Wi,2 Wi,3 Wi,4 Wi,5 Wi,6 Wi,7

S
1

T
1

Figure 1: Example of a rostering graph for nurse i ∈ N over an horizon of K = 7 days, where the maximum number of
consecutive rest days is CR+ = 4. The rotation arcs are the plain arrows, the rest arcs are the dotted arcs, and the artificial
arcs are the dashed arrows.

3.3. Integer Programming formulation
In this section, we summarize our IP for the NSP, based on the rotations previously defined. The IP is

the constrained flow model summarized in Formulation (1). Unless stated otherwise, the indices belong to
the following sets: i ∈ N , p ∈ {1, . . . ,K} × S and σ ∈ Σ. In the rostering graph of nurse i, A−iv and A+

iv

include all the arcs respectively entering and leaving vertex v. The parameters and variables used in the IP
are described in Table 4, where we use a bold font to denote vectors. The dual variables associated with
the constraints where x appears are needed in the rotation-generation procedure, so we indicate them with
Greek letters between brackets (α, β and δ).

Parameters
c vector containing the cost of each arc in the rotation graph of each nurse
cw vector of unit costs for violations of S6–S7, namely cw = (cS6, cS6, cS7)
aj Boolean vector indicating which assignment is in rotation j of nurse i
bj vector containing the number of assignments and worked weekends in rotation j of nurse i
Bi vector containing the bounds associated with S6–S7, namely Bi = (L−i , L

+
i ,WE+

i )
Variables
xij ∈ {0, 1} = 1 if and only if the rotation or resting period associated with arc j is part of the roster

of nurse i
wi ∈ N3 vector containing the violations of the soft constraints S6-S7 in the roster of nurse i
yipσ ∈ {0, 1} = 1 if and only if nurse i performs skill σ on assignment p
zpσ ∈ N violation of the optimal demand constraint for assignment p and skill σ

Table 4: Parameters and variables of the IP (Formulation 1).

7



min cTx︸︷︷︸
S2,S3,
S4,S5

+
∑
i

cw
Twi︸          ︷︷          ︸

S6,S7

+ cS1
∑
l,σ

zlσ︸         ︷︷         ︸
S1

(1a)

s.t.: [H1]
∑

j∈A+
ioi

xij = 1, ∀i [αioi ] (1b)

[H1,H3]
∑
j∈A+

iv

xij −
∑
j∈A−

iv

xij = 0, ∀i,∀v ∈ Vi \ {oi, di} [αiv] (1c)

[S6,S7]
∑
j∈Ωi

bjxij + wi ≤ Bi, ∀i [βi] (1d)

[H4]
∑
j∈Ωi

∑
p

ajpxij −
∑
σ∈Σi

yipσ = 0, ∀i, p [δip] (1e)

[H2]
∑
i∈Nσ

yipσ ≥ Dpσ, ∀p, σ (1f)

[S1]
∑
i∈Nσ

yipσ + zpσ ≥ Opσ, ∀p, σ (1g)

xij , yipσ ∈ {0, 1}, ∀i, j, p, σ (1h)
w, z ≥ 0 (1i)

The objective function (1a) reflects the penalties incurred for violations of the soft constraints. It is
the sum of three terms: the cost cTx of the chosen arcs (either rest or work arcs), the penalties

∑
i cTww

for violating the constraints on the total numbers of assignments and worked week-ends (S6, S7), and the
penalties cS1

∑
l,σ zlσ for insufficient staffing (S1). Constraints (1b)–(1c) model the flow conservation in

the rostering graph of each nurse i. Constraints (1d) stand for the requirements involving several different
rotations of each nurse i. Constraints (1e) ensure that a skill σ can be used by a nurse i only if this nurse
has this skill and is working on assignment p. Constraints (1f) ensure that there are enough nurses (i.e., the
minimum demand) working with skill σ on assignment p, whereas Constraints (1g) check how many nurses
are missing to meet optimal demand.

It can be noted that constraints (1e)-(1g) could be represented with flow model where y would be the
arc flows and x an input. As a consequence, the integrality of y can be deduced from that of x. What is
more, the integrality of w and z is a direct consequence of that of x, y and of the input data. This justifies
that branching rules can focus on x (see Section 4.3).

Remark. Constraints (1d) are formulated in an abstract way to allow for generalization to different con-
straints than those considered in INRC–II. To preserve the branch-and-price approach where the pricing
problem is an SPPRC, it is necessary that all the components of vectors bj can be counted in the SPPRC
by some arcs or by a resource.

4. Solution of the integer program by branch and price

A branch-and-price algorithm embeds a column generation within a classical branch-and-bound scheme
to solve linear programs with integrality constraints. In this framework, every linear relaxation that occurs
in the branching tree is solved by column generation and specific branching rules are designed. The reader
looking for more details on both column generation and branch and price is referred to the textbook of
Desaulniers et al. [12]. In Section 4.1, we describe the overall column generation scheme that we implement
to solve the linear relaxation of Formulation (1). In Section 4.2, we describe our model for the pricing
problem. In Section 4.3, we detail the branching rules implemented in the branch-and-price algorithm.
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4.1. Description of the column generation procedure
Suppose that for each nurse i ∈ N , a restricted number of rotations Ri ⊆ Ωi has already been generated.

The restricted master problem (RMP) is equal to the IP of Formulation (1) where Ωi is replaced by Ri
for all nurses i ∈ N . For the sake of simplicity, we assume that the linear relaxation of RMP, RMPLR, is
feasible – a feasible solution can always be obtained by adding artificial variables at prohibitive cost. Let
xLR be an optimal solution of RMPLR. The pricing problem described in the following sections is then
solved to search for rotations of Ωi \ Ri with negative reduced costs. If at least one rotation of negative
reduced cost is generated for at least one nurse i, it is added to the restricted formulation; if none is found,
xLR is then proved to be optimal for the linear relaxation of Formulation (1).

The resulting decomposition of the constraints corresponding to our IP is summarized in Table 5. The
pricing generate new rotations, while the master problem implements Formulation (1). The only constraint
that appears on both ends of the decomposition is the single-assignment-per-day constraint H1: in the
master problem, no pair of rotations with an assignment on the same day should be selected for the same
nurse, and in the pricing, no rotation with two assignments on the same day should be constructed.

Master problem Pricing problem
H1 Single assignment per day H1 Single assignment per day
H2 Under-staffing H3 Shift type succession
H4 Missing required skill S2 Consecutive assignments
S1 Optimal coverage S4 Preferences
S3 Consecutive days off S5 Complete week-end
S6 Total assignments
S7 Total working week-ends

Table 5: Decomposition of the constraints in the master and sub-problem.

4.2. Pricing subproblem
The pricing problem does not include any constraint linking the nurses with one another, so it can be

decomposed into as many independent subproblems as the number of nurses. In this section, we describe
how the pricing associated to a given nurse i can be modeled as an SPPRC in a directed network.

The hard constraints of the pricing problem are enforced by the structure of the network, which is similar
to others met in scheduling applications. For each possible assignment (k, s), one node Ak,s is created and
one arcs links two assignments on consecutive days Ak,s1 and Ak+1,s2 whenever (s1, s2) is not a forbidden
shift succession (i.e. (s1, s2) < F̄). Two artificial source and sink nodes are then added, together with one
arc from the source to each assignment node, and one arc from each assignment node to the sink. A small
example is given in Figure 2.

By construction of the network, any path from the source to the sink corresponds to a feasible rotation.
Provided that the arc costs can be such that the cost of a path is the reduced cost of the associated
rotation, a feasible rotation of lowest reduced cost is then a shortest path from the sink to the source. For
this, first consider a rotation j starting on day b and ending on day e. The rotation is composed of a
sequence (pb, . . . , pe) of assignments including (at least partially) nj weekends. Referring to Formulation 1,
we compute the reduced cost of j as

c̄j = cj︸︷︷︸
S2,S4,S5

−
(
αi,Wi,b

− αi,Ri,e
)︸                     ︷︷                     ︸

(1c)

− ((βi,1 + βi,2) (e− b+ 1) + βi,3nj)︸                                            ︷︷                                            ︸
(1d)

−
e∑
l=b

δi,pl︸      ︷︷      ︸
(1e)

, (2)

where βi,1 and βi,2 are the dual variables of the constraints on the total number of assignments and βi,3 is
that of the constraint on the total number of worked weekends.
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day 1

EARLY

LATE

NIGHT

day 2 day 3 day 4 day 5 day 6 day 7

SOURCE

SINK

to all
nodes

from all
nodes

Figure 2: Example of a pricing network. Here, K = 7, S = {EARLY, LATE, NIGHT} and the forbidden successions are
F̄ = {(LATE, EARLY) , (NIGHT, EARLY) , (NIGHT, LATE)}.

Among the terms that define c̄j in (2), the soft penalties S4, S5 and all dual costs can be added directly as
arc costs to the pricing network. Indeed, these costs can either be associated with one specific assignment or
they impact every assignment equally. For instance, the costs associated with the non-respect of the nurse’s
preferences (S4) result in the addition of a cost cS4 on all arcs whose endpoint is an undesired assignment.
Similarly, the dual costs (βi,1 + βi,2) and δi,p must be paid for every assignment p in the rotation, so they
are simply added to the costs of the arcs with this assignment as endpoint.

In contrast, the penalties associated with the constraints on consecutive assignments S2 cannot be
attributed to one specific assignment. Instead, they require to count the total number of shifts in the
rotation and the number of consecutive assignments to the same type of shift, and then penalize the possible
violations of lower and upper bounds on these values. The classical method for “counting” a value over a
path (e.g., the number of days) is to add a resource that measures this value on the arcs; the aggregate value
is then the sum of the values of the resource on the arcs of this path [22]. Likewise, we add two resources
to deal with S2, one for the total number of assignments in the rotation (r1) and the other for the number
of consecutive assignments to the current shift (r2).

Finally, the minimum reduced cost rotation of nurse i is obtained through the solution of a variant of
the SPPRC where resources are both upper and lower bounded with soft bounds. In contrast, the standard
version of the SPPRC deals with acyclic digraphs where the resources are weighted with positive integer
values, and the aggregate value must remain below a given upper bound. Classical label-setting algorithms
for SPPRC [17] can be adapted by computing the penalty associated with r1 before entering the sink node,
and that associated with r2 at every change of shift type in the rotation. However, the presence of lower
bounds and the lack of hard constraints on resources essentially nullifies the efficiency of the dominance
rule used in labelling algorithms if no specific method is used. In Section 5.3, we describe how the classical
network presented in this section can be modified to solve the pricing problem as a standard SPPRC with
only one resource that counts the total number of assignment.

4.3. Branching rules
In this section, we describe the two branching rules implemented in our branch-and-price algorithm. The

implementation choices related to the choice of the branching rule and the exploration of the branching tree
are detailed in Section 5.4.

In the description of the branching rules, the arcs and flow all refer to those of the rostering graph of
a given nurse i (Figure 1). We will say that a rotation/rest arc covers a day k when it corresponds to a
rotation/resting period that includes day k.

4.3.1. Branching on days
The first rule consists in branching when the sum of the flows on the rest arcs covering any day k is not

integer. We then create two branches to ensure that this value is integer. In the first one (the work branch),

10



the nurse is compelled to work on day k, and in the other one (the rest branch), he/she is compelled to
rest. This is ensured by deleting the rest arcs covering k in the work branch and by deleting the rotation
arcs covering k in the rest branch (respectively). What is more, every arc ending at or starting from day
k are deleted from the pricing problem of nurse i in the rest branch, so that no rotation arc covering k is
generated. In contrast, the pricing remains unchanged in the work branch.

4.3.2. Branching on assignments
The first branching rule does not guarantee the exhaustive enumeration of the feasible schedules, so we

implement a branching rule, similar to the previous one, that affects assignments. If the sum of the flows
on the rotation arcs including some assignment p is not integer, we create two branches where we either
enforce that the nurse has p in his/her roster or not. The consequences on the rostering graph and pricing
are similar to those described in the first rule.

5. Implementation choices in our branch-and-price procedure

In this section, we complete the general presentation of our branch-and-price algorithm with the choices
we made in our implementation. In particular, we show that the problem can be decomposed according
to subsets of independent nurses (Section 5.1) and that groups of nurses can be aggregated in the skill
assignment constraints (Section 5.2). In Section 5.3, we describe how we modify the pricing network so
that the pricing problem can be solved as a standard SPPRC. Finally, we detail our branching strategies in
Section 5.4 and develop a primal heuristic in Section 5.5.

5.1. Decomposition into independent groups of nurses
The nurses are only linked together by the staffing constraints H1 and S1. Both provide lower bounds

on the number of nurses assigned to a given shift with a given skill. As a consequence, if several sets of
nurses do not share any skill, the problem can be solved independently on each of these sets.

For an optimal separation of the nurses, we build an undirected skill graph, < VΣ, EΣ >, whose vertices
correspond to the skills of Σ, and whose edges join two skills if they are both available to at least one nurse,
i.e.,

EΣ = {{σ1, σ2} : ∃i ∈ N such that i ∈ Nσ1 ∩Nσ2} .

The partition of < VΣ, EΣ > into its P connected components, < VΣ1 , EΣ1 >, . . . , < VΣP , EΣP >, provides
the maximal subsets of independent skills. Now, we can also partition the set of nurses into P independent
subsets, N1, . . . ,NP , where a nurse i is in Np if all his/her skills are in Σp.

In the instances of INRC–II, this operation leads to two independent problems where the largest one
includes about 75% nurses: the smaller one includes the trainee nurses (who have only the skill trainee) and
the other one gathers all the other nurses (e.g., head nurses, nurses and caretakers) who share common skills
(e.g., a head nurse can work as a head nurse or a nurse, a nurse can work as a nurse or a caretaker, and a
caretaker can work only as a caretaker).

5.2. Aggregation of nurses in skill assignment constraints
In a team where the number of skills is small when compared to the number of nurses, it is expected that

several nurses share the exact same set of skills. If such nurses work on the same shift, they are equivalent
from the perspective of skill assignment. As a consequence, we aggregate the constraints (1e) for the nurses
sharing the same set of skills. The resulting modifications in the IP formulation are straightforward, so we
do not detail them.

In the instances of INRC–II, we observed that only 4 to 5 groups of similar nurses need to be considered
when assigning the skills, instead of 30 to 120 individual nurses.
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5.3. Modifications of the pricing network for consecutive assignments constraints
As stated in Section 4.2, the pricing problem can be solved by adapting classical label-setting algorithms

to take into account upper and lower soft bounds in the SPPRC. Overall, the algorithmic challenge is
twofold. First, the SPPRC label-setting algorithms rely on hard constraints to remove labels that exceed
the bounds. However, soft constraints mean that the values of the resources can take higher values than the
upper bounds and that the labels cannot be removed. Second, label-setting algorithms rely on dominance
rules to converge quickly. Since the consecutive assignments are both upper and lower bounded, one can only
conclude on the dominance of one path towards another based on the value of a resource in two situations:
when this value is the same for both paths and when the value is greater than the lower bound. Indeed,
in the other situations, a smaller number of assignments is better with respect to the maximum, but worse
with respect to the minimum, and the inverse is true for a larger number of assignments.

Upper and lower bounded soft constraints have already been considered in an SPPRC to solve variants
of the vehicle routing problem where it is forbidden to “wait” at a node. Dumas et al. [13] include soft time
windows to schedule deliveries in a network where the paths are already fixed. Braekers and Janssens [5]
modify a label-setting algorithm to apply dominance rules with soft time windows, and they apply their
algorithm to small instances. Qurashi et al. [29] solve the same variant of the SPPRC using several heuristics
without any guarantee of optimality and the same authors solve an IP to find an exact solution of the
problem [30]. They fail in solving vehicle routing problems with more than 7 vehicles and 25 customers.

In our implementation, we modify the pricing network to reduce the pricing problem to a standard
SPPRC in a larger graph. First, the penalties on the minimum number of consecutive assignments are
handled by enumerating short rotations. Second, the penalties on the number of consecutive assignments
to the same shift are managed by adding network layers and arcs. One important motivation for these
modifications is that they allows to use efficient implementations of SPPRC label-setting algorithms. What
is more, the enumeration of the resulting number of nodes and arcs improves the asymptotic worst-case
complexity when the planning horizon grows (see Section 5.3.3).

In the description of the modified pricing network below, we focus on the sub-network associated with
one given nurse.

5.3.1. Consecutive assignments to the same shift
The penalty for N consecutive assignments to a given shift s is

cS2b
(
CS−s −N

)
if N < CS−s

0 if CS−s ≤ N ≤ CS+
s

cS2b
(
N − CS+

s

)
if N > CS+

s

Instead of adding one resource to penalize N when it is below CS−s and another when it is above CS+
s ,

we model this constraint by adding network layers and arcs as follows. We duplicate each assignment
node (Ak,s,∀(k, s)) CS+

s times; the duplicates are denoted as Ank,s, n = 1, . . . ,CS+
s . A path going through

node Ank,s will then correspond to a rotation in which (k, s) is assigned and is either the n-th consecutive
assignment to s, or at least the n-th one when n = CS+

s .
For each type of shift s, the assignment nodes form a block As. We draw an example focusing on a

specific block in Figure 3. The arcs entering the block As denote the beginning of a sequence of assignments
to shift s, and the arcs exiting from the block denote the end of this sequence. The first CS+

s −1 assignments
to the shift s are associated with the plain arcs (Ank,s, A

n+1
k+1,s), and the subsequent assignments correspond

to the dotted horizontal arcs (ACS+
s

k,s , A
CS+

s

k+1,s). A cost cS2b is then added to the horizontal arcs because they
are used only when more than CS+

s consecutive assignments to the shift have occurred, whereas the costs
of the plain and diagonal arcs take no penalty due to S2. Notice that the arcs exiting from the block only
leave from vertices ACS+

s

k,s , k ∈ {1, . . . ,K}. To end a sequence of assignments to s before CS+
s consecutive

assignments, the path must then borrow a vertical dashed arc, which allows us to model the penalty incurred
if the number of consecutive shifts is too small (≤ CS−s ).
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A4
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A1
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A2
7,s

A3
7,s

A4
7,s

SOURCE

SINK

OTHER SHIFTS (day k − 1)

OTHER SHIFTS (day k + 1)

Figure 3: Example of a pricing network of a given nurse for a single shift s. Parameters: K = 7, CS+
s = 4, and CD−

i = 2.

5.3.2. Consecutive worked days
For nurse i ∈ N , the consecutive-assignments penalty associated with a rotation of length L is

cS2a
(
CD−i − L

)
if L < CD−i

0 if CD−i ≤ L ≤ CD+
i

cS2a
(
L− CD+

i

)
if L > CD+

i

Given that CD−i is small in practice (2 or 3), we handle the lower bound by enumerating the rotations of
length L < CD−i by dynamic programming. The reduced cost of these short rotations (L < CD−i ) is thus
computed as a preprocessing, and we modify the pricing network so that the arcs outgoing from the source
correspond to a sequence of CD−i assignments. No path in the network represents a short rotation anymore
and, therefore, there is no need to check the lower bound CD−i in the network.

To handle the upper bound, we then add a resource that counts the length of the rotation. The value
of this resource is CD−i on the starting arcs, 1 on the arcs that represent a worked day, and 0 on the others
(i.e., the vertical dashed arcs of Figure 3 and the arcs to the sink). If the aggregate value of this resource at
the end of the path exceeds CD+

i , the corresponding penalty is added to the cost of the rotation.

5.3.3. Assessment of the algorithmic complexity
Based on the above description of the modified pricing network, < V̄i, Āi >, of a given nurse, it is possible

to enumerate its arcs to get:

∣∣Āi∣∣ = O
(
K × |S| ×

(
|S|+ CD−i + 2 max

s∈S
{CS+

s }
))
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What is more, the resulting SPPRC has only one upper bounded resource that counts the length of the
rotation. Since the bound on the resource is soft, a rotation can be as long as the planning horizon, hence
a label-setting will have a complexity in

O
(
K2 × |S| ×

(
|S|+ CD−i + 2 max

s∈S
{CS+

s }
))

.

In comparison, the initial pricing network contains O(K × |S|2) and the corresponding SPPRC has two
resources bounded by K. Hence, the label-setting algorithm has complexity in O(K3 × |S|2).

Since the parameters CD−i , CS+
s and |S| do not necessarily grow with the size of the planning horizon,

we can deduce that the modified pricing network yields a better asymptotic complexity when the planning
horizon grows. More importantly, the removal of the lower bounds is likely to yield more dominance in the
execution of the label-setting algorithm.

5.4. Branching strategies
The nodes of the branch-and-price tree are explored in the following order: if children are created, explore

one of them, otherwise, go back to the highest non-explored node of the tree. The sequence of exploration
that starts from the highest unexplored node and ends at a leaf (never going back to a higher node) is called
a dive. At each node of the tree, the choice of the branching rule is done as follows:

• Priority is always given to branching on days (see Section 4.3.1) over branching on shifts (see Sec-
tion 4.3.2).

• In both branching rules, we branch on the most fractional values. In this selection, we give a small
advantage to week-end days because they are involved in more soft constraints and therefore have
more influence on the objective value.

• The order in which the two children branching nodes are inserted is random.

5.5. Primal heuristic based on variable fixing to obtain feasible solutions
To find an integer solution early in the branch-and-price and increase the chance of pruning nodes of

the branching tree, we use a primal diving heuristic. The heuristic is similar to the pure diving algorithm
described by Sadykov et al. [33] who reported fast computation of good primal bounds on several different
benchmarks. The heuristic starts with a solution of the linear relaxation of the master problem, xLR. It
then sequentially fixes a set of fractional variables to the closest integers and re-optimizes the problem until
an integer solution is found. More precisely, our heuristic performs the following steps:

(i) Let C > 0 be a threshold expressing the aggressivity of the diving heuristic.

(ii) Choose a set of rotations Θ =
⋃
i∈N Θi such that they do not overlap (i.e., contain no assignment on

the same day) and are all separated by at least one day off, and∑
i∈N

∑
j∈Θi

(1− xLRij ) ≤ C. (3)

(iii) For all i ∈ N and all j ∈ Θi, fix xij = 1.

(iv) Solve the problem with fixed variables (using column generation). If it is infeasible, the heuristic failed
to find a solution. If it is feasible and the optimal solution is integer, return this solution. If it is
feasible and the optimal solution is fractional, go to step (ii).

The above algorithm is an adaptation of the pure diving heuristic, where more than one fractional variable
can be fixed at each iteration. In particular, we require fixed rotations to be separated by at least one
day-off to reduce the risk that the problem becomes infeasible. The parameter C allows to dive more or less
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aggressively in the enumeration tree. In our tests, we typically set C to half the number of weeks in the
planning horizon.

The primal heuristic is run in the following two cases: (1) after the initial solution of the root node and
(2) from the highest unexplored node after each 2q-th dive (q integer).

6. An adaptive large neighborhood search for large instances

In preliminary tests, we observed that the branch-and-price algorithm described in previous sections finds
the optimal solution only for the smallest instances. When the number of integer variables is too high, the
size of the branching tree explodes and evaluating every node turns out to be extremely time-consuming.
Therefore, we embed this branch and price in an ALNS procedure based on the solution of smaller IPs, or
equivalently, on the successive fixing and release of some of the variables (see [27] for a recent review on
ALNS).

An ALNS algorithm is an iterative process that destroys a part of the current solution at each iteration
and repairs it in the hope for an improvement. In the destruction phase, a subset of the variables are freed,
while the rest is fixed to its current value; the choice of the fixed/free variables defines a neighborhood. In
the repair phase, a new solution is built by finding a feasible solution for the variables that have been freed.
In our implementation, the repair phase uses the branch-and-price method presented in the previous sections
at the sole exception that only a subset of the variables are free to change value, the others being fixed.
The resulting problem can then be solved to optimality if the number of free variables is sufficiently small.
Typically, for the NSP, one can destroy the rosters of some nurses (freeing the corresponding rotations).
Then, without changing the other nurses’ rosters, the destroyed rosters can be re-optimized by branch-and-
price. The algorithm is therefore based on the repetition of the following two steps, until a stopping criterion
is reached (time, number of iterations, number of iterations without improvement, . . . ):

1. Destroy: Use a destruction operator to determine a set (called FREE) of variables to free
and fix the others (set FIXED) at their values in the current solution;

2. Repair: Solve the NSP by branch-and-price where all variables in FIXED are fixed to their
value in the current solution. If the solution is improved, store it as the new current solution.

In Section 6.1, we propose several different destruction operators (i.e., different neighborhoods) that adapt
to the generation of rotations. What is more, we take advantage of the definition of several destruction
operators by choosing the operator randomly at each iteration with probabilities that depend on their
previous successes/failures. The corresponding roulette wheel procedure is described in Section 6.2. In
Section 6.3, we describe a rolling-horizon procedure that we use to determine the initial solution fed to the
ALNS.

6.1. Destruction operators
For the process of destructing the current solution, we propose two main strategies: destroy the complete

rosters of a small set of nurses, or partially destroy the rosters of a larger set of nurses over a restricted time
period. For both strategies, the nurses whose rosters are partially or completely destroyed are called free
nurses, and the others are called fixed nurses. In terms of implementation, if the roster of a free nurse is
completely destroyed, the variables associated with his/her rotations, rest periods and skill assignments are
set free. In contrast, the variables associated with the rosters of the fixed nurses are fixed to their current
value.

Thanks to the rotation-based model, the partial destruction of schedules can also be handled easily,
because the rotations are much shorter than complete schedules. Given a starting and an ending date
k1 < k2, the partial schedules from k1 to k2 are destroyed by freeing every rotation starting on any day k
satisfying k1 ≤ k ≤ k2, as well as the corresponding master problem variables. To repair the solution,
we adapt the branch-and-price algorithm by generating rotations that can start only between days k1 and
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k2. In practice, we modify the pricing network by deleting the starting arcs corresponding to rotations that
start before k1 or after k2.

For a unified presentation of the destruction operators, we denote as NW the number of schedule weeks
destroyed per free nurse, and NN the number of free nurses. Preliminary tests showed that there is no
benefit in partial destruction of only one week in the schedule: with the rest of the schedules fixed, the
problem is too constrained to make any improvement during the repair step. As a consequence, for a
simpler implementation, we pick NW in {2, 4, 8} for an eight-weeks horizon and in {2, 4} for a four-weeks
horizon. The number of nurses is then chosen to get a constant total number of destroyed schedule weeks
(NN ×NW ). The product NN ×NW is a parameter of the ALNS, whose influence is studied in Section 7.2.3.

As for the choice of the free nurses, we propose the following destruction strategies that depend on the
number of free nurses, NN .

i. D Random(NN): NN nurses are randomly selected among all the nurses.
ii. D Type(NN,T): NN nurses are randomly selected among those of the nurses with type T . The

type of a nurse is defined by the set of skills he/she can perform.
iii. D Contract(NN,C): NN schedules are randomly selected among the nurses that share the same

contract C. The contract of a nurse i is defined by the values of L−i , L+
i , CD−i , CD+

i , CR−i ,
CR+

i and WE+
i .

6.2. Choice of the destruction operator: roulette-wheel procedure
To select the destruction strategy of the nurses, and the number of weeks destroyed per nurse, we call

the roulette-wheel procedure introduced in [28] twice at each iteration of the ALNS. To choose between
D Random, D Type and D Contract for instance, each destruction operator d is assigned a value πd that
starts at 5. Every time the operator d is selected and yields an improvement, πd is incremented by 1. At
the beginning of each ALNS iteration, the destruction operator is selected randomly, where each operator
d has a probability πd/ (

∑
d′ πd′) of being selected. The number of weeks NW is then selected likewise, and

so are the type T and the contract C when D Type or D Contract are selected.
Once the destruction operator is chosen, the nurses are randomly selected according to probabilities

favoring balance in the distribution of workload. A bias is added to increase the likelihood of drawing nurses
whose numbers of assignments are not within a small margin from the average number of assignments per
nurse. The purpose for introducing this bias is to decrease the penalties paid for violations of the total
assignments constraints (S6) .

6.3. Improving the initialization: rolling-horizon algorithm
The initial solution of the ALNS is found by running a rolling-horizon method over the planning horizon.

Rolling-horizon methods come from the control theory area (Model Predictive Control) and are originally
meant to solve problems where future data is uncertain (whether unknown, noisy or depending on external
forces) [31]. In our implementation of this method, the planning horizon is chronologically partitioned into
three time windows: past, control horizon (present and near future) and prediction horizon (further future)
(see Figure 4). The variables that refer to past days are fixed, those of the control horizon are set to be
integer, and those of the prediction horizon are relaxed, i.e., they are allowed to be fractional. The control
horizon is the time period that we are actually scheduling, whereas the prediction horizon estimates the
impact of the control horizon schedule on the future. After this problem has been solved, the windows are
shifted towards the future by a chosen step called sampling horizon, until the algorithm reaches the end of
the complete planning horizon.

The same kind of idea has been successfully implemented to tackle large aircrew pairing problems in [32]
and led to substantial improvements. In the presence of uncertainty, rolling horizon performs best when the
dynamics of the problem are slow. Here, the demand does not change between each step of the process and
we can say that there is no external dynamics, hence the algorithm should perform efficiently.
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planning horizon

Step 1 control (ILP) predictive (LP)

Step 2 past (fixed) control (ILP) predictive (LP)

Step 3 past (fixed) control (ILP) predictive (LP)

...

Step n past (fixed) control (ILP)

Figure 4: Rolling-horizon procedure. Variables corresponding to rotations starting in the past, control, and prediction horizon
are respectively fixed, integer, and relaxed (i.e., may be fractional).

7. Numerical tests

7.1. Instances and benchmark
Instances. We test our algorithm on the instances of the INRC–II competition3. The size of the service
ranges from 30 to 120 nurses that can perform up to four different skills. The length of the planing horizon
is either four or eight weeks and each day is divided in up to four shifts.

Benchmark. We consider a benchmark of 40 instances: for each staff size

|N | ∈ {30, 35, 40, 50, 60, 70, 80, 100, 110, 120} ,

we consider two instances of four weeks, and two instances of eight weeks. More precisely, we use a subset
of the instances that were created for the evaluation of the competing teams of the INRC–II competition
(see [10]). All the instances are listed in Table 6 alongside with the best results found by our algorithm.
Under the label “instance” are the names of the instances, “LB*” and “UB*” respectively denote the best
lower and upper bound that we found, and “Gap” is the corresponding integrality gap, i.e., the value of
(UB* − LB*)/LB*.

7.2. Numerical results
The tests were all performed on a single thread of an Intel(R) Core(TM)i7-3770 CPU @ 3.40GHz pro-

cessor. Our implementation calls only free third-party softwares (not only free for academics, but also for
potential industrial users). We use the branch-and-price framework BCP in which the chosen linear solver
is CLP4, and the pricing problems are solved with the resource constrained shortest path from the Boost
library5. We also conducted comparative tests using other linear solvers (e.g., CPLEX or Gurobi) but none
of them was significantly better, which gives another motivation for the choice of the open-source option.
The source code of the software, and the parameter files corresponding to the tests described below are
shared on the git repository [25] under an MIT licence.

The figures reproduced in this section represent the distributions of integrality gaps and computational
times using Tukey boxplots: the bottom and top of a box are the first and fourth quartile, the band inside a
box is the median and the ends of the whiskers are the highest (lowest) values within 1.5 interquartile from

3All these instances are available online at http://mobiz.vives.be/inrc2/
4BCP and CLP are part of the COIN-OR project. They are available, respectively, at http://www.coin-or.org/projects/

Bcp.xml and http://www.coin-or.org/Clp/
5The boost graph library is available at http://www.boost.org/doc/libs/1_61_0/libs/graph/doc/index.html
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|N | M = 4 M = 8

instance LB* UB* Gap instance LB* UB* Gap

30 n030w4 1 6-2-9-1 1615 1685 4.3 % n030w8 1 2-7-0-9-3-6-0-6 1920 2070 7.8 %
n030w4 1 6-7-5-3 1740 1840 5.7 % n030w8 1 6-7-5-3-5-6-2-9 1620 1735 7.1 %

35 n035w4 0 1-7-1-8 1250 1415 13.2 % n035w8 0 6-2-9-8-7-7-9-8 2330 2555 9.7 %
n035w4 2 8-8-7-5 1045 1145 9.6 % n035w8 1 0-8-1-6-1-7-2-0 2180 2305 5.7 %

40 n040w4 0 2-0-6-1 1335 1640 22.8 % n040w8 0 0-6-8-9-2-6-6-4 2340 2620 12.0 %
n040w4 2 6-1-0-6 1570 1865 18.8 % n040w8 2 5-0-4-8-7-1-7-2 2205 2420 9.8 %

50 n050w4 0 0-4-8-7 1195 1445 20.9 % n050w8 1 1-7-8-5-7-4-1-8 4625 4900 5.9 %
n050w4 0 7-2-7-2 1200 1405 17.1 % n050w8 1 9-7-5-3-8-8-3-1 4530 4925 8.7 %

60 n060w4 1 6-1-1-5 2380 2465 3.6 % n060w8 0 6-2-9-9-0-8-1-3 1970 2345 19.0 %
n060w4 1 9-6-3-8 2615 2730 4.4 % n060w8 2 1-0-3-4-0-3-9-1 2260 2590 14.6 %

70 n070w4 0 3-6-5-1 2280 2430 6.6 % n070w8 0 3-3-9-2-3-7-5-2 4400 4595 4.4 %
n070w4 0 4-9-6-7 1990 2125 6.8 % n070w8 0 9-3-0-7-2-1-1-0 4540 4760 4.8 %

80 n080w4 2 4-3-3-3 3140 3320 5.7 % n080w8 1 4-4-9-9-3-6-0-5 3775 4180 10.7 %
n080w4 2 6-0-4-8 3045 3240 6.4 % n080w8 2 0-4-0-9-1-9-6-2 4125 4450 7.9 %

100 n100w4 0 1-1-0-8 1055 1230 16.6 % n100w8 0 0-1-7-8-9-1-5-4 2005 2125 6.0 %
n100w4 2 0-6-4-6 1470 1855 26.2 % n100w8 1 2-4-7-9-3-9-2-8 2125 2210 4.0 %

110 n110w4 0 1-4-2-8 2210 2390 8.1 % n110w8 0 2-1-1-7-2-6-4-7 3870 4010 3.6 %
n110w4 0 1-9-3-5 2255 2525 12.0 % n110w8 0 3-2-4-9-4-1-3-7 3375 3560 5.5 %

120 n120w4 1 4-6-2-6 1790 2165 20.9 % n120w8 0 0-9-9-4-5-1-0-3 2295 2600 13.3 %
n120w4 1 5-6-9-8 1820 2220 22.0 % n120w8 1 7-2-6-4-5-2-0-2 2535 3095 22.1 %

Average 4 weeks 12.6 % Average 8 weeks 9.1 %

Table 6: Best results obtained on the benchmark.

the top (bottom) of the box (see [14] for a more detailed description). Finally, we defined these following
measures. Gap0 = (UB0−LB*)/LB* designates the gap of the initial solution, where UB0 is the best upper
bound at the end of the initialization. Similarly, Gap = (UB − LB*)/LB* designates the gap of the best
solution obtained after the ALNS has been run.

In preliminary tests, we observed that some initialization methods (which finally proved to be the best
ones in our experimental settings) could exceed the time limit set by the INRC–II. As we aim at evaluating
different initialization strategies and different ALNS settings, it is necessary to have some time left after
the initialization, and so we set a higher time limit. We also use a formula that depends on the number
of nurses and weeks to compute the time limit, but we settled for M × [6 |N |] + 60 seconds instead of the
approximate M × [10 + 3 (|N | − 20)] seconds suggested in the INRC–II (M is the number of weeks in the
planning horizon). Note that the INRC–II time limit is relatively small but consistent with a dynamic
process where a one-week schedule is computed at each step; however, it makes sense to increase this limit
in a static context, as usually more computational time is available.

Besides the tests presented in the following sections, we also run the branch-and-price without any
heuristic improvement (e.g., no ALNS nor rolling horizon) with a much larger time limit (24 hours). We
did that to see if the branch-and-price itself was able to reach optimality with sufficient time. The best
lower bounds reported in Table 6 (under “LB*”) were all obtained from these 24 hours executions, but it
never produced the best upper bound (“UB*”). Overall, optimality could be proved only for smaller test
instances with up to 21 nurses and a four weeks planning.

7.2.1. Influence of the control period on the rolling horizon initialization
In Figure 5, we study the influence of the length of the control horizon on the performance of the

algorithm. We ran the software for all possible values, i.e., one to four weeks for the 4-weeks instances, and
one to eight weeks for the 8-weeks instances. At each iteration of the rolling horizon procedure, the problem
is solved with branch and price until optimality is reached or until two successive executions of the diving
heuristic (see Section 5.5) provide no improvement in the upper bound. The sampling horizon is equal to
one week in all our tests.

First, from Figures 5a and 5b, one sees that short control horizons do not yield good initial solutions.
This can be explained as follows. When the control horizon is short, only a few variables are constrained
to be integer during each solution step. Therefore, when the horizons are shifted towards the future, the
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variables that were relaxed and become integer may take very different values from the (fractional) ones they
had in the previous step. This may induce a loss of quality that reflects a bad anticipation when the control
horizon is too short. This is particularly true because of the succession constraints H3. From Figures 5c
and 5d, one sees that the best results are obtained with rolling horizons of 3 and 8 weeks for 4-weeks and
8-weeks instances, respectively. Figures 5e and 5f show, as expected, that the longer the control horizon,
the more time is spent in the initialization.

7.2.2. Performance of the initialization method
In Figure 6, we study the impact of the initialization method. We consider four methods for obtaining an

initial solution. In Feasible, 2-Dives and Repeat, the initial solution is obtained by running the branch-
and-price procedure and stopping it, respectively, after the first feasible solution is obtained, after the diving
heuristic has been run twice, and after two successive executions of this heuristic without improvement in
the upper bound. In the Rolling strategy, the rolling-horizon procedure is applied with the control horizon
length that gave the best results in the previous section. The ALNS is then run with these initial solutions.

In Figures 6a–6d, we observe that the best method is the rolling horizon method, both in terms of quality
of the initial solution (Gap0), and of the solution obtained after the ALNS is run (Gap).

From figures 6e and 6f, one sees that much more time is spent in the initialization for the Repeat and
Rolling strategies, particularly on the 8-weeks instances. Given the quality of the corresponding solutions,
a good initialization is worth the larger time spent.

7.2.3. Influence of the destruction operator on the ALNS
In this Section, we compare the destruction operators of the ALNS that are presented in Section 6.1.

The results are displayed in Figures 7a–7d, where we focus on the best upper bound found by the solution
algorithm. We note that in the repair step of the ALNS, the branch-and-price is run until optimality or until
two successive calls to the diving heuristic without improvement. For most destruction operators though,
the repair step problem is sufficiently small to be solved to optimality before the diving heuristic fails twice
in a row.

On Figures 7a–7b, we study the impact of the total number of schedule weeks destroyed (NN ×NW ) at
each iteration of the ALNS. For this, we compare five values evenly spread from 32 to 96 weeks. We do not
observe a significant impact of the total number of weeks destroyed. In all the other tests (in this section
and in the previous ones), we set NN ×NW = 48, which seems to be the best if we consider both 4-weeks
and 8-weeks instances.

On Figures 7c–7d, we report the comparison of the following ALNS strategies (label names are specified
in parentheses):

• only complete rosters are destroyed (“complete”),

• only partial rosters are destroyed (“partial”),

• selected nurses always have the same type (“D Type”),

• selected nurses always have the same contract (“D Contract”),

• selected nurses are always picked randomly among all the nurses (“D Random”).

In the first two strategies, every destruction operator is allowed for the nurse selection, and in the last three
strategies the schedules can either be completely or partially destroyed. As a reference, we also represent the
integral gap of the ALNS where every destruction operator is used in the roulette-wheel procedure (label:
“48 weeks”). The results first show that there is a significant loss in performance if the partial destruction
of schedules is not allowed, whereas the opposite is not true if rosters are only partially destroyed. Second,
we observe that the performance is even more sensitive to the selection strategy of the free nurses. Overall,
there is a benefit in considering the three strategies in the ALNS, but the random choice over all the nurses
is significantly better than the other two “smarter” strategies. This is not an original observation in the
field of metaheuristics, where randomness is sometimes the best tool towards unexpected improvements.
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7.2.4. Comparison with other methods
To conclude the tests, we compare the results of our method with those found in the literature for the

same benchmark. The experimental comparison is summarized in Table 7. In the “BKS” column, we display
the value of the best known solution (including the upper bounds found during our tests). For each other
method, we display the computational time limit (“cpu” column) and the gaps to BKS (“default”, “best”
and “average” columns). The results found under the “ALNS” columns are produced by our method. As
a result of the sensitivity tests discussed above, our default settings are to search for an initial solution
by rolling horizon and destroy NN × NW = 48 weeks at each iteration of the ALNS. In column “default”,
we report the gap to BKS for one execution with default settings and in column “best”, we report the
best gap found during our tests. In the “dynamic” section, we report the best results found during the
INRC–II competition [8]. These results are for the dynamic version of the problem, where the weeks are
scheduled sequentially without any information on the demand of future weeks. The values indicated for
the dynamic problem are the best results over the 15 participating teams and all the random seeds input
by the organizers. In the section [9] of the table, we display the results produced by Ceschia and Schaerf [9]
with a simulated annealing algorithm using large neighborhoods, where the schedules of nurses are changed
or swapped over k consecutive days. They report the best and average upper bound (columns “best”
and “avg.”) over 30 repetitions with different random seeds. Gomes, Toffolo and Santos [19] developed a
branch-and-price matheuristic. Their column generation scheme is based on a decomposition by roster (each
column is a schedule on the complete horizon), and they develop a variable neighborhood search (VNS) for
fast computation of upper bounds. Finally, the results reported in [35] are for a matheuristic where a VNS
is used in conjunction with a compact integer programming formulation. In the last two references, the
authors report the results they obtained with their default settings, but only for a subset of the 4-weeks
instances.

Note that the organizers of INRC–II provided a tool that estimates time limits depending on the perfor-
mance of the computer. The time limits reported for the dynamic problem, ALNS and [9] are all set with
this tool and these tests were executed on a single thread, so the values in “cpu” columns are comparable. In
contrast, [19] used an Intel(R) Xeon E5620@2.40GHz 8-Core processor with parallel computing, and in [35]
the tests are run on a single thread of an Intel Core i5-2410M CPU@2.30GHz processor.

First, we observe that our method was able to compute the BKS for every instance except four (which
are on a 4-weeks horizon). These are mostly obtained with other settings than default, but the results found
with default settings are still consistently close to the best ones.

It is comforting to observe that default ALNS achieves a significant improvement with respect to the
best solutions of the dynamic problem (2.3% average gap instead of 16.1%). The largest improvements
are obtained for the 8 weeks instances, which is expected. In the dynamic version, the schedule of the
first week is planned without information about future demand. It is thus logical that the largest errors
due to uncertainty are made for the largest planning horizon. Finally, we still observe that for three
small instances (n040w4 2 6-1-0-6, n050w4 0 0-4-8-7 and n050w4 0 7-2-7-2), default ALNS does not improve
the best dynamic solution. The reason might be that these instances were part of the first phase of the
competition where the participants could choose the random seeds that provided the best results among all
their tests. As a consequence, these results are the best over thousands of runs of stochastic algorithms. In
contrast, our results with default settings reflect only one specific execution of the algorithm.

The comparison with [9] seems to confirm the relevance of a branch-and-price matheuristic when com-
pared to a pure metaheuristics. Our opinion is that, in this context, branch-and-price allows for efficient
generation of improving rotations, which can be more challenging with heuristic moves. The benefit of
column generation is particularly important for the 8 weeks horizon.

Finally, the most significant difference of our method with that developed by Gomes et al. [19] is in the
choice of a rotation-based decomposition. Hence their result allow for a partial assessment of this choice.
Even though they used larger time limits and parallel computation on 8 cores, [19] found the BKS of only
one small instance (n035w4 0 1-7-1-8) out of six. Overall, with default settings, [19] obtains a 3.9% gap
on the six instances, while ALNS reaches a 2.2% gap. This comparison is very promising for rotation-
based decomposition, but we still think that there is a need for a more rigorous comparison before drawing
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conclusions. In particular, the results reported in [19] seem to be preliminary and they allow only for a
comparison on a subset of instances which does not include any 8-weeks instance.
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Figure 5: Impact of the size of the control horizon on the rolling-horizon initialization
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Figure 6: Comparison of the initialization methods
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Figure 7: Performance of the ALNS depending on the destruction operator.
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8. Conclusions

This article deals with the NSP described in the context of the international competition INRC–II.
Our first contribution is the description of a branch-and-price algorithm based on rotations, i.e., sequences
of assignments preceded and followed by at least one day off. This decomposition, adapted from aircrew
planning, allows to reduce the complexity of the pricing problem and the size of the set of feasible columns.
The master problem is a constrained flow problems where the complete schedule is built by concatenation of
rotations and resting periods, and skills are chosen for each assignment of the nurses. The pricing problems
are modeled as shortest path problems with one resource constraint which corresponds to the total number
of assignments in the rotation.

To achieve good results on large instances, we then develop an ALNS behaving as a primal heuristic in
interaction with the branch-and-price. The ALNS uses several destruction operators that consider different
strategies for the choice of the nurses whose schedules are destroyed and for the number of schedule weeks
destroyed. We then describe several primal heuristics to initialize the ALNS, including a rolling-horizon
procedure, where the weekly schedules are computed sequentially in chronological order.

Finally, the experimental tests focus on a benchmark of forty instances published in the INRC–II. The
instances are concerned with the schedule of 30 to 120 nurses over four and eight weeks horizons. The
results highlight that the best initialization method is the rolling horizon procedure, even though it takes a
greater fraction of the total computational time. We also carried out a sensitivity analysis of the ALNS to
the choice of the destruction operators. The main conclusion being that there is indeed a benefit in using an
adaptive strategy, even though a random selection of the nurses whose schedules are destroyed also achieves
good results. Finally, the numerical comparison of our algorithm with the literature confirms the relevance
of our approach.

Future research should aim at finding optimal solutions of instances with 30 and more nurses. For
this, we think that other decompositions could be considered in the branch-and-price procedure to lower
the integrality gap. One option is the classical decomposition where complete individual schedules are
generated, but other more refined rotation-based decompositions could also be developed. For instance,
additional layers could be added in the master problem flow network to reduce the gap due to the overwork
on week-ends. Another direction of research is the adaptation of the rotation model to other constraints
described in the literature.
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