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Abstract

Within a supervised classification framework, labeled data are used to learn classifier parameters. Prior to that, it
is generally required to perform dimensionality reduction via feature extraction. These preprocessing steps have
motivated numerous research works aiming at recovering latent variables in an unsupervised context. This paper
proposes a unified framework to perform classification and low-level modeling jointly. The main objective is to use the
estimated latent variables as features for classification and to incorporate simultaneously supervised information to
help latent variable extraction. The proposed hierarchical Bayesian model is divided into three stages: a first low-level
modeling stage to estimate latent variables, a second stage clustering these features into statistically homogeneous
groups and a last classification stage exploiting the (possibly badly) labeled data. Performance of the model is
assessed in the specific context of hyperspectral image interpretation, unifying two standard analysis techniques,
namely unmixing and classification.
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1. Introduction

In the context of image interpretation, numerous meth-
ods have been developed to extract meaningful infor-
mation. Among them, generative models have received
a particular attention due to their strong theoretical
background and the great convenience they offer in
term of interpretation of the fitted models compared to
some model-free methods such as deep neural networks.
These methods are based on an explicit statistical mod-
eling of the data which allows very task-specific model
to be derived [1], or either more general models to be
implemented to solve generic tasks, such as Gaussian
mixture model for classification [2]. Task-specific and
classification-like models are two different ways to reach
an interpretable description of the data with respect to a
particular applicative non-semantic issue. For instance,
when analyzing images, task-specific models aim at re-
covering the latent (possibly physics-based) structures
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underlying each pixel-wise measurement [3] while clas-
sification provides a high-level information, reducing the
pixel characterization to a unique label [4].

Classification is probably one of the most common way
to interpret data, whatever the application field of in-
terest [5]. This undeniable appeal has been motivated
by the simplicity of the resulting output. This simplic-
ity induces the appreciable possibility of benefiting from
training data at a relatively low cost. Indeed, in general,
experts can generally produce a ground-truth equiva-
lent to the expected results of the classification for some
amount of the data. This supervised approach allows
a priori knowledge to be easily incorporated to improve
the quality of the inferred classification model. Neverthe-
less, supervised methods are significantly influenced by
the size of the training set, its representativeness and reli-
ability [6]. Moreover, in some extent, modeling the pixel-
wise data by a single descriptor may appear as somehow
limited. It is the reason why the user-defined classes of-
ten refer to some rather vague semantic meaning with a
possible large intra-class variability. To overcome these
issues, while simultaneously facing with theoretical lim-
itations of the expected classifier ability of generalization
[7], an approach consists in preceding the training stage
with feature extraction [8]. These feature extraction tech-
niques, whether parametric or nonparametric, have also
the great advantage of simultaneously and significantly
reducing the data volume to be handled as well as the
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dimension of the space in which the training should be
subsequently conducted. Unfortunately, they are gener-
ally conducted in a separate manner before the classifica-
tion task, i.e., without benefiting from any prior knowl-
edge available as training data. Thus, a possible strat-
egy is to consider a (possibly huge) set of features and
selecting the relevant ones by appropriate optimization
schemes [9].

This observation illustrates the difficulty of incorpo-
rating ground-truthed information into a feature extrac-
tion step or, more generally, into a latent (i.e., unob-
served) structure analysis. Due to the versatility of the
data description, producing expert ground-truth with
such degrees of accuracy and flexibility would be time-
consuming and thus prohibitive. For example, for a re-
search problem as important and well-documented as
that of source separation, only very few and recent at-
tempts have been made to incorporate supervised knowl-
edge provided by an end-user [10]. Nonetheless, latent
structure analysis may offer a relevant and meaningful
interpretation of the data, since various conceptual yet
structured knowledge to be inferred can be incorporated
into the modeling. In particular, when dealing with mea-
surements provided by a sensor, task-related biophysi-
cal considerations may guide the model derivation [11].
This is typically the case when spectral mixture analy-
sis is conducted to interpret hyperspectral images whose
pixel measurements are modeled as combinations of el-
ementary spectra corresponding to physical elementary
components [12].

The contribution of this paper lies in the derivation of
a unified framework able to perform classification and la-
tent structure modeling jointly. First, this framework has
the primary advantage of recovering consistent high and
low level image descriptions, explicitly conducting hier-
archical image analysis. Moreover, improvements in the
results associated with both methods may be expected
thanks to the complementarity of the two approaches.
The use of ground-truthed training data is not limited to
driving the high level analysis, i.e., the classification task.
Indeed, it also makes it possible to inform the low level
analysis, i.e., the latent structure modeling, which usu-
ally does not benefit well from such prior knowledge.
On the other hand, the latent modeling inferred from
each data as low level description can be used as fea-
tures for classification. A direct and expected side ef-
fect is the explicit dimension reduction operated on the
data before classification [7]. Finally, the proposed hier-
archical framework allows the classification to be robust
to corruption of the ground-truth. As mentioned previ-
ously, performance of supervised classification may be
questioned by the reliability in the training dataset since
it is generally built by human expert and thus proba-
bly corrupted by label errors resulting from ambiguity
or human mistakes. For this reason, the problem of de-
veloping classification methods robust to label errors has
been widely considered in the community [13, 14]. Pur-

suing this objective, the proposed framework also allows
training data to be corrected if necessary.

The interaction between the low and high level models
is handled by the use of non-homogeneous Markov ran-
dom fields (MRF) [15]. MRFs are probabilistic models
widely-used to describe spatial interactions. Thus, when
used to derive a prior model within a Bayesian approach,
they are particularly well-adapted to capture spatial de-
pendencies between the latent structures underlying im-
ages [16, 17]. For example, Chen et al. [18] proposed to
use MRFs to perform clustering. The proposed frame-
work incorporates two instances of MRF, ensuring con-
sistency between the low and high level modeling, con-
sistency with external data available as prior knowledge
and a more classical spatial regularization.

The remaining of the article is organized as follows.
Section 2 presents the hierarchical Bayesian model pro-
posed as a unifying framework to conduct low-level and
high-level image interpretation. A Markov chain Monte
Carlo (MCMC) method is derived in Section 3 to sample
according to the joint posterior distribution of the result-
ing model parameters. Then, a particular and illustrative
instance of the proposed framework is presented in Sec-
tion 4 where hyperspectral images are analyzed under
the dual scope of unmixing and classification. Finally,
Section 5 concludes the paper and opens some research
perspectives to this work.

2. Bayesian model

In order to propose a unifying framework offering
multi-level image analysis, a hierarchical Bayesian model
is derived to relate the observations and the task-related
parameters of interest. This model is mainly composed
of three main levels. The first level, presented in Sec-
tion 2.1, takes care of a low-level modeling achieving la-
tent structure analysis. The second stage then assumes
that data samples (e.g., resulting from measurements)
can be divided into several statistically homogeneous
clusters through their respective latent structures. To
identify the cluster memberships, these samples are as-
signed discrete labels which are a priori described by
a non-homogeneous Markov random field (MRF). This
MRF combines two terms: the first one is related to the
potential of a Potts-MRF to promote spatial regularity be-
tween neighboring pixels; the second term exploits labels
from the higher level to promote coherence between clus-
ter and classification labels. This clustering process is de-
tailed in Section 2.2. Finally, the last stage of the model,
explained in Section 2.3, allows high-level labels to be
estimated, taking advantage of the availability of exter-
nal knowledge as ground-truthed or expert-driven data,
akin to a conventional supervised classification task. The
whole model and its dependence is summarized by the
directed acyclic graph in Figure 1.
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Figure 1: Directed acyclic graph of the proposed hierarchical Bayesian
model. (User-defined parameters appear in dotted circles).

2.1. Low-level interpretation

The low-level task aims at inferring P R-dimensional
latent variable vectors ap (∀p ∈ P , {1, . . . , P}) appro-
priate for representing P respective d-dimensional obser-
vation vectors yp in a subspace of lower dimension than
the original observation space, i.e., R ≤ d. The task may
also include the estimation of the function or additional
parameters of the function relating the unobserved and
observed variables. By denoting Y = [y1, . . . , yP] and
A = [a1, . . . , aP] the d× P- and R× P- matrices gathering
respectively the observation and latent variable vectors,
this relation can be expressed through the general statis-
tical formulation

Y|A, υ ∼ ψ (Y; flat (A) , υ) , (1)

where ψ(·, υ) stands for a statistical model, e.g., resulting
from physical or approximation considerations, flat(·) is
a deterministic function used to define the latent struc-
ture and υ are possible additional nuisance parameters.
In most applicative contexts aimed by this work, the
model ψ(·) and function flat(·) are separable with respect
to the measurements assumed to be conditionally inde-
pendent, leading to the factorization

Y|A, υ ∼
P

∏
p=1

ψ
(
yp; flat

(
ap
)

, υ
)

. (2)

It is worth noting that this statistical model will explic-
itly lead to the derivation of the particular form of the
likelihood function involved in the Bayesian model.

The choice of the latent structure related to the func-
tion flat(·) is application-dependent and can be directly
chosen by the end-user. A conventional choice consists
in considering a linear expansion of the observed data
yp over an orthogonal basis spanning a space whose di-
mension is lower than the original one. This orthogonal
space can be a priori fixed or even learnt from the dataset
itself, e.g., leveraging on popular nonparametric meth-
ods such as principal component analysis (PCA) [19]. In

such case, the model (1) should be interpreted as a prob-
abilistic counterpart of PCA [20] and the latent variables
ap would correspond to factor loadings. Similar linear
latent factors and low-rank models have been widely ad-
vocated to address source separation problems, such as
nonnegative matrix factorization [21]. As a typical il-
lustration, by assuming an additive white and centered
Gaussian statistical model ψ(·) and a linear latent func-
tion flat(·), the generic model (2) can be particularly in-
stanced as

Y|A, s2 ∼
P

∏
p=1
N
(

Map, s2Id

)
(3)

where Id is the d× d identity matrix, M is a matrix span-
ning the signal subspace and s2 is the variance of the
Gaussian error, considered as a nuisance parameter. Be-
sides this popular class of Gaussian models, this formu-
lation allows other noise statistics to be handled within
a linear factor modeling, as required when the approxi-
mation should be envisaged beyond a conventional Eu-
clidean discrepancy measure [22], provided that

E [Y|A] = flat(A).

From a different perspective, the generic formulation
of the statistical latent structure (2) can also result from
a thorough analysis of more complex physical processes
underlying observed measurements, resulting in specific
yet richer physics-based latent models [11, 23]. For sake
of generality, this latent structure will not be specified
in the rest of this manuscript, except in Section 4 where
the linear Gaussian model (3) will be more deeply in-
vestigated as an illustration in a particular applicative
context.

2.2. Clustering

To regularize the latent structure analysis, the model
is complemented by a clustering step as a higher level
of the Bayesian hierarchy. Besides, another objective of
this clustering stage is also to act as a bridge between
the low- and high-level data interpretations, namely la-
tent structure analysis and classification. The clustering
is performed under the assumption that the latent vari-
ables are statistically homogeneous and allocated in sev-
eral clusters, i.e., identities belonging to a same cluster
are supposed to be distributed according to the same dis-
tribution. To identify the membership, each observation
is assigned a cluster label zp ∈ K , {1, . . . , K} where K
is the number of clusters. Formally, the unknown latent
vector is thus described by the following prior

ap|zp = k, θk ∼ Φ(ap; θk), (4)

where Φ is a given statistical model depending on the
addressed problem and governed by the parameter
vector θk characterizing each cluster. As an example,
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considering this prior distribution as Gaussian, i.e.,
Φ(θk) = N (ψk, Σk) with θk = {ψk, Σk}, would lead to
a conventional Gaussian mixture model (GMM) for the
latent structure, as in [24] (see Section 4).

One particularity of the proposed model lies in the
prior on the cluster labels z = [z1, . . . , zP]. A non-
homogeneous Markov Random Field (MRF) is used as
a prior model to promote two distinct behaviors through
the use of two potentials. The first one is a local and
non-homogeneous potential parametrized by a K-by-J
matrix Q. It promotes consistent relationships between
the cluster labels z and some classification labels ω =
[ω1, . . . , ωP] where ωp ∈ J , {1, . . . , J} and J is the
number of classes. These classification labels associated
with high-level interpretation will be more precisely in-
vestigated in the third stage of the hierarchy in Section
2.3. Pursuing the objective of analyzing images, the sec-
ond potential is associated with a Potts-MRF [25] of gran-
ularity parameter β1 to promote a piecewise consistent
spatial regularity of the cluster labels. The prior proba-
bility of z is thus defined as

P[z|ω, Q] =

1
C(ω, Q)

exp

(
∑

p∈P
V1(zp, ωp, qzp ,ωp)

+ ∑
p∈P

∑
p′∈V(p)

V2(zp, zp′)

 (5)

where V(p) stands for the neighborhood of p, qk,j is the
k-th element of the j-th column of Q. The two terms
V1(·) and V2(·) are the classification-informed and Potts-
Markov potentials, respectively, defined by

V1(k, j, qk,j) = log(qk,j)

V2(k, k′) = β1δ(k, k′)

where δ(·, ·) is the Kronecker function. Finally, C(ω, Q)
stands for the normalizing constant (i.e., partition func-
tion) depending of ω and Q and computed over all the
possible z fields [15]

C(ω,Q) = ∑
z∈KP

exp

(
∑

p∈P
V1(zp, ωp, qzp ,ωp)

+ ∑
p∈P

∑
p′∈V(p)

V2(zp, zp′)


= ∑

z∈KP
∏
p∈P

qzp ,ωp exp

β1 ∑
p′∈V(p)

δ(zp, zp′)

 (6)

The equivalence between Gibbs random fields and
MRF stated by the Hammersley-Clifford theorem [15]
provides the prior probability of a particular cluster label

conditionally upon its neighbors

P[zp = k|zV(p), ωp = j, qk,ωp ] ∝

exp

V1(k, j, qk,j) + ∑
p′∈V(p)

V2(k, zp′)

 (7)

where the symbol ∝ stands for “proportional to”.
The elements qk,j of the matrix Q introduced in the lat-

ter MRF account for the connection between cluster k and
class j, revealing a hidden interaction between clustering
and classification. A high value of qk,j tends to promote
the association to the cluster k when the sample belongs
to the class j. This interaction encoded through these
matrix coefficients is unknown and thus motivates the
estimation of the matrix Q. To reach an interpretation of
the matrix coefficients in terms of probabilities of inter-
dependency, a Dirichlet distribution is elected as prior
for each column qj =

[
q1,j, . . . , qK,j

]T of Q =
[
q1, . . . , qJ

]
which are assumed to be independent, i.e.,

qj ∼ Dir(ζ1, . . . , ζK). (8)

The nonnegativity and sum-to-one constraints imposed
to the coefficients defining each column of Q allows them
to be interpreted as probability vectors. The choice of
such a prior is furthermore motivated by the properties
of the resulting conditional posterior distribution of qj,
as demonstrated later in Section 3. In the present work,
the hyperparameters ζ1, . . . , ζK are all chosen equal to 1,
resulting in a uniform prior over the corresponding sim-
plex defined by the probability constraints. Obviously,
when additional prior knowledge on the interaction be-
tween clustering and classification is available, these hy-
perparameters can be adjusted accordingly.

2.3. High-level interpretation
The last stage of the hierarchical model defines a

classification rule. At this stage, a unique discrete class
label should be attributed to each sample. This task can
be seen as high-level in the sense that the definition of
the classes can be motivated by their semantic meaning.
Classes can be specified by the end-user and thus a
class may gather samples with significantly dissimilar
observation vectors and even dissimilar latent features.
The clustering stage introduced earlier also allows a
mixture model to be derived for this classification task.
Indeed, a class tends to be the union of several clusters
identified at the clustering stage, providing a hierarchical
description of the dataset.

In this paper, the conventional and well-admitted
setup of a supervised classification is considered. This
setup means that a partial ground-truthed dataset cL
is available for a (e.g., small) subset of samples. In
what follows, L ⊂ P denotes the subset of observation
indexes for which this ground-truth is available. This
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ground-truth provides the expected classification labels
for observations indexed by L. Conversely, the index
set of unlabeled samples for which this ground-truth
is not available is noted U ⊂ P , with P = U + L and
U ∩ L = ∅. Moreover, the proposed model assumes that
this ground-truth may be corrupted by class labeling
errors. As a consequence, to provide a classification
robust to these possible errors, all the classification
labels of the dataset will be estimated, even those
associated with the observations indexed by L. At the
end of the classification process, the labels estimated
for observations indexed by L will not be necessarily
equal to the labels cL provided by the expert or an other
external knowledge.

Similarly to the prior model advocated for z (see Sec-
tion 2.2), the prior model for the classification labels ω
is a non-homogeneous MRF composed of two potentials.
Again, a Potts-MRF potential with a granularity param-
eter β2 is used to promote spatial coherence of the classi-
fication labels. The other potential is non-homogeneous
and exploits the supervised information available un-
der the form of the ground-truth map cL. In particular,
it attends to ensure consistency between the estimated
and ground-truthed labels for the samples indexed by
L. Moreover, for the classification labels associated with
the indexes in U (i.e., for which no ground-truth is avail-
able), the prior probability to belong to a given class is set
as the proportion of this class observed in cL. This set-
ting assumes that the expert map is representative of the
whole scene to be analyzed in term of label proportions.
If this assumption is not verified, the proposed modeling
can be easily adjusted accordingly. Mathematically, this
formal description can be summarized by the following
conditional prior probability for a given classification la-
bel ωp

P[ωp = j|ωV(p), cp, ηp] ∝

exp

W1(j, cp, ηp) + ∑
p′∈V(p)

W2(j, ωp′)

 . (9)

As explained above, the potential W2(·, ·) ensures the
spatial coherence of the classification labels, i.e.,

W2(j, j′) = β2δ(j, j′).

More importantly, the potential W1(j, cp, ηp) defined by

W1(j, cp, ηp) =
{

log(ηp), when j = cp

log( 1−ηp
J−1 ), otherwise

, when p ∈ L

− log(πj), when p ∈ U

encodes the coherence between estimated and ground-
truthed labels when available (i.e., when p ∈ L) or, con-
versely for non-ground-truthed labels (i.e., when p ∈ U ),

the prior probability of assigning a given label through
the proportion πj of samples of class j in cL. The hy-
perparameter ηp ∈ (0, 1) stands for the confidence given
in cp, i.e., the ground-truth label of pixel p. In the case
where the confidence is total, the parameter tends to 1
and it leads to ωp = cp in a deterministic manner. How-
ever, in a more realistic applicative context, ground-truth
is generally provided by human experts and may con-
tain errors due for example to ambiguities or simple mis-
takes. It is possible with the proposed model to set for
example a 90% level of confidence which allows to re-
estimate the class label of the labeled set L and thus to
correct the provided ground-truth. By this mean, the ro-
bustness of the classification to label errors is improved.

3. Gibbs sampler

To infer the parameters of the hierarchical Bayesian
model introduced in the previous section, an MCMC al-
gorithm is derived to generate samples according to the
joint posterior distribution of interest which can be com-
puted according to the following hierarchical structure

p (A, Θ, z, Q, ω|Y) ∝ p(Y|A)p(A|z, θ)p(z|Q, ω)p(ω)

with Θ , {θ1, . . . , θK}. Note that, for conciseness, the
nuisance parameters υ have been implicitly marginalized
out in the hierarchical structure. If this marginalization
is not straightforward, these nuisance parameters can be
also explicitly included within the model to be jointly
estimated.

The Bayesian estimators of the parameters of interest
can then be approximated using these samples. The min-
imum mean square error (MMSE) estimators of the pa-
rameters A, Θ and Q can be approximated through em-
pirical averages

x̂MMSE = E[x|Y, ] ≈ 1
NMC

NMC

∑
t=1

x(t) (10)

where ·(t) denotes the tth samples and NMC is the num-
ber of iterations after the burn-in period. Conversely, the
maximum a posteriori estimators of the cluster and class
labels, z and ω, respectively, can be approximated as

x̂MAP = argmax
x

p(x|Y) ≈ argmax
x(t)

p(x(t)|Y) (11)

which basically amounts at retaining the most frequently
generated label for these specific discrete parameters
[26].

To carry out such a sampling strategy, the conditional
posterior distributions of the various parameters need to
be derived. More importantly, the ability of drawing ac-
cording to these distributions is required. These poste-
rior distributions are detailed in what follows.
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3.1. Latent parameters

Given the likelihood function resulting from the sta-
tistical model (2) and the prior distribution in (4), the
conditional posterior distribution of a latent vectors can
be expressed as follows

p(ap|yp, υ, zp = k, θk) ∝ p(yp|ap, υ)p(ap|zp = k, θk)

∝ ψ
(
yp; flat

(
ap
)

, υ
)

Φ(ap; θk). (12)

3.2. Cluster labels

The cluster label zp being a discrete random variable,
it is possible to sample the variable by computing the
conditional probability for all possible values of zp in K

P(zp = k|θk, ωp = j, qk,j)

∝ p(ap|zp = k, θk)P(zp = k|zV(p), ωp = j, qk,j)

∝ Φ(ap; θk)qk,j exp

β1 ∑
p′∈V(p)

δ(k, z′p)

 . (13)

3.3. Interaction matrix

The conditional distribution of each column qj (j ∈ J )
of the interaction parameter matrix Q can be written

p(qj|z, Q\j, ω) ∝ p(qj)P(z|Q, ω)

∝
∏K

k=1 q
nk,j
k,j

C(ω, Q)
1S(qj). (14)

where Q\j denotes the matrix Q whose jth column has
been removed, nk,j = #{p|zp = k, ωp = j} is the number
of observations whose cluster and class labels are respec-
tively k and j, and 1S(·) is the indicator function of the
probability simplex which ensures that qj ∈ S implies
∀k ∈ K, qk,j ≥ 0 and ∑K

k=1 qk,j = 1.
Sampling according to this conditional distribution

would require to compute the partition function C(ω, Q),
which is not straightforward. The partition function is in-
deed a sum over all possible configurations of the MRF
z. One strategy would consist in precomputing this par-
tition function on an appropriate grid, as in [27]. As alter-
natives, one could use to likelihood-free Metropolis Hast-
ings algorithm [28], auxiliary variables [29] or pseudo-
likelihood estimators [30]. However, all these strategies
remain of high computational cost, which precludes their
practical use for most applicative scenarii encountered in
real-world image analysis.

Besides, when β1 = 0, this partition function reduces
to C(ω, Q) = 1. In other words, the partition func-
tion is constant when the spatial regularization induced
by V2(·) is not taken into account. In such case, the
conditional posterior distribution for qj is the following
Dirichlet distribution

qj|z, ω ∼ Dir(n1,j + 1, . . . , nK,j + 1), (15)

which is easy to sample from. Interestingly, the expected
value of qk,j is then

E
[
qk,j|z, ω

]
=

nk,j + 1

∑K
i=1 ni,k + K

which is a biased empirical estimator of
P
[
zp = k|ωp = j

]
. This latter result motivates the

use of a Dirichlet distribution as a prior for qj. Thus, it is
worth noting that Q can be interpreted as a byproduct of
the proposed model which describes the intrinsic dataset
structure. It allows the practitioner not only to get an
overview of the distribution of the samples of a given
class in the various clusters but also to possibly identify
the origin of confusions between several classes. Again,
this clustering step allows disparity in the semantic
classes to be mitigated. Intraclass variability results in
the emerging of several clusters which are subsequently
agglomerated during the classification stage.

In practice, during the burn-in period of the proposed
Gibbs sampler, to avoid highly intensive computations,
the cluster labels are sampled according to (13) with
β1 > 0 while the columns of the interaction matrix
are sampled according to (15). In other words, during
this burn-in period, a certain spatial regularization with
β1 > 0 is imposed to the cluster labels and the interac-
tion matrix is sampled according to an approximation of
its conditional posterior distribution1. After this burn-in
period, the granularity parameter β1 is set to 0, which re-
sults in removing the spatial regularization between the
cluster labels. Thus, once convergence has been reached,
the conditional posterior distribution (15) reduces to (14)
and the iteraction matrix is properly sampled according
to its exact conditional posterior distribution.

3.4. Classification labels

Similarly to the cluster labels, the classification labels
ω are sampled by evaluating their conditional probabil-
ities computed for all the possible labels. However, two
cases need to be considered while sampling the classifi-
cation label ωp, depending on the availability of ground-
truth label for the corresponding pth pixel. More pre-
cisely, when p ∈ U , i.e., when the pth pixel is not accom-
panied by a corresponding ground-truth, the conditional
probabilities are written

P[ωp = j|z, ω\p, qj, cp, ηp]

∝ P[zp|ωp = j, qj, zν(p)]P[ωp = j|ωV(p), cp, ηp]

∝
qzp ,jπj exp

(
β2 ∑p′∈ν(p) δ(j, ωp′)

)
K
∑

k′=1
qk′ ,j exp

(
β1 ∑

p′∈ν(p)
δ(k′, zp′)

) , (16)

1This strategy can also be interpreted as choosing C(ω, Q)×Dir(1)
instead of the Dirichlet distribution (8) as prior for qj.
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where ω\p denotes the classification label vector ω
whose pth element has been removed. Conversely, when
p ∈ L, i.e., when the pth pixel is assigned a ground-truth
label cp, the conditional posterior probability reads

P[ωp = j|z, ω\p, qj, cp, ηp]

∝ P[zp|ωp = j, qj, zν(p)]P[ωp = j|ωV(p), cp, ηp]

∝



qzp ,jηp exp

(
β2 ∑

p′∈ν(p)
δ(j,ωp′ )

)
K
∑

k′=1
qk′ ,j exp

(
β1 ∑

p′∈ν(p)
δ(k′ ,zp′ )

) when ωp = cp

(1−ηp)qzp ,j exp

(
β2 ∑

p′∈ν(p)
δ(j,ωp′ )

)

(C−1)
K
∑

k′=1
qk′ ,j exp

(
β1 ∑

p′∈ν(p)
δ(k′ ,zp′ )

) otherwise

(17)

Note that, as for the sampling of the columns qj (j ∈ J )
of the interaction matrix Q, this conditional probability
is considerably simplified when β1 = 0 (i.e., when no
spatial regularization is imposed on the cluster labels)

since, in this case,
K
∑

k′=1
qk′ ,j exp

(
β1 ∑

p′∈ν(p)
δ(k′, zp′)

)
= 1.

4. Application to hyperspectral image analysis

The proposed general framework introduced in the
previous sections has been instanced for a specific appli-
cation, namely the analysis of hyperspectral images. Hy-
perspectral imaging for Earth observation has been re-
ceiving increasing attention over the last decades, in par-
ticular in signal/image processing literatures [31, 32, 33].
This keen interest of the scientific community can be eas-
ily explained by the richness of the information provided
by such images. Indeed, generalizing the conventional
red/green/blue color imaging, hyperspectral imaging
collects spatial measurements acquired in a large num-
ber of spectral bands. Each pixel is associated with a
vector of measurements, referred to as spectrum, which
characterizes the macroscopic components present in this
pixel. Classification and spectral unmixing are two well-
admitted techniques to analyze hyperspectral images. As
mentioned earlier, and similarly to numerous applica-
tive contexts, classifying hyperspectral images consists
in assigning a discrete label to each pixel measurement
in agreement with a predefined semantic description of
the image. Conversely, spectral unmixing proposes to re-
trieve some elementary components, called endmembers,
and their respective proportions, called abundance in each
pixel, associated with the spatial distribution of the end-
members in over the scene [12]. Per se, spectral unmixing
can be cast as a blind source separation or a nonnega-
tive matrix factorization (NMF) task [34]. The particular-
ity of spectral unmixing, also known as spectral mixture
analysis in the microscopy literature [35], lies in the spe-
cific constraints applied to spectral unmixing. As for any

NMF problem, the endmembers signatures as well as the
proportions are nonnegative. Moreover, specifically, to
reach a close description of the pixel measurements, the
abundance coefficients, interpreted as concentrations of
the different materials, should sum to one for each spa-
tial position.

Nevertheless, yet complementary, these two classes of
methods have been considered jointly in a very limited
number of works [36, 37]. The proposed hierarchical
Bayesian model offers a great opportunity to design a
unified framework where these two methods can be con-
ducted jointly. Spectral unmixing is perfectly suitable to
be envisaged as the low-level task of the model described
in Section 2. The abundance vector provides a biophys-
ical description of a pixel which can be seen as a vector
of latent variables of the corresponding pixel. The classi-
fication step is more related to a semantic description of
the pixel. The low-level and clustering tasks of general
framework described respectively in Sections 2.1 and 2.2,
are specified in what follows, while the classification task
is directly implemented as in Section 2.3.

4.1. Bayesian model
Low-level interpretation: According to the conven-
tional linear mixing model (LMM), the pixel spectrum
yp (p ∈ P) observed in d spectral bands are approxi-
mated by linear mixtures of R elementary signatures mr
(r = 1, . . . , R), i.e.,

yp =
R

∑
r=1

ar,pmr + ep (18)

where ap =
[
a1,p, . . . , aR,p

]T denotes the vector of mix-
ing coefficients (or abundances) associated with the pth
pixel and ep is an additive error assumed to be white
and Gaussian, i.e., ep|s2 ∼ N (0d, s2Id). When consider-
ing the P pixels of the hyperspectral image, the LMM can
be rewritten with its matrix form

Y = MA + E (19)

where M = [m1, . . . , mR], A = [a1, . . . , aP] and E =
[e1, . . . , eP] are the matrices of the endmember signa-
tures, abundance vectors and noise, respectively. In this
work, the endmember spectra are assumed to be a pri-
ori known or previously recovered from the hyperspec-
tral images by using an endmember extraction algorithm
[12]. Under this assumption, the LMM matrix formula-
tion defined by (19) can be straightforwardly interpreted
as a particular instance of the low-level interpretation (1)
by choosing the latent function flat(·) as a linear map-
ping flat(A) = MA and the statistical model ψ(·, ·) as
the Gaussian probability density function parametrized
by the variance s2.

In this applicative example, since the error variance s2

is a nuisance parameter and generally unknown, this hy-
perparameter is included within the Bayesian model and
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estimated jointly with the parameters of interest. More
precisely, the variance s2 is assigned a conjugate inverse-
gamma prior and a non-informative Jeffreys hyperprior
is chosen for the associate hyperparameter δ

s2|δ ∼ IG(1, δ), δ ∝
1
δ
1R+(δ). (20)

These choices lead to the following inverse-gamma con-
ditional posterior distribution

s2|Y, A ∼ IG
(

1 +
Pd
2

,
1
2

P

∑
p=1
‖yp −Map‖2

)
(21)

which is easy to sample from, as an additional step
within the Gibbs sampling scheme described in Section
3.

Clustering: In the current problem, the latent modeling
Φ(·; ·) in (4) is chosen as Gaussian distributions elected
for the latent vectors ap (p ∈ P),

ap|zp = k, ψk, Σk ∼ N (ψk, Σk) (22)

where ψk and Σk are the mean vector and covariance
matrix associated with the kth cluster. This Gaussian
assumption is equivalent of considering each high-level
class as a mixture of Gaussian distributions in the abun-
dance space. The covariance matrices are chosen as
Σk = diag(σ2

k,1, . . . , σ2
k,R) where σ2

k,1, . . . , σ2
k,R are a set of

R unknown hyperparameters. The conditional posterior
distribution of the abundance vectors ap can be finally
expressed as follows

p(ap|zp = k, yp, ψk, Σk) ∝

|Λk|−
1
2 exp

(
−1

2
(ap − µk)

tΛ−1
k (ap − µk)

)
(23)

where µk = Λk(
1
s2 Mtyp + Σ−1

k ψk) and Λk = ( 1
s2 MtM +

Σ−1
k )−1. It shows that the latent vector ap associated with

a pixel belonging to the kth cluster is distributed accord-
ing to the multivariate Gaussian distribution N (µk, Λk).

Moreover the variances σ2
k,r are included into the

Bayesian model by choosing conjugate inverse-gamma
prior distributions

σ2
k,r ∼ IG(ξ, γ) (24)

where parameters ξ and γ have been selected to obtain
vague priors (ξ = 1,γ = 0.1). It leads to the following
conditional inverse-gamma posterior distribution

σr,k|A, z, ψr,k ∼ IG
(

nk
2

+ ξ, γ + ∑
p∈Ik

(ar,k − ψr,k)
2

2

)
(25)

where nk is the number of samples in cluster k, and
Ik ⊂ P is the set of indexes of pixels belonging to the
kth cluster (i.e., such that zp = k).

Finally, the prior distribution of the cluster mean ψk
(k ∈ K) is chosen as a Dirichlet distribution Dir(1). Such
a prior induces soft non-negativity and sum-to-one con-
straints on ap. Indeed, these two constraints are gen-
erally admitted to describe the abundance coefficients
since they represent proportions/concentrations. In this
work, this constraint is not directly imposed on the abun-
dance vectors but rather on their mean vectors, since
E[ap|zp = k] = ψk. The resulting conditional posterior
distribution of the mean vector ψk is the following mul-
tivariate Gaussian distribution

ψk|A, z, Σk ∼ NS

(
1
nk

∑
p∈Ik

ap,
1
nk

Σk

)
(26)

truncated on the probability simplex

S =

{
x = [x1, . . . , xR]

T |∀r, xr ≥ 0 and
R

∑
r=1

xr = 1

}
.

(27)
Sampling according to this truncated Gaussian distribu-
tion can be achieved following the strategies described in
[38].

4.2. Experiments

4.2.1. Synthetic dataset
Synthetic data have been used to assess the perfor-

mance of the proposed analysis model and algorithm.
Hyperspectral images have been synthetically generated
according to the following hierarchical procedure. First,
cluster maps have been generated from Potts-Markov
MRFs. Then, the corresponding classification maps have
then been chosen by artificially merging a few of these
clusters to define each class. Abundance vectors in a
given cluster have been randomly drawn from a Dirich-
let distribution parametrized by a specific mean for each
cluster. Finally the pixel measurements have been gener-
ated using the linear mixture model with real endmem-
bers signatures of d = 413 spectral bands extracted from
a spectral library. These linearly mixed pixels have been
corrupted by a Gaussian noise resulting in a signal-to-
noise ratio of SNR= 30dB. Two distinct images, referred
to as Image 1 and Image 2 and represented in Figure 2,
have been considered. The first one is a 100× 100-pixel
image composed of R = 3 endmembers, K = 3 clusters
and J = 2 classes. The second hyperspectral image is a
200× 200-pixel image which consists of R = 9 endmem-
bers, K = 12 clusters and J = 5 classes.

Figure 3 represents the abundance vectors of each pixel
in the probabilistic simplex for Image 1. The three clus-
ters are clearly identifiable and the class represented in
blue is also clearly divided into two clusters.

To evaluate the interest of including the classification
step into the model, results provided by the proposed
method have been compared to the counterpart model
proposed in [24] (referred to as Eches model) which does

8



(a) (b)

(c) (d)

Figure 2: Synthetic data. Classification maps of Image 1 (a) and Image
2 (b), corresponding clustering maps of Image 1 (c) and Image 2 (d).

Figure 3: Image 1. Left: colored composition of abundance map. Right:
pixels in the probabilistic simplex (red triangle) with Class 1 (blue) and
Class 2 (green).

not exploit this high-level information. The pixels and
associated classification labels located in the upper quar-
ters of the Images 1 and 2 have been used as the training
set L. The confidence in this classification ground-truth
has been set to a value of ηp = 0.95 for all the pixels
(p ∈ L). Additionally, the values of Potts-MRF granu-
larity parameters have been selected as β1 = β2 = 0.8.
In the case of the Eches model, the images have been
subsequently classified using the estimated abundance
vectors and clustering maps, and following the strategy
proposed in [13]. The performance of the spectral unmix-
ing task has been evaluated using the root global mean
square error (RGMSE) associated with the abundance es-
timation

RGMSE(A) =

√
1

PR
∥∥Â−A

∥∥2
F (28)

where Â and A denote respectively the estimated and
actual matrices of abundance vectors. Moreover, the ac-
curacy of the estimated classification maps has been mea-
sured with the conventional Cohen’s kappa. Results re-
ported in Table 1 show that the obtained RMSE are not
significantly different between the two models. More-
over, the comparison between processing times shows a
small computational overload required by the proposed
model. It should be noticed that this experiment has
been conducted with a fixed number of iterations of the
proposed MCMC algorithm (300 iterations including 50
burn-in iterations).

A second scenario is considered where the training set
includes label errors. The corrupted training set is gen-
erated by tuning a varying probability α to assign an in-
correct label, all the other possible labels being equiprob-
able. The probability α varies from 0 to 0.4 with a 0.05
step. In this context, the confidence in the classification
ground-truth map is set equal to ηp = 1− α (∀p ∈ L).
The results, averaged over 20 trials for each setting, are
compared to the results obtained using a mixture dis-
criminant analysis (MDA) [39] conducted either directly
on the pixel spectra, either on the abundance vectors esti-
mated with the proposed model. The resulting classifica-
tion performances are depicted in Figure 4 as function of
α. These results show that the proposed model performs
very well even when the training set is highly corrupted
(i.e., α close to 0.4).

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

α (label corruption in %)

ka
pp

a

Figure 4: Classification accuracy measured with Cohen’s kappa as
a function of label corruption α: proposed model (red), MDA with
abundance vectors (blue) and MDA with measured reflectance (green).
Shaded areas denote the intervals corresponding to the standard devi-
ation computed over 20 trials.

Moreover, as already explained, another advantage
of the proposed model is the interesting by-products
provided by the method. As an illustration, Figure 5

presents the interactions matrices Q estimated for each
image. From this figure, it is clearly possible to identify
the structure of the various classes and their hierarchical
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Table 1: Unmixing and classification results for various datasets.

RGMSE(A) Kappa Time (s)

Image 1
Proposed model 3.23e-03 (1.6e-05) 0.932 (0.018) 171 (5.4)
Eches model 3.24e-03 (1.4e-05) 0.909 (0.012) 146 (0.7)

Image 2
Proposed model 1.62e-02 (1.62e-04) 0.961 (0.04) 950 (11)
Eches model 1.61e-02 (2.71e-05) 0.995 (0.0004) 676 (2.1)

MUESLI image Proposed model N\ A 0.856 (0.004) 5472 (84)
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Figure 5: Estimated interaction matrix Q for Image 1 (top) and Image
2 (bottom).

relationship with the underlying clusters. For instance,
for Image 2, it can be noticed that Class 1 is essentially
composed of the clusters ]2 and ]9.

4.2.2. Real hyperspectral image
Finally, the proposed strategy has been implemented

to analyze a real 600 × 600-pixel hyperspectral image
acquired within the framework of the multiscale map-
ping of ecosystem services by very high spatial resolution hy-
perspectral and LiDAR remote sensing imagery (MUESLI)
project 2. This image is composed of d = 438 spectral
bands and R = 7 endmembers have been extracted using
the widely-used vertex component analysis (VCA) algo-
rithm [40]. The associated expert ground-truth classifi-
cation is made of 6 classes (straw cereals, summer crops,
wooded area, buildings, bare soil, pasture). In this exper-
iment, the upper half of the expert ground-truth has been
provided as training data for the proposed method. The
confidence ηp has been set to 95% for all training pixels
to account for the imprecision of the expert ground-truth.
The MRF granularity parameters of the proposed param-
eters have been set to β1 = 0.3 and β2 = 1 since these

2http://fauvel.mathieu.free.fr/pages/muesli.html

values provide the most meaningful interpretation of the
image. Figure 6 presents a colored composition of the
hyperspectral image (a), the expert ground-truth (b) and
the obtained results in terms of clustering (c) and classi-
fication (d). Quantitative results in term of classification
accuracy have been computed and are summarized in
Table 1. Note that no performance measure of the un-
mixing step is provided since no abundance groundtruh
is available for this real dataset.

Additionally, the robustness with respect to expert
mislabeling of the ground-truth training dataset has been
evaluated and compared to the performance obtained by
a state-of-the-art random forest (RF) classifier. Errors in
the expert ground-truth have been randomly generated
with the same process as the one used for the previ-
ous experiment with synthetic data (see Section 4.2.1).
Confidence in the ground-truth has been set equal to
ηp = 1− α for all the pixels (p ∈ L) where α is the cor-
ruption rate, with a maximum of 95% of confidence. Pa-
rameters of the RF classifier have been optimized using
cross-validation on the training set. Classification accu-
racy measured through Cohen’s kappa is presented in
Figure 7 as a function of the corruption rate α of the
training set. From these results, the proposed method
seems to perform favorably when compared to the RF
classifier. It is worth noting that RF is one of the promi-
nent method to classify remote sensing data and that the
robustness to noise in labeled data is a well-documented
property of this classification technique [14].

5. Conclusion and perspectives

This paper proposed a Bayesian model to perform
jointly low-level modeling and robust classification. This
hierarchical model capitalized on two Markov random
fields to promote coherence between the various levels
defining the model, namely, i) between the clustering
conducted on the latent variables of the low-level model-
ing and the estimated class labels, and ii) between the es-
timated class labels and the expert partial label map pro-
vided for supervised classification. The proposed model
was specifically designed to result into a classification
step robust to labeling errors that could be present in the
expert ground-truth. Simultaneously, it offered the op-
portunity to correct mislabeling errors. This model was
particularly instanced on a particular application which
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Real MUESLI image. Colored composition of the hyperspec-
tral image (a), expert ground-truth (b), estimated clustering (c), train-
ing data (d), estimated classification with proposed model (e) and esti-
mated classification with random forest (f).
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Figure 7: Real MUESLI image. Classification accuracy measured with
Cohen’s kappa as a function of label corruption α: proposed model
(red), random forest (blue). Shaded areas denote the intervals corre-
sponding to the standard deviation computed over 10 trials.

aims at conducting hyperspectral image unmixing and
classification jointly. Numerical experiments were con-
ducted first on synthetic data and then on real data.
These results demonstrate the relevance and accuracy
of the proposed method. The richness of the resulting
image interpretation was also underlined by the results.
Future works include the generalization of the proposed
model to handle fully unsupervised low-level analysis
tasks. Instantiations of the proposed model in other ap-
plicative contexts will be also considered.
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