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In this contribution, a method to track the crack path from a continuum finite element simulation using failure material models is presented. The work

belongs
 
to

 
a

 
larger

 
project,

 
aiming

 
at

 
extracting

 
the

 
crack

 
opening

 
a

 
posteriori

 
of

 
a

 
continuum

 
finite

 
element

 
computation

 
to

 
deal

 
with

 
durability

 

assessment
 
of

 
concrete

 
structures.

 
Cracking

 
is

 
modelled

 
in

 
a

 
diffuse

 
manner

 
by

 
a

 
distribution

 
of

 
an

 
appropriate

 
scalar

 
state

 
variable

 
associated

 
to

 
material

 

degradation.
 
With

 
the

 
proposed

 
method,

 
the

 
crack

 
path

 
is

 
found

 
in

 
the

 
post-processing

 
phase

 
by

 
means

 
of

 
a

 
step-by-step

 
procedure.

 
At

 
each

 
step,

 
a

 
new

 

location
 
point

 
is

 
computed

 
where

 
the

 
state

 
variable

 
is

 
maximum

 
in

 
a

 
given

 
direction

 
at

 
a

 
given

 
distance.

 
Furthermore

 
a

 
specific

 
procedure

 
is

 
proposed

 
to

 

detect
 
multiple

 
cracks

 
in

 
an

 
automatic

 
way.

 
The

 
pro-posed

 
method

 
is

 
successfully

 
applied

 
to

 
two

 
studies

 
implying

 
either

 
a

 
single

 
crack

 
or

 
a

 
multi-crack

 

pat-tern,
 
obtained

 
with

 
different

 
continuum

 
models

 
to

 
highlight

 
the

 
versatility

 
of

 
the

 
proposed

 
approach.

1. Introduction

A correct evaluation of crack path and opening is important in

many concrete engineering applications.

For some type of structures, crack opening estimation is

required in relation with permeability issues, in order to limit fluid

releases. Examples are confinement vessels and cooling towers of

nuclear power plants, dams and liquid natural gas reservoirs

[41,16,38]. In any case, since concrete is exposed to environmental

agents, the knowledge of crack characteristics may be exploited in

order to assess durability, in the sense of penetration of external

chemical aggressive agents [5] or simply for aesthetic reasons.

Finally, even design codes prescribe as a service limit state a max-

imum crack opening which in turn must be addressed carefully.

The assessment of the mechanical state of structures is more

and more often obtained by numerical simulations, the finite ele-

ment method being by far the most employed technique. The

mechanical simulation of a degraded or fractured structure can

be performed at present days following different approaches.

A first approach, based on fracture mechanics, assumes the exis-

tence of a crack or a set of potential cracks. The crack is then

modelled as a discontinuity, sometimes by describing it explicitly

in the geometry [19], sometimes by enriching with Heaviside func-

tions the interpolation of displacements in the element, as in the

X-FEMmethod [28,30,29]. Due to the direct incorporation of the dis-

continuity, this approach is here referred to as discrete. Using such a

method has the clear advantage, that crack properties (crack path

and opening) are retrieved directly, because they aremain variables

of the model. It is also true that X-FEM has allowed to overcome

some traditional shortcomings of discrete approaches, such as

necessity of incremental remeshing [3] or constraints on crack path

direction for cohesive elements, which otherwise must be known a

priori [19]. However, this approach has still a limitation when it

comes to describe appropriately the dissipative bulk behaviour

(i.e. microcracking and kinematic field across the fracture process

zone) on one hand, and crack initiation on the other hand.

A completely different approach, called here continuum

approach, consists in adopting a nonlinear constitutive law, where

the degradation state of the material is described by at least one

state variable [2,21,22]. Through continuum models the descrip-

tion of both crack initiation and propagation in the same frame is

possible. A further benefit of the continuum with respect to dis-

crete approach lies in the correct description of the degradation

process for quasi-brittle materials, from diffuse damage to forma-

tion of the macro-crack due to coalescence of micro-cracks. In

other terms, in quasi-brittle materials energy dissipation takes

⇑ Corresponding author at: EDF R&D/AMA, 828 Boulevard des Maréchaux,

F-91762 Palaiseau Cedex, France.

E-mail address: marina.bottoni@edf.fr (M. Bottoni).

1



place in a volume of non negligible size with respect to the charac-

teristic size of the structure; this volume is usually called Fracture

Process Zone (FPZ). Unfortunately, continuum approaches do not

directly provide the crack path and opening.

A third alternative, more and more explored by researchers,

consists in adopting both approaches at the same time. An embed-

ded or explicitly meshed discontinuity models the macro-crack,

while a non-linear constitutive law is used to model the diffuse

damage [1,32]. However, intrinsic difficulties may arise by estab-

lishing the transition point between the two kind of approaches

whatever the mechanical quantity used for the equivalence

[8,42]. Some recent works provide arguments to overcome this

problem by proposing a transition between a damage model and

a cohesive zone approach [7,24], but still there are limitations on

the crack direction. Finally, the method of thick level sets [31]

seems very promising in the next future.

The choice made in this contribution is to perform a continuum

nonlinear computation based on classical finite element method

and then retrieve the crack characteristics a posteriori in a

post-processing phase. The complete procedure is two fold; in a

first step the crack path is estimated and in the second step the

crack opening along the found crack path is computed. For the lat-

ter phase, it is possible to establish a strain equivalence with a

strong discontinuity [11]; another method consists in computing

a displacement jump by isolating the inelastic part if any of the

strain tensor concurring to open the crack, so ignoring the elastic

part released upon unloading [26]. In order to obtain the crack

path, a method has recently been developed in [10], inspired by

the Global Tracking Method used in [33,32]; the crack path is an

isoline of a scalar field obtained from a secondary gradient prob-

lem. However, this method is, so far, limited to radial loading

and mode I failure, since it is based on the assumption that, at

the time the crack path is computed, the principal direction of

the largest principal strain is perpendicular to the crack.

Furthermore, this is not verified at the intersection between a

FPZ and a rebar in concrete. The aim of this new contribution is

thus to obtain the crack path in an automatic way for a wider range

of mechanical problems.

In the first part of this paper, the method for tracking the crack

path is presented. In a second stage, choices of numerical parame-

ters are discussed. Thirdly, two continuum models used for illus-

trative purposes are briefly described. Finally, the powerfulness

of the method is analysed on two testcases.

2. Description of the algorithm

2.1. General discussion

The key idea is to search a crack path as a ridge in the topolog-

ical three-dimensional space generated by the scalar field Xðx; yÞ,

i.e. a state variable field representing material degradation from a

2D simulation. This state variable can be an internal variable of a

continuum model, such as isotropic damage or one component of

an anisotropic damage model [9]; it can also be a plastic deforma-

tion or the hardening/softening variable, when plasticity models

are used; eventually, it can also be an effective strain or a strain

component, since strain localizations take place when modelling

a crack by means of a continuum model. Since several variables

are possible for a given continuum model, the best choice is the

one with the sharpest edges on the ridge sides. Besides, in order

to reduce the search domain to cracked zones and to split apart

those zones in case of multiple cracks, the identification of one

ore more portions of domain is possible by imposing a lower limit

X0 to the field, so that points in each region will respect the condi-

tion: j X j> X0. Each area is referred here as the numerical Fracture

Process Zone (FPZ) and is associated to one single crack.

In the defined space, the ridge can be defined as the line in the

xy plane connecting two points on which the average field value is

maximum. However, a direct application of this definition is not

straightforward. In fact, the starting and ending points of the ridge

are not known a priori. For example, there is no knowledge of crack

tip, usually assumed as the starting point in incremental propaga-

tion, due to the post-processing character of the proposed method.

Another property of the defined 3D-space is that the intersection

between it and a plane (or a more general surface) yields to a curve,

having its maximum on the crack path. In the proposed algorithm,

this feature is exploited in a step-by-step procedure, in which a

new point belonging to the crack path is found at each step.

Actions performed in each step are described in Section 2.2. In

the initiation step (see Section 2.3), the procedure is slightly differ-

ent than the one executed in the typical step since the starting

point and the search direction are not known. Criteria for stopping

the procedure once the complete crack path is found are given in

Section 2.4. The topological search is accomplished on one FPZ at

a time. In Section 2.5, the method for searching in a domain with

multiple cracks is described. As a result of the algorithm, one

obtains a series of points belonging to the crack path. So, a first

approximation of the crack path can be obtained by connecting

successive pairs of points with a segment. Higher order approxima-

tions, i.e. higher order interpolating polynomials, could eventually

be used to ensure for instance C1 continuity if needed.

2.2. Running step

Actions performed in the typical step need a starting point and a

search direction. At step i, the starting point is the point Pi�1 belong-

ing to the crack path and found in the previous step i� 1; the

search direction Pi�2Pi�1

�����!
is determined by the two previous points

on the crack path. With reference to the diagram in Fig. 1, the fol-

lowing detailed operations are carried out at the current step i.

(1) A prediction point Ppr
i is defined by moving from the starting

point in the search direction, at a distance a called search

length.

(2) The field Xðx; yÞ is projected onto a line of length lorth, per-

pendicular to the search direction and passing through Ppr
i ;

the one-variable function XðsÞ is obtained, being s the

abscissa along this line. In the finite element frame, the pro-

jection is performed on discrete points.

Fig. 1. Scheme of the topological search procedure.
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(3) The new crack path point Pi is the one where the function

XðsÞ is maximum.

Due to spatial discretization or to practical implementation of

field projection in finite element codes, field Xðx; yÞ and conse-

quently its projection XðsÞ are mostly not C1 continuous. The irreg-

ularity of the profile XðsÞ affects usually that of the crack path.

Hence, it may be convenient to smooth the function XðsÞ to loosen

dependency on the mesh topology. Many smoothing methods do

exist in literature; the moving average or the Polynomial

Approximation with Exponential Kernel (PAEK) method are two

examples. A smoothing length lsmth is required by most methods.

In this contribution, the smoothing of function XðsÞ is realized by

a convolution product by means of a Gaussian function /ðk1� skÞ:

XðsÞ ¼

Z

lorth

/ 1� sk kð ÞX 1ð Þd1 ð1Þ

with:

/ 1� sk kð Þ ¼ exp �
1� sk kð Þ2

2l
2
smth

!

ð2Þ

The choice of the smoothing length is a compromise between a

too small value that will not smooth enough the profile although it

preserves all details and a too large value that accounts for values

out of the computational domain. Analysis on the optimal value in

the case of the convolution product with Gaussian function is pro-

vided at Section 3.4.

The convolution integral of Eq. (1) must be evaluated numeri-

cally. To do so, the main variable s, i.e. the curvilinear abscissa,

must be sampled. Let dorth be the sample step, so that there are

n ¼ lorth=dorth intervals on lorth. By supposing the function value con-

stant on the general interval of length dorth, the integral of Eq. (1)

can be approximated by the following expression:

Xðn � dorthÞ �
X
North

i¼1

dorth � X idorthð Þ � / ndorth � idorthk kð Þ ð3Þ

From the numerical point of view, the field XðsÞ is stored on North

points. Hence, the point distance dorth has to be seen as the lateral

precision of the crack path.

2.3. First step

In order to apply the operations described in Section 2.2, at least

the first two points P1 and P2 of the crack path must be known.

Once their location is determined, two possible search directions

are then defined: P1P2

��!
and P2P1

��!
. The search continues

independently in both identified directions as detailed in

Section 2.2 until stop requirements are fulfilled (see Section 2.4).

The aim of the first step, considered as the procedure initiation,

is the determination of P1 and P2. The first step differs slightly from

the characteristic step in some details. With reference to the dia-

gram in Fig. 2, the following operations are performed:

(1) An approximation P0 of the first point P1 is found and corre-

sponds to the absolute maximum value of the field Xðx; yÞ on

the considered FPZ.

(2) The field Xðx; yÞ is projected onto the circle, with P0 as the

centre, so to obtain the field XðsÞ (see Fig. 2(a)). The radius

of the circle should be about twice the finite element size

and not much smaller, in order to capture local variations

of the field correctly.

(3) The projected field XðsÞ is smoothed by applying the line

integral of Eq. (1) along the circle.

(4) The second point P2 of the crack path locates where the

smoothed field XðsÞ is maximum (see Fig. 2(a)); unlike

P0; P2 is obtained from the smoothed field, so it belongs to

the crack path.

(5) A backward correction is made on P0 to find an improved

position for the first point P1. As shown in Fig. 2(b) the field

is projected and smoothed on the line passing through P0

and orthogonal to P2P0

��!
. This correction is necessary because

without the smoothing, the first point position would be too

strongly dependent on the mesh, as already pointed out in

Section 2.2.

2.4. Criteria to stop the search in one direction

The first situation for stopping the topological search in one

direction is when the crack path reaches one of the domain bound-

aries. In practice, the procedure is stopped when the prediction

point is located outside the domain.

The second situation occurs when the field value of the newly

found point of the crack path is smaller than a prescribed threshold

Xlim. Beyond this threshold, the computed crack opening is consid-

ered to have no meaning.

2.5. Extension to 3D and multiple cracks

So far, the presentation of the procedure is for 2D mechanical

computations only and for a single FPZ.

Application to 3D cases is straightforward, if the topological

search is performed on cross-sections of the three-dimensional

domain. The crack surface is then reconstructed from the crack

lines in each cross-section with a discretization step equal to the

distance between two cross-sections.

The case of multiple cracks is a little more complicated, so it

requires detailed explanations. Some steps are in fact added to

the procedure described in Sections 2.2 and 2.3, in order to

automatically detect every crack paths. The described method

is valid within the hypothesis of distinct cracks (i.e. cracks do

not cross), as a unique FPZ is associated exclusively to one

crack. This hypothesis is most of the time verified for monotonic

loading.

In the following list, the steps of the method are detailed, even-

tually modified with respect to the procedure described in Sections

2.3 and 2.2.

(1) Beginning of the search on the whole domainX. The procedure

is initialised as detailed in Section 2.3, thus on the crack to

which the absolute maximum of the field on the whole

domain X belongs to.

(a) (b)

Fig. 2. Initialisation of the topological search: (a) determination of the second point

P2 , (b) back-correction of the first point P0 to P1.
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(2) Detection of the crack path and of FPZ boundaries. FPZ bound-

aries can be detected on the function XðsÞ at the same time

of the search of the maximum. The location of the point Pi

corresponds to the closest maximum to the prediction point

Ppr
i . In the case of close cracks, the orthogonal line may have

a second peak which corresponds to another FPZ, as shown

for example in Fig. 3.

Thus, this step of the procedure allows to select the right

maximum along the 1D profile. Then, the two minima

Pl
i; Pr

i closest to Pi are located. The space between these

two minima defines the limits of the FPZ on the orthogonal

line (see again Fig. 3).

At this point of the discussion, one must keep in mind that

the choice of the lsmth should not affect too much the location

of maximum and minimum values. Clearly, this length must

be smaller than the crack spacing.

(3) Definition of the FPZ. After the search of the single crack is

ended, the FPZ boundary is known by a cloud of points.

For a good identification of the FPZ area, a polynomial

regression is performed to find its contour C. For our applica-

tions a fourth-order polynomial has been found to be accu-

rate enough.

(4) Reset of the field. The area obtained at the previous step and

defined by its boundary C is the FPZ associated to the already

found crack. Inside, the field is reset to a value corresponding

to no damage, i.e. the crack is somehow erased. The under-

lying hypothesis, is that the non-linearities occurring inside

this area are considered to participate exclusively in the

opening of the crack associated to this area.

(5) Search of the next crack. The search of the next crack begins

with the new absolute maximum of the resetted field. This

way, the eliminated FPZ cannot affect the new search.

Now that the procedure extension to 3D and multiple crack pat-

tern is shown to only rely on practical issues, the parametric study

is performed on 2D conditions.

3. Discussion on parameters range

Overall, the procedure is based on the use of five numerical

parameters: the search length a, the smoothing length lsmth, the

orthogonal line length lorth, the point density on the orthogonal line

dorth and the value X lim to arrest the search on the single FPZ.

Due to spatial discretization, the field Xðx; yÞ is usually known

only on a set of points on the considered domain X. Depending

on the finite element solution, the field X has seldom an interpola-

tion of order higher than linear. In this section for the sake of clar-

ity, parameter calibration is based on the assumption of a

piecewise linear interpolation of the discretized field Xðx; yÞ. After

projection on a line, function XðsÞ is also piecewise linear. The sym-

bolD indicates the average length of the segment where XðsÞ is lin-

ear. The nodes defining this segment correspond to the

intersections of the orthogonal line with the finite element edges.

3.1. Length of the orthogonal line

The length of the orthogonal line does not affect the result of

the algorithm, provided that:

� it is longer than the FPZ width, so that the function XðsÞ is cor-

rectly represented;

� it is long enough such that the smoothing function /ðsÞ used in

the convolution product is not too much truncated around s. In

such a way, the influence of /ðsÞ to build the smoothed function

XðsÞ is well taken into account. For the Gaussian function,

truncation at a distance of 2lsmth is acceptable, being

/ð2lsmthÞ � 0:13 since only the location of the extrema is looked

for, not their actual value.

By calling D half of the FPZ width, one can then assume:

lorth ¼ 2 Dþ 2lsmthð Þ. This length is obtained by adding 2lsmth on both

sides of the FPZ. This value for lorth has been used throughout the

following testcases.

3.2. Point density on the orthogonal line

As mentioned in Section 2.2 the point density dorth is the lateral

precision of the crack path. In order to loosen mesh dependency, a

density of at least D=10 is then necessary.

3.3. Limit value for the crack search

Limit value Xlim does not affect the accuracy of the search, so it

will not be discussed in detail. Obviously, the choice depend on the

physical meaning of the state variable X in the continuum model.

An hint on how to fix this parameter in the case of damage models

has been provided in [11], where a method to associate an error to

the computed crack opening at each point of the crack path is sug-

gested. Actually, strictly speaking the crack is completely created

only when damage has reached the value of 1, i.e. complete failure,

on the orthogonal profile. However, one can think that the crack is

almost formed also for values smaller than 1. In other words, for

damage models Xlim is related to the transition from diffuse dam-

age to a real crack.

Other arguments for fixing the X lim value should be related to

the purpose of the crack opening computation. One can cite, for

example, Pijaudier-Cabot et al. [37] who suggested a law for deal-

ing the transition in transfer properties from diffuse damage and a

well-formed crack. In this perspective, Xlim is chosen to give a cor-

rect estimation of leakage.

As discussed, Xlim cannot be uniquely defined. It depends on the

choice of the state variable and on the problem solved after the

crack path is found.

3.4. Smoothing length

The effect of the smoothing length has been tested on piecewise

linear functions XðsÞ. The XðsÞ functions employed to test parame-

ters are generated numerically in order to dispose of an unlimited

number of profiles. To do so, a parametric exponential function is

sampled on the nodes of a line, distance between each node being

equal to D. The function values range in the interval ½0;1�; the

adopted orthogonal length is 20D, with the fracture process zone

(X > 0) of size 2D ¼ 14. Then, a corrective random term is added

to nodal values, in order to make the profile non-symmetrical.

Actually, real XðsÞ functions are almost never symmetrical since:

� the domain is discretized through an unstructured mesh;

� the domain is discretized through a structured mesh, but the

crack path does not intersect elements on their edges.

An uniform random distribution of range ½�0:1;0:1� is used to

perturb the profile symmetry. This interval, controlling the magni-

tude of the additional term, is calibrated on real profiles, and look-

ing at several continuum models and meshes. That guarantees a

high level of dissymmetry, typical of coarse meshes. An example

of obtained XðsÞ function is given by the blue1 line in Fig. 4, where

1 For interpretation of colour in Figs. 4 and 14, the reader is referred to the web

version of this article.
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the normalized abscissa s=D is used. In the same figure, four

smoothed functions XðsÞ are also depicted. They are obtained by

adopting a point density dorth ¼ 0:001D on the orthogonal line. For

a smoothing length of 0:1D, the original (non-smoothed) and

smoothed profiles are almost superposed, so that lsmth should at least

be larger than 0:5D to have a minimum smoothing effect. Obviously,

a unique value of lsmth giving the real crack position does not exist,

since this parameter has only a numerical role. Nevertheless, it is

suggested to use a small value while retaining adequate smoothing

properties, so to avoid a too severe flattening of the profile or merg-

ing of two close FPZs. The parameter can then be taken in the range

½0:5D;2D�.

Under the hypothesis of a piecewise linear function, the maxi-

mum on the orthogonal line of the non-smoothed function is

always on a node. As already mentioned, this could result in a

strong mesh-dependency of the crack path. The effect of the

smoothing length must then be studied with respect to the posi-

tion of the maximum of the smoothed profile, corresponding to

the point belonging to the crack path. To this purpose, different

XðsÞ profiles and smoothing lengths are tested, observing the posi-

tion of the crack path point. With the assumed random effect, the

variation in the position is never bigger than D=10, which is

acceptable.

3.5. Search length

The choice of the minimum search length depends essentially

on the crack path curvature, as shown here by testing the algo-

rithm on the portion of a circle with radius R.

This property can be proven easily with the help of simple geo-

metric considerations, as shown in Fig. 5(a). Indeed, the repre-

sented configuration is a limit case, where the orthogonal line

does not cross the crack path, since it is tangent to it. The corre-

sponding relationship between a and R is R ¼ 3=2a, so that the

maximum value of the ratio a=R � 0:67 is proposed. Adoption of

a smaller search length assure that points obtained by the algo-

rithm lay on the crack path.

In order to confirm this property, a test is performed by apply-

ing the method onto a heuristic numerical 2D-field for different

values of the search length. This field is completely defined by a

given crack path, equal to a portion of circle having radius R, a

given FPZ width equal to 2D, and a given shape on a line orthogonal

to the crack path. In our example, R ¼ 10; 2D ¼ 5 and on the

orthogonal line the field have a parabolic shape, with values in

the range ½0;1�. A squared specimen of size 40� 40 is considered.

Finally, the field is discretized on a regular squared mesh of ele-

ment size D ¼ 1. The search algorithm is applied with following

parameters other than the search length: the orthogonal and

smoothing lengths are lorth ¼ 20 and lsmth ¼ 1; the point density

on the orthogonal line is dorth ¼ 0:004; the limit value for stopping

the search is X lim ¼ 0:4.

In Fig. 5, the obtained crack paths for three search lengths are

provided: a ¼ 0:5; a ¼ 5; a ¼ 7, corresponding to ratios a=R equal

0.05, 0.5 and 0.7 respectively. The test shows that with a ratio

a=R ¼ 0:5, the crack path is retrieved but not really accurate. The

Fig. 5. Crack path on a numerical field for different search lengths.

Fig. 3. Search of points belonging to the crack path and to FPZ boundaries.

Fig. 4. Original XðsÞ and smoothed XðsÞ profiles with different smoothing lengths.
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algorithm fails for a=R ¼ 0:7 which is larger than the limit value of

0.67. As for small a values, there seems to be no lower limit: for

a ¼ 0:05D the right crack path is still obtained.

Other tests have been performed by modifying the field charac-

teristics or the mesh refinement, so adopting a different curvature,

the FPZ width, an exponential shape on the orthogonal line, or a

finer mesh. Conclusions on the ratio a=R remain identical.

The value a=R ¼ 0:67 is the limit ratio to obtain points belong-

ing to the crack path. However, in the perspective of leakage com-

putations, accuracy should be determined with regard to the

purpose of calculating the crack opening, the precision on the

direction of the crack normal being directly related to the definite-

ness of the crack path. It is then recommended to run the algorithm

several times with decreasing search lengths and to check for con-

vergence. For the computation of the flow rate the reader is

addressed for example to [11,39,17]. Moreover, thanks to the low

computational cost of the crack search algorithm, there are no

drawbacks to use small search steps, in order to obtain a path as

smooth as possible.

4. Continuum models used in the examples

In this section, the continuummodels employed for the illustra-

tive applications are summarized. Two isotropic damage models

have been used to highlight the versatility of the proposed method.

Both are associated to two different regularisation techniques,

since conventional continuum damage descriptions suffer from

ill-posedness beyond a certain level of damage and lead to spuri-

ous localizations. A certain number of regularisation techniques

exist in literature, such as the integral [36,15], the strain gradient

[35] or the damage gradient [12] approaches. Regularized damage

models are often called non-local, since the damage evolution

depends on the mechanical state in a neighbourhood of the mate-

rial point.

In a first example, a brittle isotropic damage model is used; the

regularization of the solution is obtained by enriching the formula-

tion with the damage gradient [25]. In a second example, the

Mazars’ damage model [27] is employed in association with a non-

local integral regularization.

The relationship between the stress and the strain tensors has

the following form:

r ¼ A dð ÞE : e ð4Þ

being E the elastic stiffness tensor, r the Cauchy stress tensor and e
the small strain tensor, and with A a stiffness function varying from

0 to 1. As already mentioned, the nonlocal quantities appear in the

damage evolution equation, as well as in the yield function f; since

the exact expression of both depends on the constitutive law, they

are given separately for the two models. Finally, the Kuhn–Tucker

consistency conditions take the simple form, with the dot denoting

time differentiation:

f ðeÞ 6 0; _dP 0; _df ðeÞ ¼ 0 ð5Þ

4.1. A brittle gradient damage model

This law has been developed in the frame of the generalized

standard materials (see [14] or [18]), extended to a gradient consti-

tutive law, as shown in [23,25].

Constitutive equations are still given by Eq. (4) while the dam-

age driving force reads:

Y ¼ �
1

2
A0ðdÞe : E : e ð6Þ

where AðdÞ is the stiffness function. The yield criterion is:

f Y;r2d
� �

¼ Y þ cr2d� k ð7Þ

which is completed by the Kuhn–Tucker conditions, Eq. (5). In Eq.

(7), k is a yield threshold; the control of damage localization is mod-

elled through the introduction of the Laplacian of damage r2d,

being c > 0 a parameter governing the coupling between neigh-

bouring material points, hence the strength of the nonlocal effects.

Additional boundary and interface conditions are required due to

Fig. 6. Mazars’ damage model: numerical 1D profiles for damage.
Fig. 7. Mazars’ damage model: numerical 1D profiles for equivalent strain.

Fig. 8. Brittle gradient damage model: analytical 1D profiles for damage.
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the differential formulation of the model. By denoting @X the

boundary of the body domain X; n its outer normal, C a potential

surface of discontinuity, m its normal and s � t the discontinuity of

a quantity across C, they read:

sdt ¼ 0 and scrdt � m ¼ 0 across C ð8Þ

rd � n ¼ 0 on @X ð9Þ

The corresponding Helmholtz free energy and dissipation

potential at the structural level are respectively:

F e;dð Þ ¼

Z

X

1

2
AðdÞe : E : eþ

c

2
rd �rd

� �

dV ð10Þ

D _d
� �

¼

Z

X

k _dþ IRþ ð _dÞ
� �

dV ð11Þ

with IRþ the indicator function which enforces _dP 0.

The stiffness functionAðdÞdependson the additional parameterc:

A dð Þ ¼
1� d

1þ cd

� �2

ð12Þ

Besides the elastic parameters E; m, the brittle law is finally

described by three parameters k; c and c. It can be shown that for

a 1D problem, they can be related to three macroscopic parameters

(see [24]), that is the peak stress ry, the fracture energy Gf and half

the localization band at failure D through equations:

k ¼
3Gf

4D
; c ¼

3

8
DGf ; c ¼

3EGf

4r2
yD

� 1 ð13Þ

4.2. Nonlocal Mazars’ damage model

The yield criterion for the Mazars’ damage model is expressed

in terms of strains and reads:

f ¼ eeq � H ð14Þ

where eeq is a nonlocal equivalent strain and H is a history variable,

a function strictly growing upon loading with ed0 as initial value, i.e.
the damage threshold. The nonlocal effective strain is found by

application of the nonlocal equation to the local variable eeq, defined
as:

eeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1
heii

2
þ

r

ð15Þ

where h�iþ denotes the positive part of a quantity. The nonlocal

equivalent of eeq at point x is obtained by averaging it on the

domain X with a weighting function W, in the following way:

eeq xð Þ ¼

R

X
W n� xk kð Þeeq nð ÞdV
R

X
W n� xk kð ÞdV

ð16Þ

A Gaussian functionW is used as a possible weighting function:

W n� xk kð Þ ¼ exp �
2 n� xk k

lc

� �2
 !

ð17Þ

(a) Rough mesh. (b) Fine mesh.

Fig. 11. Specimen with circular inclusion: meshes and damage maps.

Fig. 9. Geometry and boundary conditions of the specimen with circular inclusion.

Fig. 10. Specimen with circular inclusion: force–displacement plot with mesh

refinement.
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where kn� xk is the distance to the considered point x and lc is the

internal length of the non-local damage model. The evolution law

for damage is a function of the history variable H:

dc ¼ 1�
ed0 1� Acð Þ

H
� Ac exp �Bc H � ed0ð Þð Þ ð18Þ

dt ¼ 1�
ed0
H

exp �Bt H � ed0ð Þð Þ ð19Þ

where t is for tension and c for compression; also, Bt; Ac; Bc are law

parameters as well as the damage threshold ed0. Actually, Eq. (19)
does not correspond to the original expression, but to that proposed

by [20] to improve behaviour in tension. The final value for the

damage d is obtained by averaging damages in tension and com-

pression with the coefficient at:

d ¼ atdt þ ð1� atÞdc ð20Þ

In Eq. (20), at is given by:

at ¼

P3
i¼1heiiþeti
e2eq

; et ¼
1þ m
E

hriþ �
m
E
tr hriþ
� 	

ð21Þ

where m and E are the Poisson’s ratio and the Young’s modulus

respectively.

The stiffness function of Eq. (4) simply reads:

A dð Þ ¼ 1� d ð22Þ

4.3. Fields used in the crack path search

An important point concerns the choice of the field used for the

crack path search. From what has been described in previous sec-

tions, the algorithm is meaningful as long as a unique maximum on

the orthogonal profile can be clearly defined.

An indication of the shape of damage on the orthogonal profile

can be obtained in an unidimensional problem. This allows us to

compare the two models introduced in the previous sections.

Concerning the Mazars’ model, a bar is loaded by applying an

increasing axial displacement to one end and constraining it to the

other end. The unidimensional problem is obtained by using 121

2D isoparametric elements together with a zero value of the

Poisson ratio. The bar is 1 m long, damage model parameters are

e0 ¼ 10�4; Bt ¼ 1000; lc ¼ 0:18 m (parameters Ac and Bc are not

involved under these boundary conditions), the Young modulus is

equal to 33,700 MPa. In order to initiate damage, a central element

is weakened by adopting a Young modulus equal to 31,000 MPa.

Fig. 12. Specimen with circular inclusion: projected and smoothed damage (a) on the circle during initialisation procedure, (b) on one orthogonal profile.

Fig. 13. Specimen with circular inclusion: crack paths for a smoothed or a non smoothed orthogonal profile.
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After solving numerically the problem through the finite ele-

ment solver Cast3M, one obtains the damage profiles of Fig. 6; here,

the internal variable d is depicted as a function of position x along

the bar and for different loading levels. It is quite clear that, while

damage is approaching 1, it spreads out around the point of max-

imum and the saturated region covers an increasing length in the

middle of the bar (and not only at the point representing the

crack). This is a well-know drawback for strain-based regulariza-

tion techniques, due to a mutual coupling between damage and

strain localization. In fact, on the one hand strains (and so the

equivalent strain governing damage) are increased by the presence

of damage reducing stiffness. On the other hand, arising of damage

on a sound point can be provoked by non-locality; through Eq. (16)

local strains are in fact averaged with high strains of the neigh-

bouring damaged points. A detailed investigation of this damage

diffusion effect for strain-gradient regularizations is provided in

[13], while the close relationship between nonlocal integral mod-

els, employed in the present paper, and strain gradient models is

given for example in [34]. It is then quite clear that a damage field

obtained using the nonlocal Mazars’ model cannot be directly

employed for crack path search. However, history variable has

properties similar to damage, since it accounts for loading history

but without any upper limit. Indeed, in an uniaxial monotonic test,

the history variable is very close to the equivalent strain; this one

is given in Fig. 7. Due to its shape, it is possible to use the history

variable field in place of damage for our purposes; the second

application presented in this paper is an example.

As mentioned in the introduction, recent research on damage

models concerns an improved representation of material degrada-

tion near failure. To this frame belongs a recent proposal for a mod-

ification of the nonlocal integral regularization, with the internal

length lc depending on the stress state ([15]). Another way of

improvement is given by the damage gradient approach described

in Section 4.1. For this model, the damage profile can be obtained

analytically in the case of uniaxial loading if the bar length is large

enough so that the boundary conditions do not interfere with dam-

age development and in the case of a prescribed displacement at

both ends of the bar; this last hypothesis allows assuming a sym-

metrical solution for the localization band. This solution is a func-

tion of the material parameters except the elastic properties and of

the maximum value of damage dmax reached on the bar [25]. In

Fig. 8, the damage profile is given for two values of dmax and

obtained for parameters Gf ¼ 100 N=m; D ¼ 0:1 m and

ry ¼ 3 MPa. The solution in terms of damage is depicted between

x ¼ 0 (the centre of the bar) and the length D, since for x > D there

(a) Non smoothed orthogonal profile.

(b) Smoothed orthogonal profile.

Fig. 14. Comparison of crack paths with mesh refinement.

7.5

(a) (b)

Fig. 15. Double-notched specimen: (a) geometry, (b) boundary conditions.
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is no damage. One can observe that the damage profile possesses

from the beginning a well-defined maximum and that it becomes

even sharper at failure (d ¼ 1). For this reason, the crack path

search can be performed directly on the damage field.

5. Examples

5.1. Specimen with fixed circular inclusion

A first example is a squared specimen with a fixed circular

inclusion. The specimen is 0.3 m by 0.3 m, the inclusion has a

radius equal to 0.05 m and is located in the middle of the specimen.

An imposed displacement is applied on the upper horizontal edge,

while displacements of the inclusion are set to zero in all directions

(see Fig. 9). The finite element code Code_Aster [4] is used.

The specimen is computed up to its complete failure by means of

the brittle damage model of Section 4.1. Law parameters are: E ¼

30;000MPa ; Gf ¼ 100 N=m; m ¼ 0:2; D ¼ 0:01m; ry ¼ 3MPa. The

lower part of the specimen (starting from its geometrical centre)

is considered as linear elastic, with Young modulus and Poisson

ratio equal to those of the upper part. The numerical implementa-

tion of the damage model is realized on elements with quadratic

interpolations for displacements; damage is modelled as an addi-

tional degree of freedom, but adopting a linear interpolation on

the finite element. The resulting field is then step-wise linear and

C0 continuous on nodes.

The damage computation is performed on two meshes. Element

size for the rough mesh is about 5 mm, so that four elements are

included in the process zone. The fine mesh is obtained refining

locally the zone of the rough mesh where the crack is expected;

the original elements are split up in four new triangles, so that

the local resulting size is about 2.5 mm. This way, the possible

solutions of the discrete problem on the rough mesh form a subset

of those on the finer mesh. The results obtained for the two meshes

are tested in order to compare the behaviour of the damage model

with refinement and the corresponding crack paths.

Damage maps together with their meshes are shown in

Fig. 11(a) and (b). The force–displacement graph is plotted in

Fig. 10, showing that computations have almost, but not com-

pletely, converged with mesh refinement.

The topological search is performed on the damage field, so that

X ¼ d. Crack paths are computed using lsmth ¼ 5 mm and so equal to

the element size of the rough mesh as well as two times the size of

the fine mesh. The adopted search step is very fine in order to

underline the smoothness of the final path. The orthogonal length

is 0.1 m; threshold value for stopping the procedure is fixed to 0,

but the procedure stops at the time the crack path runs out the

domain. The resulting crack path is also shown in Fig. 11(a) and (b).

In Fig. 12 the projected and smoothed damage profiles during

the search are represented. In Fig. 12(a), the initialisation phase

is shown, i.e. damage as a function of the normalized curvilinear

abscissa on the circle. Since the circle intersects twice the FPZ,

there are two local maxima; the procedure selects the largest

one for practical purposes, but the choice of the other maximum

is completely equivalent, since once the procedure has reached

the domain boundary, it starts again in the other direction from

the initiation point. In Fig. 12(b), damage as a function of the

orthogonal normalized abscissa is depicted for one current step.

A zoom to the crack path for the rough mesh is shown in Fig. 13.

Both crack paths obtained with and without smoothing the

(a) M1. (b) M4.

Fig. 17. Damage fields for the finest (M1) and roughest (M4) meshes.

Fig. 16. Double-notched specimen, global behaviour.
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orthogonal damage profile are compared. In the first case, smooth-

ing yields a regular crack path; in the second case, the crack path

coincides with element sides, as expected, so showing the impor-

tance of smoothing.

Concerning convergence with mesh refinement, nonlocal dam-

age models are often tested on the global more than on the local

behaviour. A typical approach consists in plotting a force–displace-

ment graph which is meaningful for the studied specimen and that

for meshes increasingly refined (as done in Fig. 10 for the present

example). This procedure is certainly adequate in an unidimen-

sional test, but it may be incomplete for more complex geometries

or boundary conditions, where the crack path is not trivial.

Actually, it may happen that close solutions are found correspond-

ing to slightly different spatial discretizations, since the space

where solutions are searched for (defined by mesh topology and

adopted interpolation functions) is not exactly the same. Hence,

slightly different solutions can be found during the refinement

process and that can only be observed by comparing the crack

paths. This again prove the importance of applying a crack search

algorithm.

In the presented case of specimen under traction with fixed

inclusion, the crack paths obtained with our algorithm but without

smoothing are shown in Fig. 14(a) and correspond to the paths

really provided by the discrete model. The rough mesh is drawn

in black and is superposed to the fine one, drawn in blue. The

two crack paths are depicted with the same colour code and

thicker lines. It can be observed that crack paths are close but

not superposed. This difference is partly due to the fact that the

finer mesh describe better the mechanical problem. However, on

the right part of the specimen the distance between the two paths

is bigger than the rough element size, meaning that a slightly dif-

ferent solution was found. In Fig. 14(b) are given the crack paths

obtained by smoothing. It can be noted that the paths are super-

posed or very close when also the unsmoothed crack paths coin-

cide or when their distance is equal to the fine element size.

When two different solutions are found without smoothing, obvi-

ously the smoothed crack paths are also not close. Comparing

paths obtained with and without smoothing, it is interesting to

notice that regularity of the field and of the crack path are strongly

correlated, as announced in Section 2.2.

5.2. Double-notched specimen in tension

In this section, the procedure is applied to the F.E. results of a

double-notched specimen in tension, whose geometry and bound-

ary conditions are shown in Fig. 15. The specimen is loaded with a

prescribed increasing displacement at one extremity up to failure.

The corresponding experimental tests are described in details in

[40]. Results given here have been obtained with the nonlocal

Mazars’ model described in Section 4.2, with parameters: Young

modulus, E ¼ 31; 000 MPa, Poisson ratio, m ¼ 0:2, damage thresh-

old, ed0 ¼ 0:000097; Bt ¼ 100; Ac ¼ 1:25; Bc ¼ 1000; the internal

(a) M1. (b) M2.

(c) M3. (d) M4.

Fig. 18. History variable field and crack paths for four mesh refinements: zoom in the central part of the specimen.

Fig. 19. Comparisons between crack paths with (white line) or without (red line)

nodal averaging, for roughest mesh M4. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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length of the nonlocal model is lc ¼ 0:02 m. The finite element code

Cast3M [6] has been used for the computation and the

post-processing.

The finite element formulation of the given model is based on a

linear isoparametric element; triangular elements are used. The

same simulation has been run on four meshes with growing refine-

ments. In the central part of the specimen, where damage actually

is located, tested meshes have element size equal to 1 mm,

1.3 mm, 1.6 mm, 1.9 mm and are named M1, M2, M3, M4, respec-

tively. The adopted element size, smaller than the characteristic

length of 10 times for the roughest mesh, should guarantee

convergence of the computation, usually attained for this kind of

model with about 5–6 elements in the damaged zone.

In order to compare the behaviour for different meshes, results

are first examined in terms of resultant force against applied upper

displacement (see Fig. 16). The plot shows that, at the global level,

convergence is reached, as expected, since corresponding curves

are superposed.

The distribution of damage on the specimen at the end of the

computation is shown in Fig. 17 for meshes M1 and M4. At the

end of the computation, a single damaged zone is observable in

the middle of the specimen. Nevertheless, progress of the compu-

tation shows two distinct cracks developing from the notches, with

the two damaged zones gradually merging. These two cracks are

still recognizable from two distinct zones in the history variable

map, as displayed in Fig. 18 for all four meshes.

The topological search is applied to the history variable field H,

as discussed in Section 4.3. The search algorithm exploits the

method described in Section 2.5 to move from one crack to the

other. Retrieved crack paths are superposed to the history variable

map in Fig. 18. For the search algorithm, following parameters are

used: lsmth equal to the element size, a ¼ 0:5 mm; lorth ¼

50 mm; dorth ¼ 0:01 mm; the algorithm is stopped for a field value

equal to 15% of the maximum value, in order to limit the search to

those areas where the crack is well defined.

It has been stated before that field smoothing is done with the

specific purpose to make the crack path mesh independent. It has

been observed in the previous example that, strictly speaking, this

is only possible when the same solution of the discrete problem is

found, hence, when the damage model has converged at the global

Fig. 20. Double-notched specimen, crack paths for all meshes: M1 (black), M2

(green), M3 (blue), M4 (red). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

(a) Location of the first crack. (b) Identification of the FPZ limit
points on each 1D profiles.

(c) Cutting of the profiles at
the FPZ boundary.

(d) Reset of the history
variable field inside the FPZ.

Fig. 21. Double-notched specimen: steps of the multiple crack search.
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and local level. So, a minimum precision is needed in the finite ele-

ment description of the field to provide the converged crack path.

As is well known, the accuracy of the finite element model

depend on both mesh refinement and the interpolation degree of

the fields involved. Concerning the numerical implementation of

the Mazars’ model in the code Cast3M, damage and the history

variable are not degrees of freedom of the finite element model.

Indeed, they are recorded as state variables at the unique Gauss

point of each element, so that field continuity is not assured

between elements and the discrete field can be considered

step-wise constant. In order to conform to the hypotheses adopted

to find the optimal parameters range in Section 3, a C0-continuous

field has been retrieved by averaging on each node of the mesh the

field values of each element holding the considered node. This

operation leads obviously to an information loss with respect to

the original field but increases its regularity. Then, the search algo-

rithm has been applied on both the original discontinuous field and

on the C0-continuous field; crack paths of Fig. 18 refer to this sec-

ond case. The numerical procedure has been able to retrieve

slightly more regular crack paths on the C0-continuous field.

Nevertheless, for the finest mesh M1, the two paths are completely

superposed, while more and more significant deviations are

observed for meshes increasingly rough, meaning that for a too

rough mesh and/or too low field interpolation the smoothing by

convolution of the orthogonal profile is not sufficient to guarantee

regularity to the crack path. In fact, in the case of the original field

the same value is attributed to the whole element area, so that the

ridge is not perfectly identified. Note also that in this case smooth-

ing is mandatory in order to find a unique maximum on orthogonal

profile. A comparison between the paths obtained for the two

kinds of field is observable in Fig. 19 for the roughest mesh M4.

Looking at Fig. 19 it is nevertheless noteworthy that, also in worst

case, the two crack paths are very close and the more regular curve

is inside the convex hull of the points defining the less regular

curve; thus, the proposed nodal averaging can be an effective

way to bypass a non perfect local discretization. It is anyway inter-

esting that, for the damage model presented in this section, a finer

discretization is necessary when local fracture properties are

needed than if only the global behaviour is requested. This depends

on the fact that the history variable is far more localized than dam-

age, since it covers about 1=3 of the damage internal length lc .

Once the search algorithm is applied to the four meshes, it is

possible to compare the corresponding crack paths. They are

shown in Fig. 20, where they are superposed to the finest mesh

(M1). The comparison allows to see that paths are never more dis-

tant than the size of the element of the finest mesh, with the

exception of one extremity of the left crack in the centre of the

specimen, obtained for mesh M4. This property shows the stability

of the crack path with refinement. Again, refinement should be

determined on the base of accuracy of leakage computation.

Finally, in order to illustrate the procedure in the presence of

more than one damaged zone, the different steps are illustrated

in Fig. 21.

6. Conclusion

In this contribution, an original method to track the crack path a

posteriori from the results of continuum computation in the finite

element frame is proposed and validated. The continuum model

must be able to describe failure; for example, damage and plastic-

ity models can be used for this purpose. A topological space is gen-

erated by a scalar field Xðx; yÞ on a bidimensional domain, with X

being the variable describing failure. The crack paths are identified

as the ridges of this topological space. The method is studied for a

bi-dimensional space; extension to a 3D space is straightforward

and can be done by cross-section cutting. It is also possible to iden-

tify automatically multiple cracks by resetting the field where the

crack path has already been found.

The method makes use of five parameters. For all of them it is

possible to provide arguments in order to fix them in a small range.

The fact that the method is applied in the post-processing of non-

local damage modelling does not make the simulation computa-

tionally more expensive; besides, the implementation is not

intrusive in a FE code.

The procedure has been tested on the results of two mechanical

simulations, obtained on different geometries and boundary condi-

tions and with two different damage models of literature. In both

cases, the algorithm has been able to find crack paths accurately,

also in the presence of multiple cracks. However, in one case, the

choice of the field for application of the search algorithm has not

been straightforward. In fact, it has been mandatory to use a his-

tory variable field in the place of damage, since this covers a too

wide zone and the ridge is not properly defined. In the other case,

the model is specifically studied to represent the material near fail-

ure; hence, it has been possible to post-process directly the dam-

age state variable.

The issue of mesh independence has been widely addressed to

in the paper, both with respect to the constitutive models, which

is a very well known problem in literature, and to the search algo-

rithm. It has been shown that convergence with mesh refinement

should be assessed looking at the local and not only at the global

behaviour of the damage model and that this is made possible by

the search algorithm which provides the crack path. In fact, even-

tually the model can converge globally before than locally, depend-

ing on the sensibility of the global response to the crack path

direction. Mesh independence and so comparison of crack paths

is improved by a field smoothing, necessary in order to obtain a

regular crack path; otherwise, the crack path is bounded to follow

the mesh topology and is so, in this sense, mesh dependent.

From now on, this original method coupled with the crack

opening procedure [11] allows for assessing transfer properties of

a concrete structure.
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