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This study proposes a new inverse method to infer the bottom topography and the friction coefficient in the
Shallow Ice Approximation (STA) model (lubrication type models for generalized Newtonian fluid flows). The
method is based on the definition of three sub-regimes and an a-priori slip ratio law. Next, explicit calculations
provide a first depth estimation for each sub-regime, and this first estimation can be improved by solving an
elliptic linear-quadratic optimal control problem (variational assimilation of the surface measurements e.g. by
satellite). The friction field is a by-product of the depth inverse method, it can be explicitly deduced. The
numerical results performed on multi-regime numerical flows demonstrate the robustness of the method even in
presence of uncertain surface measurements and independently of the depth measurement locations (on contrary
if inverting the regularized depth-averaged mass equation only). Moreover the few derived depth estimations
make possible to determine the adequate slope scale in the STA models.

Keywords. Shallow flow, Shallow Ice Approximation, topography inference, friction, data assimilation, glaciers.

1 Introduction

The knowledge of the bottom topography is a basic step to set up a numerical flow model; however this crucial
data may be unknown or difficult to acquire especially in geophysics. Inverse methods to infer the topography,
and potentially the basal slipperiness, are then the only alternative (for a review on inverse methods in free
surface flows see e.g. [41]). The bottom topography knowledge combined with the top surface measurements
gives straightforwardly a volume - mass estimation; the next important quantity to estimate is the flux. For ice
flows, these estimations are important in the context of global warming and sea level rise.

An extra difficulty of shallow flow inverse modeling is the following: even if the free surface presents very
small and smooth variations, the bottom topography may not. Indeed, the shallow fluid flows (even newtonian)
act as low-band filters: the bed variations are filtered by the flow. The filtering features depend on the sliding
amount at bottom, see [12, 13, 25, 24] for detailed analysis applied to generalized newtonian or ice flows.

In the case of no-slip at bottom, the inference of the bottom properties is limited to the topography only.
Then the difficulty of the corresponding inverse problem depends on the observation availability. In the case
of sliding at bottom (or equivalently finite friction), the inverse problem becomes much more difficult since the
unknown becomes the (topography, friction) pair. Then a challenging goal is to separate the signature of these
two different bottom properties (topography and friction), usually given surface observations - measurements.
Under some flow conditions, these two features can lead to equivalent bottom conditions hence making the
inference of the property pair particularly challenging, see e.g. [16, 5, 7] in the Newtonian case (shallow water
flows) and [13, 25] in the power-law / Glen-Nye’s law case.

The direct measurements of ice thickness, for example along a track using airborne radio-echo sounding,
are time-consuming, expensive and provide very sparse measurements only. Also radio-echo sounding can
be inaccurate due to water beneath the glaciers e.g. in southern Greenland. The current bedrock maps for
Greenland [2] and Antarctica [35] are available at 1 km resolution from measurement surveys plus Kriging
interpolation techniques (with simple relations based on the surface slope). But the uncertainty between the
measurements still prevents to set up high resolution dynamic ice flow models; and despite the important
measurement campaigns, e.g. NASA Operation Ice Bridge. In other respect, various satellites provide quite
accurate and frequent (= 10 days revisits) measurements of the ice sheet surfaces: altimeters provide the surface
elevation H(z,t) at ~ +/ —10—30 em for 1 km? pixels, while radar interferometers (InSar) provide the surface
velocity uy (more or less accurately depending on its magnitude, see e.g. [39]). For non ice-sheet glaciers,
e.g. Arctic, Alaska, Patagonia or High Mountains, in-situ measurements are usually the surface elevation while
velocity measurements are less usual.
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A great challenge is to fill up the gaps between the reliable depth measurements and to determine an effective
slipperiness (modeling basal conditions e.g. mix of rocks and mud or subglacial hydrology networks). This goal
can be partially reached by developing inverse methods combining all available information.

Let us introduce some notations, the standard depth-averaged mass equation and the classical Shallow Ice
Approximation (SIA) equation (standard lubrication approximation). The surface flow elevation is denoted by
H, the bed elevation is denoted by b and the ice depth (or thickness) is defined by h, h = (H — b), see Fig. 1.
Then the depth-averaged mass equation reads:

div(hu) =a - 0th=a

where u is the depth-averaged velocity and a is the mass balance source term. The Shallow Ice Approximation
(SIA) (lubrication type equation) is obtained by injecting the velocity expression u (which can be derived
explicitly) into the mass equation above, see e.g. [10, 6]. This gives:

—~divg, (ah®|VH|?VH) = a

where « is a coefficient depending on the ice properties. This SIA model version is the most employed one,
no slip is imposed at bottom (u, = 0) hence no friction coefficient C' appears in the equation. More details on
the shallow flow model derivations are presented in the manuscript.

The inference of the bottom properties (usually the topography only) by inverting a ice model has been
addressed in numerous studies. First let us mention the pioneer article [38]. The ice depth h or/and the effective
mass balance a are inferred from the depth-averaged mass equation combined with some surface elevation data
H° | surface velocity data u%® and depth measurements h°* available along flight tracks over the Columbia
glacier in Alaska. In the mass equation, the mean velocity is empirically related to the surface velocity by
a coefficient 7, v = u/uy. (Remark that given the power-law exponent of the fluid, v defines the vertical
velocity profile; somehow this spatially-distributed coefficient v provides a velocity model, replacing the missing
momentum equation). Next a quadratic cost function measuring the differences between the model output and
the surface velocity measurements is defined. Finally the first-order optimality condition (gradient of the cost
function vanishes) is numerically solved by the Newton algorithm. Note that this pioneering study has been
carried out before the classical use of the optimal control techniques in data assimilation problems, see e.g.
[22], and before the acquisition of rich satellite measurements. In [44], the authors employ the explicit depth
expression in function of the SIA equation flux: h® = é%, where the flux ® is estimated by inverting the
divergence operator (given a). An other pioneer study is [43] since it does not address the topography inference
only but the (topography b, friction C') pair inference. This is done for fast-flowing ice-streams (unsheared
flows) hence not modeled by the SIA equation. The inference is based on the linearized model equation and
the analysis of the transmission of flow disturbances through the ice thickness and from surface observations
(elevation,velocity). More recently [31, 34] have elaborated a combination of efficient computational algorithms
based on a Variational Data Assimilation (VDA), solving the same equations than [38]. The resulting algorithm
combined with multi-sources and heterogeneous data sets leads to rich bed maps at =~ 300 m resolution in the
challenging South Greenland regions where airborne radar sounding are inaccurate, see [32, 33]. However this
method has few drawbacks since it relies on a transport equation, hyperbolic first order. Indeed the equation
feature limits the inversion capabilities at locations downstream the depth measurements. In other words, data
are required at the characteristic inflow locations. Moreover the hyperbolic feature of the model leads to error
propagations e.g. the surface measurement errors. In [42, 15] the authors reconstruct the surface elevation
H and the bed elevation b from the surface velocity uy and depth measurements given at upstream again.
The inversions are based on the traditional SIA equation and velocity expression i.e. with no-slip at bottom
only. This limits the applicatibility of the approach. Similarly [26] infers the topography of non-sliding
mountain glaciers from the surface elevation data H (and mass-balance a). Again, since the direct model is
a non-linear transport equation (the inverse problem aims at inverting the divergence operator), the authors
solve a pseudo-time dependent problem and introduce artificial diffusion to regularize the first order operator.
Let us point out that the introduction of artificial diffusion to invert the divergence operator presents serious
drawbacks: the inverse problem is not the original one and the computed solution is fully dependent on the
regularization parameter. Also, the inversion is highly unstable or even numerically impossible, depending on
the locations of the measurements at boundaries. Roughly, only data in the vicinity of a characteristics root
can be inferred (roughly for a given flow line, this corresponds to the inflow data). In the unsteady case, the
authors of [26] point out that smoothing the surface data is mandatory, then the computed solution is fully
dependent on this additional regularization parameter. Next the same authors developed a so-called “shape
optimization” approach, see [27] (actually it is a parameter identification method since it aims at identifying the
model parameter b while the domain shape is fixed). The problem is formulated as a classical optimal control
problem solved by VDA, leading to a more robust than the algorithms presented in [26]. Let us point that
such a straighforward “blind” VDA may be unable to infer the bottom properties in presence of the additional
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unknown: the spatially distributed friction parameter C(x,t). Indeed in this case, equifinality issues can appear
as demonstrated in different ways and in different contexts in [11, 12]. Other studies address the topography
inference but either in 1D only (following flow-lines) and/or based on empirical flux estimations, see e.g. [17].

All the aforementioned existing methods, excepted [43], are either based on the regularization of a transport
equation (hence presenting drawbacks and limitations) and/or consider the inference of the topography only.
The inverse method of [43] is based on the perturbation theory developed in [11] hence small variations of the
inferred quantity (b, C') only can be inferred, moreover for fast ice streams only (in this case, the bed-to-surface
transfer function is much less filtered compared to sheared flows).

The present study aims at infering the complete bottom properties i.e. the (topography b, friction C') pair in
a multi-regime shallow ice flow (hence presenting local and extremely stiff variations of the friction parameter
C') without any artificial regularization nor particular measurement location requirements (like it is the case if
inverting the first order divergence operator). Since the model considered is the STA model with potential slip at
bottom (model so-called extended SIA), the domain of validity of the method ranges from fully sheared to mildly
sheared flows hence valid for a large panel of observed ice flows (however this excludes the fast ice-streams).

The present method guideline is to consider intrinsically invertible equations only (typically diffusive /
parabolic-elliptic second order equations and not first order equations) and to consider robust, well-posed
optimal control problems only. The goal has been reached by basing the inverse method on a combination of
explicit field expressions of the xSTA equation and an intermediate linear-quadratic optimal control problem
(hence well-posed); the latter is classically solved by VDA.

The required measurements are the surface elevation H and the surface velocity norm |ug| plus some in-situ
depth measurements. The latter can be located anywhere relatively to the stream lines. The strengths of the
resulting invertion method are the following:

i) A high robustness, including in presence of uncertain surface measurements and whatever the depth
measurements location;

ii) A large domain of validity in terms of flow regimes: from fully sheared to mildly sheared flows. Thus it
can be applied to the great majority of the ice-sheet surfaces (corresponding to the accumulation areas) and
high-mountains glaciers; but this excludes the fast ice-streams. (Recall that for fast ice-stream in coastal ice
sheet areas, the depth-mass equation inversion can be efficient, [31, 34, 33]).

iii) A capability to infer separately the depth from the spatially distributed friction coefficient C. The
inference of C' becomes a by-product of the depth inference. This feature is important since equifinality issues
potentially occur when identifying the pair (topography, friction). Also the friction coefficient is one of the
greatest uncertain parameter in geophysical shallow flow models, its values vary within few orders of magnitudes
and its estimation by expert assessment is generally impossible.

Finally a by-product of the present analysis is a methodology to define consistent slope scales in STA models.

Since based on shallow flow equations, this inverse method remains affordable even for large computational
domains (e.g. the whole ice-sheets); this is particular true if the VDA process is implemented in parallel like it
can be done in DassFlow [29] or ISSM [21] for example. The present numerical results have been performed by
using the Fenics Python library [1, 23].

The weakness of the method is its relative inaccuracy in the narrow regime transition areas like canyon
margins. This gives local error peaks (of 20-30% approx.) corresponding to the stiff variations of the inferred
quantities (variations extremely local and of few orders of magnitude like the friction coefficient).

The outline of the article is as follows. In Section 2, the SIA model is recalled, explicit field expressions are
re-derived. The domain of validity of the model in terms of basal friction amount (or equivalently in terms of
the slip ratio R;) is discussed; this leads to the definition of three sub-regimes corresponding to different slip
ratio range values. Section 3 describes the inverse problem and the inference method. For each sub-regime, an
explicit expression of the depth h is derived; all of them depend on a unique observational surface term denoted
Qp. For two sub-regimes, the depth expression depends on the “diffusivity” n of the xSIA equation. This
diffusivity is numerically computed by VDA. Finally, the friction coefficient value C' can be explicitly deduced.
Next, the complete method is assessed on academic test cases presenting the complete range of flow regimes
with stiff transition areas (hence presenting many difficulties of real-world flows). The multi-regime academic
test case is constructed in Section 4. A method to define an a-priori slip ratio map next an already good first
depth estimation is developed in Section 5. Section 6 aims at analysing the numerical results in the case of
downstream depth measurements, both for perfect and uncertain surface measurements. Various sensitivity
analysis (explicit and numerical ones) are highlighted and commented. An extra difficult test case based on
lateral depth measurements only (measurements quasi parallel to a flow line, moreover within a mono-regime
area) is analysed in Section 7. Finally, it turns out that the few depth estimations aforementioned make possible
to determine the correct slope scale in a STA model. This is explained in Section 8 and it is illustrated for 1D
flows. The conclusion proposes few perspectives of this preliminary study.
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Figure 1: Notations. A shallow ice flow (x-z view) along an inclined mean slope, with surface observations.

2 The direct model

In this section, the classical Shallow Ice Approximation (STA) velocity expressions and resulting equations
are recalled, see [18, 30], also e.g. [6] chapter 10.2; also some various explicit field expressions useful in the
forthcoming inverse method are derived. The STA model derives from an asymptotical calculations of the free
surface (non-linear) Stokes equations with respect to the geometrical ratio e = IL{—:; with H* a characteric flow
depth and L* a characteric flow length. The basic assumption states that the flow, thin geometry, is sheared; in
other words, the normal stress components are negligible. The SIA equations are first order in €. The expression
“STA model” denotes indistinctly the explicit velocity expressions (derived from the momentum equations only)
and the corresponding lubrication type equation (derived from the depth-averaged mass equation); also whatever
if trhe flow is fully sheared flow (with no slip at bottom) or if it is partly sheared (with friction condition at
bottom). For a sake of precision, in the present article the SIA model including slip amount at bottom is
called extended STA (xSIA). In [4], it is formally demonstrated that the xSTA model remains valid for a friction
coefficient C~O(1) hence clarifying the xSIA domain of validity. This legitimates the few sub-regimes considered
in next section. (In [4], the xSIA equation is a particular case of more general shallow flow models, see Section
11 of this reference). In other respect in the literature, see e.g. [6] chapter 10.2 or [10]chapter 5.4., the
xSIA equation is derived in the mean slope coordinate system (frequently in the horizontal-vertical coordinate
system). Nevertheless it is demonstrated in [4] that the same expressions and equation remain valid in a more
general coordinate system: the Prandlt coordinate system [36, 37]. This makes possible to apply the model
to any bottom shape i.e. without any clear mean slope, like those observed in some high mountains glaciers
for example. In summary, the xSTA equation and field expressions derived below are valid for any coordinate
system (here presented in the mean slope coordinate system for the sake of clarity), non-isothermal flows and
flows from fully sheared (no slip, C' = 0) to mildly sheared (C~ O(1)).

Notations and basic relations

We denote by H the fluid elevation, b the topography elevation and h = (H — b) the fluid depth. It is assumed
that the geometry presents a “mean slope” in the (z,y)-plane which can be described by the angle 6, Fig. 1.

The depth averaged velocity @ and the discharge q are defined by: & = % fbH u(z)dz and q = hu = h(a,v).

The depth averaged mass equation reads: O;h+divgy(q) = a, with a the mass balance (between accumulation
and ablation).

We define § = |S| = |[VH]| the free surface slope norm and g = (pgcosf)? , p being the fluid density, gthe
gravity amplitude, g the power-law exponent of the rheology law. The depth-integrated SIA velocity expressions
reads: u(x,z) = (u,v)(x, 2) = u, +2pSI718 [7 A(H — £)9dE, see e.g. [6] chapter 10.2 (or [10] chapter 5.4 in the
horizontal-vertical coordinate system, § = 0) . For glaciers, the usual exponent value is ¢ = 3.

On the bottom boundary I'y, a friction condition is imposed; it is classically described by a power-law
with its exponent equal to the rheology law’s one (exponent denoted ¢). The friction law models the interface
between the fluid (e.g. ice) and the bedrock as a viscous boundary layer. Then the basal velocity reads:
w, = Cph?[S|?' S. Finally the longitudinal velocity reads:

(. 2) = (u,0)x,2) = pIOW + 2 [ A - gde] 718 1)

The coefficient C is the slip coefficient. If C' — 0, the no-slip condition (adherence) is imposed; on the
contrary if C' — oo a pure slip condition (vanishing friction) is imposed. Nevertheless, to remain within the STA
model validity, the slip coefficient C' has to vary from 0 to O(1) at most, see e.g. [4] for a detailed discussion
and analysis.
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Explicit expressions (non-constant rate factor case)

The rate factor A depends a-priori on the space variables (x,z) (hence in particular on the depth variable
z). In glaciology, A depends on the (non-uniform) temperature field. In the forthcoming analytico-numerical
inversion method, explicit expressions of u and uy are required (including in the case A non constant). Then,

we introduce A independent of z defined by: A - fbH [ (H = &)1dédz = fbH J; A(H — €)9dédz. Hence:

A(x,t) = ?L:ﬁ / / A(H — €)%dedz for all (x, t) (2)

Given A(z), the quantity A can be computed numerically for each (x,t). Then the depth averaged
velocity reads:
2A
(¢+2)

Similarly, an explicit expression of the surface velocity uy can be derived. To do so, the scalar value A is defined
as follows: [1 A(H — €)9d¢ = A [ (H — €)7d¢ . Hence:

u(x,t) = p[C + h]hISI1S(x, t) (3)

A(x, 1) = q:;ll / A(H — €)4d¢ for all (x, 1) (4)
Then the surface velocity uy reads:
ug(x,t) = p[C + R|hIST1IS(x,t) = u, + 2p4 = _prtiSTTIS(x, 1) (5)
(+ 1) N CEY

Let us point out that in the case A independent of z (e.g.isothermal glacier flows), A = A = A.

Slip ratio expression

We define the slip ratio as follows: Ry % =1- HS;“ . Then its explicit expression in function of C'
and h reads: "
c @l

Rs=1-

- - (6)
(C+ Z5h [C+ Za5h]

The slip ratio Ry equals 1 for fully sheared flow (sub-regime 1) and equals 0 for plug like flow. The case Ry =0
is out of the validity range of the STA model since the scalings assumed to derive the velocity expressions are
not valid anymore. The present SIA equations are a-priori valid up to a slip ratio Rs; ~ 0.5 since the basic
scahng done in the SIA equations make possible the asymptotic derivations up to a balance between C' and the

term @D h, see [40, 4] for detailed discussions. Note that R, = 0.5 is equivalent to the equality: C = 2A)h

+1)

The xSTIA equation

By injecting the discharge expression q = hu with (3) into the free surface dynamics equation, the one-equation

model (lubrication type) is obtained: 9,k — pdivg, ([C' + (QA)h}hq“Sq IVH) = a. Recall that: S = |[VH],

q > 1. This is the xSIA equation. In a glacier modeling context, uncertainties on the mass source term a
(modeling the ablation / deposition at the surface) may be of the same order than the time variation d;h. (This
depends of course on the considered time scale and/or the flow). Then it is classical to consider the effective

source term: G = —0;h + a. Then the steady-state version of the xSTA equation reads:
_ . 1 . . QA +1
—pdivgy (n(C, h) ST VH) = a with n(C,h) = [C + ) hlh4 (7)

The term 7 denotes the “effective diffusivity” of the model. The xSTA equation is non linear, elliptic. Its has
to be closed with boundary conditions on H (Dirichlet conditions or mixed ones). Note that if the diffusivity
n(C, h) is given, if the surface slope S is given too (from surface measurements) then (7) is a gentle linear
elliptic equation. Nevertheless, its is well-known and easily verified that its solution H is highly sensitive to the
definition scale of the slopes S. This critical feature is addressed in the last section.
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3 Inference of the (topography, friction) pair from the surface mea-
surements

The direct problem reads as follows: given the basal properties (topography, friction coefficient) (b, C), find
H solution of (7) accompanied with boundary conditions. Then the depth h = (H — b) is straightforwardly
deduced. The inverse problem reads as follows: given the surface observations (H, S,up), find the pair (h,C).
(Note that the slope value S measured by altimetry may be more accurate than the gradient of the measured
elevation H).

In this section, three depth estimations are derived. Each estimation correspond to a particular sub-regime
defined in terms of slip ratio. These sub-regimes correspond to: fully sheared flows (sub-regime 1), mildly
sheared flows (sub-regime 2) and weakly sheared flows (sub-regime 3). In the sub-regime 1 case, the depth
estimation is directly obtained from an unique observational term Qg (Qp depending on the surface slope
values S and the surface velocity norms |ug|). In the sub-regime 3 case, the depth estimation is explicit but
in function of the diffusivity n of the xSIA equation (7) too. However 7 can be inferred by the Variational
Data Assimilation process described in the last subsection (well-posed linear-quadratic control problem). The
intermediate regime (sub-regime 2) is the most general one since it includes the two others. In this case, the
depth can be inferred as a root of a polynomial depending on the diffusivity 1 (and the observational term
Qp ). Finally the friction coefficient C' is a simple by-product of the previous depth estimations; its explicit
expressions are derived.

3.1 The three sub-regimes and the observational term Qg

Let us define the three sub-regimes, from fully sheared to pure slip, as follows.

e Sub-regime 1 (srl): the fully-sheared sub-regime which corresponds to a vanishing friction coefficient
(C = 0); hence the slip ratio R tends to 0 .

e Sub-regime 2 (sr2): the mildly-sheared regime in the sense C' & Ah. Recall that Ry = 0.5 corresponds to
(¢g+ 1)C =2Ah.

e Sub-regime 3 (sr3): the weakly sheared regime in the sense C' >> Ah, hence the slip ratio Ry tends to 1.

A formal error estimate of the asymptotic xSIA equation presented in [4] demonstrates that sub-regime 2 is
the limit case of the xSIA equation validity. In other words for C larger, the a-priori scaling made to obtain
the xSTA equation breaks down. Indeed, this a-priori scaling (roughly o, >> 0,,) is not valid anymore in the
sub-regime 3, see [40] too. Nevertheless, it will be demonstrated that the depth estimate obtained but assuming
C >> Ah (sub-regime 3 case) is a particular case of those obtained in the sub-regime 2 case.

The observational surface term Qp. The surface quantity which naturally appears in the forthcoming
expressions is the ratio between the surface velocity norm and the surface slope norm power g:

0y = 2] ®)

Then the slip ratio Ry defined by (6) can be read in function of Qg and the depth h as follows:

B 2pA hatl
Be=tvn on )

3.2 Sub-regime 1: explicit expression of A

Let us consider a vanishing friction coefficient C'. It follows the usual STA expression of ug: ug = (z%) Sa—18patt,

Then from the surface measurements (ugy,S), the depth h can be straightforwardly estimated by:

(g+1) 1/(a+1)

q

h ~ =h 10

|: 2ﬁA QH:| srl ( )
Note that this depth estimate does not depend on the vectorial features of the surface measurements; it

depends on norms only.Let us recall that sub-regime 1 corresponds to the “traditional SIA regime” and few

studies has addressed the depth inversion in this case, see the general introduction. The forthcoming numerical

results demonstrate that the present estimation is not accurate as soon as the slip ratio is lower than 0.85

approximatively.
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3.3 General case, sub-regime 2: polynomial in 4~ and depending on 7

Sub-regime 2 corresponds to a mildly sheared regime hence much faster flows than sub-regime 1. Nevertheless,
this sub-regime still corresponds to the xSIA model validity, see [4]. The typical case is Rgip = 0.5 or equivalently
(¢g+1)C=2Ah.

Polynomial in h. Given the observed quantity Qp, using the surface velocity expression (5), it follows:
[C+ %Ah]hq = %. This expression combined with the expression of the effective diffusivity 7, see (7), leads
to the following non linear algebraic system in (h, C):

q+1==
[C+ Z5ARhTH =
Let us point out that these two equations are not redundant. Indeed, the first equation is based on the
momentum equation only while the second equation results from the depth integration of the horizontal velocity
profile i.e. the ice flux, then leading to the expression of 7. Also it can be noted that the second equation can
be derived by combining the first equation and the free surface dynamics equation.
By injecting the first equation (the observed surface expression) of (11) into the second one (the effective
diffusivity expression), it follows the following polynomial in & of degree (g + 2),:

aghit? — %h+n:o (12)

{[o + 2 Ahhe = Lt an

with: as = m[(qg+2)A— (¢+1)A] and m = WI)QW' For the standard case ¢ = 3, the polynomial is order

. _ 1
5 with m = 15 .

Given 7, and the observed quantity Qg , the depth h,qo can be inferred by computing the roots of Polynomial
(12). In next section, it is classically done by computing the eigenvalues of the companion matrix. Since
considering the two terms in the analytical expressions (the slip term and the deformation term), the resulting
depth estimation applies in the three sub-regime cases.

Isothermal case. In the isothermal case, as = mA and the polynomial reads: QTH((qI-%FB) —Lh+n=0
with R satisfying (9). Hence the depth expression in the sub-regime 2 case reads:
R, 17" »
h=1|1- —n = hg, 13
1-Grm S 1

Even if 1 is given, this explicit expression cannot be evaluated in practice since the slip ratio Ry is a-priori
unknown. Nevertheless, this expression is useful to analyse the depth estimate sensitivity with respect to the
variations of Qg or with respect to Rs. In particular it is worth to notice that this estimation varies from Q—”Hn

(a+2)
(g+1)
that this estimation includes the sub-regime 1 one : consider (10) with Rs =1 and C' = 0.

to

QLHU when Ry varies from 0 to 1, therefore not an important variability in terms of Ry for ¢ = 3. Note

3.4 Sub-regime 3: explicit expression of h(n)

In the case of sub-regime 3, Ah is negligible compared to C, then the algebraic system (11) simplifies as follows:
Chi = %QH and Ch9t! =~ 7. The depth expression follows:

h~ Q%” = hyrs (14)
Given Qp and the diffusivity 7, hsyg is straightforwardly obtained. Note that the estimation (13) gives (14)
by making vanish the slip ratio R;.
In next section, it will be presented how the diffusivity 7 can be approximated by Variational Data Assimi-
lation (VDA).

Comparison of the three estimations in the isothermal case. Let us calculate the difference between
the two extreme estimations (10) and (14). For the sake of simplicity, the flow is supposed to be isothermal

(A= A= A). From (10), it follows: QTH = (qul)hgjll . While from (14), it follows: Q—ﬁH = L.

If setting C’( = ? in 7 in the sub-regime 3 depth estimation (14), it follows:(qul)hgjll = - (q2f2) hit?,
q+1

Hence: hgp3 = mhsrl'

In others words, given the 7 value in the fully sheared areas (R close to 1), the depth formula corresponding
(g+1)
(a+2)
Nevertheless, it will be noticed in the forthcoming test cases that the range of value of 7 is extremely large (few

orders of magnitudes) hence leading to differences of depth much greater than the present 20%. Nevertheless,
in practice this remark is useful to select the correct computed polynomial root of (12).

to the vanishing slip ratio gives a value

smaller than the true one (hence 20% smaller in the case ¢ = 3) .
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3.5 The resulting friction coefficient '

Given the depth value h, whatever if it is the sub-regime 1, 2 or 3 which is considered, the corresponding friction
coefficient C' can be deduced from (11). Its value can be deduced equivalently from the first equation or from
the second equation, hence:

n_ 2
(g+1) hlatl) g+ 2

Let us point out that despite the observed surface term is uncertain and despite the VDA process to compute
7 is not exact too, in practice both expressions give extremely close numerical values of C'.

Ah (15)

1
C(QHJL):%QH_ Ah or C(n,h) =

3.6 Identification of the effective diffusivity n by Variational Data Assimilation

In sub-regimes 2 and 3, the depth estimations depend on the diffusivity n defined by (7). We present below
how to compute n by solving a linear-quadratic optimal control problem.

3.6.1 Set up of the VDA problem

Let us recall that the direct model reads as follows, see (7): —pdivy, (n(C,h) ST™'VH) = a , plus boundary
conditions. It is a linear elliptic equation in H. Then the typical observation function is defined by: J(n; H) =
ap [O(H" — Ho)2dz + 5 [, [Vn|?dz. And the cost function reads: j(n) = J(n; H") where H" is the unique
solution of the linear equation (7), given 7.

Then, given the surface measurements elevation - slope (H,S), the spatially distributed coefficient 7 can be
inferred by solving the optimal control problem: min,, j(n). Since this optimal control problem is linear quadratic
then it admits a unique optimal solution n*.

In practice, it turns out that the quantity 7 varies greatly (= 4 orders of magnitude in a multi-regime flow),
then a log change of variable is introduced; the control variable becomes w = In(n). In other respect, it has
been observed that considering the L* norm instead of the L? norm in the regularizing term leads to better
results. Then the cost function to be minimized is defined as follows:

J(w) = agjn (W) + tregireg(Vw) with jg(w / |HY — H°*dx and j,e,(Vw) / \Vw|*dz  (16)
with (g, areg) to be set. The optimal control problem reads:

wmin () (17)

Let us point out that (17) is no longer a linear-quadratic optimal control problem (the cost function is not
quadratic anymore due to the log change of variables) but the cost function remains strictly convex and the
inverse problem still admits a unique optimal solution w*.

Remark 1. The airbone or in-situ measurements can been used for the definition of the first depth estimation
R, Moreover they can be directly assimilated as follows. From the depth mesurements h°**, the friction
coefficient can be deduced from (15) next the effective diffiusivity n from (7) hence the value w®”*. Then the
following quadratic misfit term is added to the (total) cost function j : ju,(w) = 3 [, |w — w**|?dz .

Let us point out that in the numerical results presented in this study, this term j, has not been considered.
For real test cases (hence with many uncertainties sources) it is obvious that all available depth measurements
should be assimilated.

Remark 2. On the impossibility to directly assimilate ug into the xSIA equation. The misfit between the xSTA
model and the surface observations can be based on the elevation measurements H only (e.g. acquired by
altimetry) and not on the surface velocities uy since the latter depends on the unknown pair (h,C), see (5).
Thus the observations ug (e.g. derived from InSAR) are not directly assimilated by the present VDA process.
However uy appears in the three depth estimations through the observational term Qpy, see (10)(13)(14).

3.6.2 The equations and numerical methods

The direct model (7) is numerically solved using a standard Lagrange finite element method, by employing the
Fenics Python library [1, 23]. The weak formulation consists to find H € V; such that: V¢ € Vi, a(w; H, ) = b(¢)
with
a(w; H, ¢) = ﬁ/ ST e*VHV ¢ dx and b(¢) = / a¢ dx (18)
Q
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and Vp = Wl’q/(Q) an adequate Banach space (¢’ depending on ¢, ¢ > 1), V; its corresponding affine
sub-space (taking into account the non-homogeneous Dirichlet boundary condition).

For ¢ = 3 and under an assumption on 1 = ¢* (it has to remain bounded), the existence and uniqueness
of the weak solution H € V; can be addressed using mathematical analysis tools of non-linear elliptic problems
(variational methods and/or fixed point theorems), see e.g. [8, 9]. The detailed mathematical and finite element
analysis of this equation (with extra assumptions) can be found in [20, 19].

Next, the cost function (16) can be computed. The optimal control problem (17) is numerically solved by
Variational Data Assimilation (VDA); it is based on the adjoint equations and the gradient of the cost function
(first order optimization method), see e.g. [28] for details.

The adjoint equations read as follows. Given w, given H* the unique solution of the state equation / direct
model (18), find p* € Vj such that: Oga(w; HY,p).z = OgJ(w; HY).z for all z € V.

Since the state equation is linear symmetric, it follows: dga(w; H, p).z = a(w;p, 2).

Also: Oy J(w; HY).z = [, 2(HY — H°") dx .

The adjoint equation can be solved by the same finite element method as the state equation.

Given the (unique) adjoint p*, the gradient of the cost function reads, see e.g. [28] Chapter 3:

§'(w) - dw = 8y J (w; H).6w — [da(w; H,p*).6w — .,b(w; p¥).0w]| Véw , which gives:

J'(w) - dw = 20@59/ |Vw|?VwV (6w) dz — /3/ ST 1e“SwVHYVp® do Véw
Q Q

After discretization (control variable included), this gives the gradient: < Vj, dwy >= j'(wp) - dwp, where
the index }, denotes the finite element variable. The employed minimization algorithm is the L-BFGS algorithm
(quasi-Newton method, Python scipy procedure). The complete computational software has been fully assessed
by implementing rigorous tests (explicit solutions with convergence curves); also the gradient computations
have been compared to convergent finite difference values, see e.g. [28] Chapter 6 for details.

3.6.3 The complete VDA process

In all the sequel the complete VDA process is performed in two stages:

e A first one (VDA#1) by making fit the model output with the measured surface elevations only, i.e.
Qreg = 0 in (16).

o A second one (VDA#2), starting from the VDA#1 solution and by minimizing (16) with a,.., empirically
tuned “at best”. The goal is to make a balance between the data misfit and the regularized solution (in
particular in presence of noise in data).

Twin experiments. In the present study, only synthetic data are considered, then the VDA experiments are
twin experiments. This consists to first generate the data by running the direct model. Next, a Gaussian noise
is added or not, depending on the experiment. Then the goal is to infer the unknown parameters by the inverse
method and compare the computed quantities with the original - true ones. An important point is define a
good first guess 7(?) ; it is directly obtained from the a-priori slip ratio law Rgo) and the first depth estimation
h(® obtained previously.

Stopping criteria. Few classical criteria has to be evaluated before deciding the minimization algorithm has
converged: the stationarity of j and w, the gradient value Vj in particular. In practice, the present minimization
processes have been stopped when entering in the “over-fitting zone” i.e. when the model misfits become smaller
than the measurement uncertainties. Here the virtual surface elevation H°*® are supposed to be accurate at
+/ — 10 cm. This convergence criteria has always been reached in approximatively 30 iterations.

Orders of magnitude and accuracy. The unknown effective diffusivity 7 presents few orders of magnitude (hence
this log change of variables) but also with extremely stiff local variations. This features make the inverse
problem particularly challenging in terms of numerics.

Thus the obtained numerical accuracy (on the optimal diffusivity #*) is not as accurate as it can be expected
in a standard linear-quadratic case. Typically, for a standard linear-quadratic VDA problem (with more gentle
control variable variations) a few % error can be easily reached; on the contrary, in presence of the large and
stiff variations of the optimal control variable, a dozen of % error only is reached, see the numerical results in
next section.

4 The multi-regime test cases

In this section, the multi-regime test case aiming at assessing the inverse method above is described. The
considered multi-regime flows include many features of the real world flows in terms of fluid mechanics (i.e.
independently of the measurement difficulties and uncertainties). Following [3, 12, 25], the bed topography is
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Figure 2: The multi-regime test case. (Up) Left: surface velocity ugy (in m/y). Right: slip ratio Rs. (Down)
Left: bed elevation b. (in m) Right: friction coefficient C' (in log scale). White lines on the bed elevation denote
the sub-regime boundaries defined by Table 1.

defined consistently with the low-band filter feature of these shallow flows; in particular it respects the minimal
wave lengths measurable from the surface. The sub-regime areas can be defined quite accurately from the
surface velocity values only. Next two measurement scenarios are defined: depth measurements are available
downstream the flow (it is the case 1) or laterally, approximatively parallel to a flow line and within a very slow
flow area only (it is the case 2). Both cases define difficult inverse problems which have not been solved up to
now in the literature (for the reasons detailed in the last paragraph).

4.1 Flow description

The geometrical domain 2 is a square of length L=100 km. The surface elevation H, the slopes S, and the bed
elevation b are presented in Fig. 3. The flow presents the whole range of slip ratio Rs : from 0.02 to 0.98, see
Fig. 2; hence this flow contains the three sub-regimes.

The bed presents sinusoidal variations which are consistent with the mesh size (=~ 10 points minimum per
wave length) and consistent with the depth (= 5 depth values minimum per wave length). For more details on
the shallow ice flow filtering features, the reader can refer to the detailed and complementary analysis presented
in [3, 12, 25].

The test case definition is a crucial point to assess in a reliable way the inference method. It has to represent
a real like flow (hence multi-regime) and it has to be consistent with the shallow ice flow - xSTA model filtering
features. The flow is assumed to be isothermal with ¢ = 3 and A = 3.1072 (this value corresponds to ices at
~ —5°C); also: p =934 and g = 9.81. The mass balance term a = 0.

(y 2)2 )2

-3)? (y—L/
The bed elevation is defined by: b(z,y) = 150 sin(%EFx)sin(%Fy) + 400 e~ axaeor 4 200 ¢~ (Exoeor

The friction coefficient is defined by: C(z,y) = %% [1 + 50%30])(—%) + 506;13;0(—%)]

The definitions of b and C' above generate a canyon draining a faster ice stream, see Fig. 2. The surface
elevation H is obtained by solving the xSIA equation (7) with Dirichlet boundary conditions. The latter read:
H(z,y) = 1000 — 5 - 1073z for all x € 9. The lateral boundary surfaces present a longitudinal mean slope
equal to 5%o. The computational finite element mesh is a structured triangular mesh 140x140 with refinements
in the sharpest bed variation areas, in particular in the vicinity of the left boundary of the canyon (in the flow
direction). The resulting surface elevation H and slope values S are plotted in Fig. 3. The surface slopes are
computed for each mesh triangle; they range from 0.3 % to 0.8%.

It can be noticed that the bed bumps have a clear effect on the top surface slopes. On the contrary, the

10
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| Sub-regime | Velocity norm |ug| (m/y) | Corresponding slip ratio R |

srl: fully sheared lug| <1 R, 2 0.8
sr2: intermediate 1< uy| <10 0.1 SR, 0.8
sr3: full sliding lug| > 10 R, $0.1

Table 1: Sub-regime area defined from the surface velocity values.
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Figure 3: The multi-regime test case. (Left) Up: surface elevation H (in m). Down: bed elevation b (in m). The
lateral blue line and the downstream red line (figures up and down) denote the depth measurement locations
(e.g. flight tracks).

(Right) Up: the observational term Qp = Jlfs—fﬂ (in log scale). Down: the slope values S.

canyon location cannot be visually detected neither from the surface elevation nor from the surface slopes, see
Fig. 3.

Let us point that the sinusoidal bed variations respect the minimal wavelengths not fully filtered by the
(shallow) flow, see [3, 12, 25]. Also the minimal grid points per wave length is respected.

The regime transitions are mainly due to the friction coefficient variations, see Fig. 2, and these variations
are extremely stiff: few orders of magnitudes within a narrow space region (hence almost discontinuities with
1 or 2 order of magnitude gaps). Then an accurate inference of C' is obviously very difficult. The numerical
results below demonstrate that the present inverse method makes possible an accurate depth inference despite
the large and stiff variations of C.

4.2 Sub-regime areas definition

The sub-regime areas corresponds to the balance between the deformation term in Ah vs the sliding term in C,
see (5). The three different situations (sub-regimes 1, 2 and 3) correspond roughly to the slip ratio range values
indicated in Table 1. It turns out that each sub-regime area can be easily defined from the surface velocity
norm values |ug|.

The resulting sub-regimes boundaries are plotted in white and black on the bed elevation maps, see e.g. Fig.
2. The white lines denote the sub-regime 1 boundaries, the black lines denote the sub-regime 3 boundaries;
hence the sub-regime 2 area is defined by the white and black lines.

On the few orders of magnitude of n. The surface velocity presents 3 orders of magnitude (from 0.1
to 100 m/y); this leads to a friction coefficient C' presenting 4 orders of magnitude, see Fig. 2. Such a large
variation range is common in ice models. Then the observational quantity Qg defined by (8) presents 3-4
orders of magnitude too, see Fig. 3. The effective diffusivity n defined by (7) presents patterns very similar to
Qp ones, with 4 orders of magnitude too.In the sequel, the effective diffusivity n will be computed by a VDA
process; then its large and locally stiff variations makes its numerical inference quite unaccurate in the stiffer
variation areas.

11
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Let us notice that these large variations of 1 are due to the depth variations and not to the regime (or
equivalently slip ratio) variations. Indeed, in the sub-regime 1 case, if setting C' = 0, Rgp = 1, then: 1y =

(quz) ha*t2. Hence n varies with few orders of magnitude since n ~ k972, Also, in the case of sub-regimes 2 and

3, 1 = Ner1 + ChTTL. Typically for R, = 0.5 , (¢ + 1)C = 2Ah and: n = [%]th = <(2quf’)>nm. In

the case g = 3, it gives: n = %nsrl. Therefore the large variations of 7 are not due to the regime variations but
to the depth variations.

4.3 Two scenarios of measurements: downstream (Case 1) and lateral (Case 2)

In the following the depth & is inferred following the method described previously, next the friction coeflicient
C is inferred. Two scenarios depending on the measurement locations are considered:

e (Case 1: the depth is measured downstream the flow, see the red line in Fig. 3.
e (Case 2: the depth is measured laterally only, following the blue line in Fig. 3.

Both cases are difficult inverse problems for few reasons. In Case 1, the measurement is available downstream
and not upstream. The configuration in Case 2 is an even Imore challenging since the measurements are more
or less parellel to a single stream line hence any method based on an hyperbolic equation (like the depth mass
equation, even if regularized by artificial diffusion) can infer a reliable depth since the given information is not
cross-stream. Moreover the measurements ”"miss” the canyon hence “miss” the large bed variations. Then no
reference relationship between the surface velocity and the bed variations can be stated from the measurements.
The present inverse method remains robust independently of the measurement location(s) since based on an
elliptic equation.

5 The first depth estimation h(0)

Given the surface observations (elevation and velocities), given the depth measurements at few points (e.g. a

flight track over an ice-shed in Antarctica or Greenland), an a-priori slip ratio law Rgo) can be derived. From this

a-priori law RQO), using the few depth estimations derived previously (Section 3), a first estimation is obtained.
This estimation denoted by A(?) turns out to be already excellent. Next this value h(?) is improved by the VDA

process (h(©) is the first guess value).

5.1 From the depth measurements to the a-priori slip ratio law Rgo)

As already mentionned, the depth measurements along the lines/tracks indicated in Fig. 3 combined with the
surface measurements (H,|ug|) make possible to obtain a local slip ratio law since Rs can be written as a
function of h and Qg, see (9). Recall ¢ and A are given. Fig. 4 represents the slip ratio Ry vs the surface
velocity |ugl|; the blue dots are the measured values. These measurements are plotted for the two scenarios,
Case 1 and Case 2, corresponding to Fig. 4) (Left) and (Right) respectively. Next, given the measured slip ratio
graph(s) (the blue points in Fig. 4), a least-square approximation gives an a-priori slip ratio law Rgo) : the red
dots in both figures.

In Case 2, the measured slip ratio range is extremely small hence making the derivation of an a-priori
slip ratio law difficult. Then two extra empirical values are added to the measurement values: (ug = 1lm/y,
Rs =0.5) and (ug = 20m/y, Rs = 0.03). These two extra values are the two isolated points indicated in green
in Fig. 4 (Right).

The complete relation Rs(Qpr, h) for all points of the computational domain (i.e. including the non measured
values) are represented by the blue crosses.

The slip ratio law R, can be plotted vs the (complete) observational term Qg (not shown here). However
since the variation range of Qy is much larger than those of uy, it is more difficult to infer a good a-priori law
RV, A comparison between two resulting a-priori slip ratio laws (one obtained from |ug| measurements, the
other from Qp measurements) is presented in Fig. 5. As expected, the velocity-derived law is closer to the true
slip ratio map. The Qp-derived law makes appear the bed bumps since the presence of S77 in the definition of
Qp, see Fig. 5.

5.2 The first depth estimation h(© = h(Qy, R\")

Recall that given the observational surface term Qp, given the slip ratio values R, the depth expression reads
in all sub-regimes as follows:

12



L0 T T T . T T
< R, on the whole domain < R, on the whole domain
e Least square polynomial (order 3) e Least square polynomial (order 1)
08k ® Measurements 08k ® Measurements
0.6} 0.6}
o
s
e =
D g4l 04f
0.2 0.2}
0.0 L L L L L h 0.0 L L L L L h n
~9.0 —85 —8.0 ~7.5 -7.0 —6.5 —6.0 —5.5 —5.0 ~9.0 -85 —8.0 -75 -7.0 —6.5 —6.0 —5.5
log(|Un) log(|Un])

Figure 4: Slip ratio vs |ug| (in log scale) for test case 1 (downstream measurements) (Left) and test case
2 (lateral measurements) (Right). The blue dots are the measurements. The cyan crosses are the values
throughout the domain (they are not measured). The red dots are the resulting a-priori slip ratio law, obtained
by least-squares.
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Figure 5: Slip ratio values: True values Rg (Left). A-priori law R derived from: |ug| only (Middle); from

Qn = 211 (Right).
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Given the a-priori slip ratio law R§O>, this relation provides directly the first depth estimation h(®). Note
that: h(®) = h(Qy, 20)) ~ [QHRS]ﬁ; then the accuracy of h(?) depends directly on the accuracy R\
(power-law in WTIU)
The first estimation (19) with Ry = 1 gives the estimation hg.1, see (10). However for high values of Ry
(sub-regime 1 areas), h directly calculated from (10) is more accurate than if evaluating (19). This is due to

the quite low accuracy of RE,O) for high values, see Fig. 5.

The resulting first guess () The first depth estimation h(®) defined by (19) can be improved by performing
the VDA process presented previously. This VDA process aims at computing an optimal effective diffusivity n
from a first guess (?). The latter is straighforwardly calculated from the polynomial expression (12) and h(®)
defined above.

6 Case 1: downstream measurements

In this section, the numerical results obtained in the case of downstream measurements (the red track in Fig.
3) are presented and analysed. First, the inference process is performed from the exact data. Second, it is
performed from perturbed data (the exact surface measurement Qp plus a random noise).

6.1 Exact measurements

Given the downstream depth measurements, see Fig. 3, given the exact surface data (H,S), the VDA process
(7)-(17) is performed in two steps:

e VDA#1: the cost function contains the misfit term only i.e. o, =0 in (16).

o VDA#2: the regularization term is added to the cost function, see (16). The goal of this second VDA
process is to obtain a reasonably smooth solution while fitting the data.

After each VDA process, the two depth estimations (10) and (14) are explicitly obtained while the sub-regime 2
depth estimation hg.o is obtained by solving numerically the polynomial (12). The polynomial roots are obtained
by computing the eigenvalues of the corresponding companion matrix (Python procedure numpy.roots). The
selected root value is those belonging to the interval [hg,3, hsr1] (if imaginary, the real part only is considered).

6.1.1 VDAG#1: fitting data only

The VDA problem (7)-(17) is numerically solved with .y = 0. As detailed previously, an a-priori slip ratio

map RS)) is defined, next the first depth estimation h(?) is calculated in the three sub-regime areas, next the
first guess n(°) . It can be noticed that the first depth estimation A(?) is already an excellent estimation of the
true depth, see Fig. 6.

Next VDA#1 process is performed. The minimization process is robust (with respect to the first value) and
converge accurately in 30 iterations approximatively (the misfit term is divided by a factor 10* — 10°). From
the computed optimal value n*, the depth estimations in sub-regimes 2 and 3 areas are computed; they are
plotted in Fig. 7. The three estimations are quite accurate in their respective domain of validity. Typically
hsr1 is accurate to within 5% (and less) in the sub-regime 1 area; hgo (resp. hgrg ) is accurate to within 10%
in the inner part of the sub-regime 2 area (resp. sub-regime 3 area) and accurate to within 20% at the area
boundaries.

The large variations and stiff variations of 1 between the different sub-regime areas make the numerical
inverse problem difficult. The numerical inferred value 7 is relatively less accurate, hence the less accurate
depth estimation in these areas. Concretely, it gives the local “peaks” of errors (= 25% error) plotted in Fig. 7.

Let us recall that by construction the sub-regime2 depth derivation (12) is valid everywhere; however it is
not necessarily the most accurate estimation, Fig. 7, since the respective simplifications made to obtain hs,; and
hgrg circumvent the errors made on the a-priori slip ratio law RS’)
1 case, see Fig. 7.

Following the a-priori definitions of the sub-regime areas, see Table 1, the combination of the 3 estimations
hsry00 provide the global bed elevation value. At the sub-regime limits, corresponding to the large and stiff
variations of 7, the relative error on b equals approximatively 20% (corresponding to the “linear peaks” plotted
in Fig. 7). Out of these stiff regime transition areas, the relative error is smaller than 10%.

. This is particularly true in the sub-regime
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Figure 6: Test case 1 with exact measurements. From left to right : slip ratio Rg, bed elevation b (in m),

effective diffusivity n (log scale). (Top) True values. (Down) a-priori slip ratio Rgo), Ist bed estimation b(®)
infered from (19), resulting value 7(*) from (12).
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Figure 7: Test case 1 with exact measurements: bed elevation by areas, obtained after VDA#1. (Down) From
left to right : hgsp1, hsra, hsrs and true value (with the lines indicating the sub-regimes areas defined by Table
1). (Top) From left to right : corresponding relative errors (for each hg.0).
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w 0.099 0.084 0.076
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Table 2: Test case #1 with exact measurements: global errors (throughout the domain). (The errors on H are
obtained by running the direct model).
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Figure 8: Test case 1 with exact measurements: friction coefficient C. (Down) From left to right: “lst guess”
value resulting from h(®) and (15), inferred value after VDA#1, true value. (Top) Corresponding relative errors.

The resulting friction field

Let us recall that with teh present inverse method the friction coefficient is a simple by-product of the
depth value. In other words, the present method makes possible to separate the two crucial basal fields: the
bed and the friction. Given a depth estimation, it is straightforward to compute the friction coefficient from
(15). Numerically, both equalities give extremely close values. The resulting friction coefficient is plotted in
Fig.8. The blue parts correspond to the sub-regime 1 areas. In these areas, a threshold has been applied (to a
very low value); this threshold being defined such that C' << Ah . Then the relative error in the sub-regime
1 is meaningless. In the sub-regime 2 area (resp. sub-regime 3), the error is globally between 10% and 60%,
excepted where the depth error is higher. Then at the sub-regime limits (stiff variations of C' of few order of
magnitude), the error on the friction field can reach 100%.

As expected, the estimated friction is accurate where the estimated depth is accurate. On the contrary where
the estimated depth is less accurate, the estimated friction coefficient can’t be accurate since it is implicitly set
such that it makes fit the model outputs with the observations. Somehow this friction coefficient absorbs all
errors (including the model errors which are null in the present twin experiments).

6.1.2 VDA#2: smoothing process

The first VDA process (VDA#1) was deliberately taking into account the observational term only. The goal
was to analyse the inference capabilities of the present mix analytical-VDA method. From this VDA#1 optimal
solution (n#!, h#1) | a second VDA process is performed. The goal is to smooth the solution while keep fitting
the data. The control variable is still w = In(n). The cost function j(w) is defined by (16) with ay = 1 and
areg = 20. The regularizing weight parameter o4 is set following an empirical L-curve criteria, see e.g. [14].
Both the regularization term and the misfit term decrease during the optimization process. The resulting fields
are plotted in Fig. 9 and Tab. 2. This second VDA process makes decrease the errors in the stiff variation areas
(the “error peaks” located at the sub-regimes boundaries). Indeed, the error peaks on 7 decrease from 20% to
15%. Moreover, the VDA#2 slightly improves the accuracy everywhere else by a few %; compare Fig. 9 and
Fig. 9.
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from (19), inferred value after VDA#2, true value. (Top) Corresponding relative errors. The white lines denotes
the sub-regime area boundaries defined from Table 1.

6.2 Uncertain surface measurements: (quasi-)explicit sensitivities

The surface measurements are the surface elevation H (potentially acquired by altimetry) and the surface
velocity ugy (potentially acquired by InSAR techniques). From these measurements, the slopes & and the
observational term Qp defined by (8) are estimated. The uncertainty sources are numerous and the resulting
accuracy on Qp depends on many factors. The error measurements on H may be considered uniform in space;
on the contrary the error measurements on |uy| depends on its amplitudes, hence depending on the sub-regime
areas. In other respect let us remark that the observational term Qg is linear in ugy (hence introducing some
noise in |ug| is equivalent to introduce the same noise in Qyr); on the contrary we have: Qp ~ S™1.

6.2.1 The depth estimations h,. vs observational term perturbations 09y

Let us analyse the sensitivity of the three depth estimations h,. (the index [0 denoting the integer 1, 2 or 3)
with respect to perturbations on Qg. The error measurements come independently from |ug| or S.

Note that concerning the slope values S, an additional issue may be addressed: at what scale the numerical
model has to be set up ? This classical slope scale questionning is difficult to tackle; however the answer (given
in terms of length factor) is the same everywhere in the computational domain. From the sensitivity analysis
below, a method to determine the correct slope scale of the xSIA model is presented in next section.

Let us denote by h(1+dh) the resulting depth of a perturbed observational term Qg (14+0Q). For each depth
estimation, the resulting depth variation dh is plotted vs §Q in Fig. 10(Left); for a [—50,450]% perturbation
range. In the sub-regime 1 case, it follows from (10) that: dh,,q = (146Q)Y/9+! —1. Therefore the uncertainties
on the observational term Qp, or equivalently on the surface velocity ug, is greatly damped, see Fig. 10. A
typical order of magnitude for these fully sheared flows (hence slow flows) is the following: a 30% noise on ug
(or equivalently on Q) makes h7%¢ deviate from hg.1 by ~ 8% only.

In the sub-regime 3 case, it follows from (14) that: dhsrg = m -1

In the intermediate sub-regime 2 case, the dependency is more complex since the uncertainties propagate
into the roots of polynomial (12). As a first step, the estimation (13) shows that if assuming the slip ratio
R, invariant then the sensitivity of hg.o with respect to Qp is the same than those in the sub-regime 3 case:

oh = (1+—16Q) — 1. Next to compute the complete sensitivity of hg.o with respect to Qp, the polynomial (12)

has to be numerically solved for each perturbed value of Q. In Fig. 10 (Left), dhs.o is plotted vs 6Q for the
few typical slip ratio values. To plot these curves, the different steps are the following: given a slip ratio Ry ,
the corresponding friction coefficient C' is evaluated from (6), next nis evaluated from its expression (7), next
Qp is evaluated from (9), and finally the physical meaning root of the polynomial (12) with the perturbed Qg
is computed.

For weakly sheared - slipping flows (sub-regimes 2 and 3), hence relatively fast flows, a typical 10% noise on
|ug| makes deviate h by ~ 10 — 20 %, depending on the slip ratio value. Hence realistic uncertainties on the
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Figure 10: (Left) Explicit depth variations (dhsy1, Ohsre, 0hsrs) @ (Left) vs Qp; (Right) vs S.

dhsro is obtained by computing the roots of the perturbed polynomial (12). The curves dhg2 are plotted for
typical slip ratio values.

surface velocity norm |uy| does not prevent to estimate correctly the depth. In next section, a [—20,420]%
random noise (range indicated by the vertical dashed lines in Fig. 10 (Left)) will be added to Qg before
performing the complete inversion process (i.e. including the VDA process).

6.2.2 The depth estimations h, vs slope perturbations /S

If perturbing the slope S then Q is perturbed as follows: Qg (14+6Q) = W. Therefore: 0Q = m—l
. Roughly a [—10,4+10]% (resp. [—20,+20]%) perturbation on S leads to a [—40,+25]% (resp. [—50,+100]%)
perturbation on Q. Now, let us compute the depth estimations hg vs the slope perturbations S (recall
that the index O denotes the integer 1, 2 or 3). As before, we denote by h(1 + dh) the resulting depth of the
perturbed observational term S(1 + 4S).

In the sub-regime 1 case, the direct expression dhsq1(dS) is straightforwardly obtained. In the sub-regime 3
case, 0hg-3 depends on §S but also on 7).

In the sub-regime 2 case, the different steps are the following: given a slip ratio R, the corresponding friction
coefficient C is evaluated from (6), next 7 is evaluated from (7), next Qp is evaluated from (9), and finally the
100t hgro(l 4 dhgr2) of the polynomial (12) is computed (root corresponding to the perturbed value of S hence
Qm).

In Fig. 10 (Right), the few dh,,o values are plotted vs 6S. The difference of behavior between dhs2 and
Ohsr1 (resp. dhgrg3) at high slip ratio value (resp. low value) is remarkable. In particular, for diminishing slopes
values, dhg.o and dhge3 behaves similarly. For increasing slopes values, dhg.o is more accurate than dhg.q (for
high slip ratio values).

6.3 The complete inversion process with an uncertain observational term Oy

In the previous numerical depth inference, the surface measurements were supposed to be exact. In the present
numerical experiment, a 20% random noise is added to Q. Recall that this perturbation in Qp is equivalent
to a 20% random perturbation in |ug|; it corresponds approximatively to a 5% random perturbation in S too,
see Fig. 10. The consequences of this randomly perturbed Qg to the inferred depth values are presented. As
a first step, the randomly perturbed Qp is smoothed by minimizing the following cost function:

1 1
9(Qn) = 511Qn — QI+ S IV QB ade = Slo1(Qn) + ag2(V Q) (20)

Again the regularizing weight parameter « is set following an empirical L-curve criteria. This led to set:
a = 5.2 10!, The cost function values (g1(Qr),92(VQr)) equals: (0., 5.210!) at the first iteration and
(1.8 10°, 3.7 10'9) at the 32"¢ (last) iteration. The corresponding values of Qp are plotted in Fig. 11.

Next the VDA process to compute 7 is performed. Let us notice that the noise on Qp has a direct impact
on the a-priori slip ratio map Rg()) next on the first estimation 2(°), next on the first guess n©.

However, despite the introduction of noise on Qy, again the first estimation A(?) is an excellent estimation
of the true depth (not plotted). Next, the complete VDA process is performed: the VDA#1 process, a, = 0 in

(16), next the VDA#2 process with «,, = 7 . From the obtained optimal value n*, the depth estimations are
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Figure 11: Test case 1 with uncertain measurements Qp. (Down) From left to right: Qg with noise, after
smoothing process, original “true” field. (Top) The corresponding relative errors.

| Errors | First estimation | After VDA #1 | After VDA #2 |
Sl 0.089 0.079 0.075
Thhorue [ 0.533 0.468 0.437
TH — Hop oo 8201 0.26 0.27
LTH — Hys | 0.0264 0.0004 0.0003

Table 3: Test case #1 with uncertain measurements: global errors (throughout the domain). (The errors on H
are obtained by running the direct model).

computed. The resulting bed elevation is plotted in Fig. 12, see also Tab. 3. The three depth estimates hig?]
give results roughly as accurate as in the exact measurements case. Indeed h,1 is accurate to less than 5% in
the sub-regime 1 area; hgpo (resp. hgrg ) is accurate to 10% (and less) in the inner part of the sub-regime 2 area
(resp. sub-regime 3 area) and accurate to 20% at the area boundaries. Compared to the first depth value RO,
the VDA process improved the solution mainly in the sub-regime 3 area: the error decreases from 10 — 30%
before VDA, to 5 — 20% after VDA, Fig. 12.

The resulting friction field. Given the depth h everywhere, the friction coefficient C' is obtained explicitly
by evaluating (15), both formula giving quite the same values. The resulting friction coefficient is not plotted
since its patterns and its accuracy are very similar to the case of exact measurements, see Fig.8.

In summary, a 20% random noise on Qp throughout the computational domain (potentially corresponding
to a 20% noise on |ug| or to a 5% noise on ) does not affect the robustness of the present inversion approach
nor the accuracy of the inferred depth values. Nevertheless this encouraging result has to be tempered since
the slope term S considered in the xSTA equation (7) was considered as exact. Only the observational term Qg
(appearing throughout the complete inversion process: explicit formulas, first guesses and the VDA process)
has been perturbed. The questioning of the slope uncertainty (and/or the slope scale definition) is addressed
in the last section.

7 Case 2: lateral measurements
The present numerical experiment is the same as the previous one with exact data but the location of the depth

measurements. In the present case, the depth is measured following the lateral line/track indicated in blue in
Fig. 3. Consequences are important since the depth measurements are available in a mono-regime area only
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Figure 12: Test case 1 with uncertain measurements (20% random noise on Qg ): bed elevation (in m). (Down)
From left to right: 1st estimation = the value infered from (19) after the smoothing process, inferred value after
VDA, true value (with the lines indicating the sub-regimes areas defined by Table 1). (Top) Corresponding
relative errors. The white lines denotes the different regime zones.

(fully sheared area) furthermore parallel to a flow line. In particular, these measurements do not include any
point in the canyon nor various upstream points. Actually, the present measurement track is almost equivalent
to a single location measurement, see the blue dots in Fig. 4 (Right). The present configuration makes the
inverse problem particularly challenging.

7.1 A-priori slip ratio map RS’) and first estimation h(")

The first step of the inverse method consists to define the a-priori slip ratio map Rgo). In the present configura-
tion, the depth measurements do not include a varying slip ratio, hence extra a-priori have to be made. Then
as already mentioned the two a-priori are made:

e a surface velocity |ug| = 1m/y corresponds to slip ratio Ry = 0.5,

e a surface velocity |ug| = 20m/y corresponds to slip ratio Ry = 0.03,

see the two green points in Fig. 4. Given the resulting a-priori slip ratio map Rgo), the first depth estimation
h(9) is computed, next the first guess n(®), as previously described. These first values / guesses are plotted in
Fig. 13, see also Tab. 4. Again, the first depth estimation h(?) is already excellent.

Let us point out that if the a-priori slip ratio R§°> is really bad, typically by considering the second point equal
to (2m/y, 0.03), see Fig. 4 Right, then the first bed estimation b© is bad too, following (19): h(®) ~ R, @1,
However in such a case, the VDA process improves more the first estimation h(®) and leads to quite a good
depth value. Typically the 2-norm relative error of the final depth estimation h is approximatively 20% instead
of 7 — 8%, see Tab. 4.

7.2 Inferred bed elevation after VDA

Next the VDA process is performed from the first guess value n(9). Since the data are exact, the regularization
term jrcq is not really necessary, see Tab. 4. Then the presented results are those of VDA#1 only: oy = 0 in
(16). The minimization process converges in 30 iterations, reaching the +/ — 10 cm uncertainties on the surface
elevation. Next from the obtained optimal value n*, the depth estimations are computed. Next, following the
a-priori definitions of the sub-regime areas, Table 1, the combination of the 3 estimations A, gives the inferred
bed plotted in Fig. 14.

Like in Case 1, at the sub-regime limits (corresponding to the large and stiff variations of 7)), the relative error
is higher (approximatively 20% in h) than anywhere else. Out of these stiff regime transition areas, the error
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(19), and the resulting value 7(%) from (12) (1st guess value for the VDA process).

| Errors | First estimation | After VDA #1 | After VDA #2 |
Sl 0.084 0.076 0.070
e 0.443 0.443 0.446
| H — Hobs oo 6.89 0.21 0.17
LTH — Hya,s |2 0.0236 0.0002 0.0002

Table 4: Test case #2: global errors (throughout the domain). (The errors on H are obtained by running the
direct model).

on the depth h is small, lower than 7%; even lower in the sub-regime 1 area. Again the three estimates give
accurate results in their respective domain of validity. Again if comparing with the first estimations, Fig. 13,
the VDA process improves a bit the depth estimates in the inner parts of sub-regimes 2 and 3 and at the
“sub-regimes boundaries” (making decrease the peak errors).

Concerning the friction coefficient C' (which is computed a-posteriori), its accuracy is similar to the case
of downstream measurements, see Fig.8. For this field C, the VDA process improves greatly its accuracy, in
particular in the sub-regime 2 area. Typically the VDA process makes decrease the errors from 30% to less
than 20% in the smooth areas; and from approximatively 200% to 100% in the stiff transition areas.

On the robustness of the present inverse method The present depth inference is (slightly) more accurate
than in the downstream measurements case (test case 1). This result is only due to the better a-priori slip ratio
law Rgo), see the fitting law in Fig. 4 (Right). More importantly this test case 2 demonstrates the following
important feature: since the present depth inference is based on an elliptic model, and not a hyperbolic one,
the depth measurement locations are not crucial. Typically, measuring the depth at upstream, downstream or
laterally, does not affect the inversion method accuracy. The important starting points of the present approach
are the accuracy of the surface observations (the observational term Qg ) and the accuracy of R derived from
the depth measurements.
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Figure 14: Test case 2: bed elevation. (Down) From left to right: first estimation from (19), inferred value after
VDA, true value. (Top) Corresponding relative errors.
The white lines denotes the sub-regime area boundaries defined from Table 1..

8 Inference of the correct slope scale in the xSIA model

As already discussed, a major difficulty to set up a STA model is to manage its high sensitivity to the slope values
S. This sensitivity means sensitivity with respect to the slope error measurements but also with respect to the
slope scale definition of the flow model. This is a global concept in space. Typically for the ice-sheets, out of
ice-streams and/or far inland to be sub-regime 1 compatible, a standard accepted slope scale is approximatively
10h* , h* being a characteristic thickness. Nevertheless, for more sliding flows (i.e. in sub-regime 2 and sub-
regime 3 areas), this characteristic scale may have to be adapted, see the complimentary analyses [3, 11, 25].
From the present depth estimations, a method to estimate the slope scale representing correctly the surface
data with the xSTA model (7) can be derived.

From data basis. A pure data-oriented step would consist to infer correlations between the slope scale
and the depth from the available depth measurements (e.g. measurements based on the blue or red lines in
Fig. 3 or based on the massive data sets available for the two ice-sheets[35], [2]). Indeed, from a data set
providing all the model outputs (surface elevation, surface velocity and depth in particular), it is possible to
infer the corresponding xSIA slope scale. Then, given the numerical model (including the computational and
bed topography grids), this optimal slope scale can be considered throughout each sub-regime areas. (Indeed,
the low-band filtering feature of the flow depends on the flow regime, see e.g. [25]).

From the present depth estimations. A complimentary method would rely on the few present depth
estimations. First let us recall that the sub-regime 2 estimation, see (12) and (13), is valid everywhere i.e.
it is valid in the three sub-regime areas (despite it may be not the most accurate estimation in sub-regime 1
areas since numerical errors in Ry or 7, see the previous discussion). Then the correct xSTA model slope scale
can be defined from the radically different behaviors of the depth estimations with respect to Q. Indeed, the
sub-regime 1 depth estimation (10) behaves like Q}j{(qﬂ) while the sub-regime 2 estimation (13) behaves in
Q;Il. Therefore, given all the points located in the sub-regime 1 and sub-regime 2 areas (point set identified

from a-priori values like Tab. 1 or from the a-priori slip ratio value R&O) ), the two depth estimations can be
computed from the observed slope value at different slope scales, typically at 2% characteristic depth and/or
mesh size, with £k =0,..,3 .

Then the correct slope scale (which should be an uniform concept for each sub-regime area) is those giving
the closest depth obtained from the two estimations. In other words, the correct scale corresponds to the
intersection point between the hg.q and hgpo curves in Fig. 10. In a large set of data, the intersection point can
be statistically estimated.

Since the present depth estimations are local, this method to infer the optimal / correct slope scale of the
xSTA model can be illustrated for 1D uniform flows without any loss of generality.

22



760

765

770

775

780

785

790

795

12000 The 3 depth estimations for flow srl 12000 The 3 depth estimations for flow sr2 The 3 depth estimations for flow sr3

7000

oo hsr2 o hsr2

6000}
oo hsr3 10000

10000

oo hsrl o hsrl o hsrl
e e hsr2
o - h.sr3 N e -e hsr3

S, 5000
8000 8000

4000

6000 6000

depth
depth
depth

3000 Trel //
52z

4000 e 4000}~
b e 2000

-—— PigPid 27 T T ce—o L
2000 TreTasss 2000 e s S
T-eT T e Prs

1000

oy=c=" . ok ok -
0.10 0.15 0.20 0.25 0.30 0.35 0.10 0.15 0.20 0.25 0.30 0.35 0.10 0.15 0.20 0.25 0.30

Figure 15: 1D uniform flows: the three depth estimations hg,. From left to right: sub-regime 1 case, sub-regime
2 case, sub-regime 3 case.

Iustration with 1D uniform flows. Let us consider 1D uniform flows. The fluid properties (4, g, p) are
identical as previously and three typical flows are considered. For all three, the slope value is S = 0.2%.

Each flow differs from each other by the values of uy and h. Then are evaluated: the observational term
Qp, the friction coefficient C' from (15), the effective diffusivity n and the slip ratio Rs; . Finally, the three
estimations (10), (13) and (14) can be computed.The considered three typical flows are the following.

e Flow sr1 (highly sheared): uy =5 m/y and h = 2.10°m.
It follows: Qp ~ 19.8, C ~2.20 10722, n ~ 4.19 10~® and R, ~ 0.93.
The resulting three depth estimations are: hg,1 ~ 2035.7, hgro =~ 2000.0, hg3 =~ 1627.3 , see Fig. 15 for
S =0.2%.
Recall the true value is h = 2000; as expected the hg.o estimation is perfect since including all terms and
evaluated from exact data.
The hgq estimation is 1.7% accurate because of the slip ratio value close to 1 (but with 7% slipping). Let
us notice that with these data but C' = 0, the surface velocity would be ug & 4.66m/y.

e Flow sr2 (mildly sheared flow): uy = 20 m/y and h = 2.10%m.
It follows: Qn ~ 79.3, C ~9.88 1072!, n ~ 1.96 10~7 and R, ~ 0.23.
The resulting three depth estimations are: hg,1 ~ 2878.9, hgro =~ 2000.0, hgr3 =~ 1906.8 , see Fig. 15 for
S =0.2%.
Recall the true value is h = 2000. Again, as expected the hg.o estimation is perfect.
The hg,1 estimation is incorrect (43.9% error); the hg.3 estimation is 4.7% accurate because of the slip
ratio Ry value (which is quite low).

e Flow sr8 (very weakly sheared flow): uy = 50 m/y and h = 10° m.
It follows: Qp =~ 198.1, C' ~ 2.56 10717, n ~ 2.57 10~ " and R, ~ 5.8 1073,
Let us notice that with these data but C' = 0, it would give ugy ~ 0.29m/y only.
The resulting three depth estimations are: hg.q ~ 3620.1, hgo = 1000.0, hg3 = 998.8 | see Fig. 15 for
S =0.2%.
Recall the true value is h = 2000 (with the perfect hg.o estimation again).
The hg,3 estimation is extremely accurate (0.12% error) since the slip ratio is extremely low. On the
contrary, the hg,.; estimation is really wrong (262% error). As expected, the hg,; estimation over estimates
the true value.

These three typical examples highlight each depth estimation behavior and accuracy, depending on their
respective domain of validity. Next, the same computations are performed but by making the slope S vary
from S = 0.1% to 0.35% (recall that the reference - “true” value is § = 0.2%). Varying S makes Qg vary. The
resulting curves are plotted in Fig. 15. In Fig. 15 (Right), the graphs of hso and hge5 are fully superposed.
This curves illustrate the radically different behaviors of the explicit depth estimations with respect to S.

It can be noticed that in sub-regime 1 case, the correct slope value (S = 0.2) can be recovered by detecting
the intersection point between the two estimations hge1 and hgpo, see Fig. 15 (Left). In the sub-regime 2 and
sub-regime 3 areas, the situation is a bit different. The sub-regime 1 estimation (10) over estimates the true
value (as soon as the sliding becomes quite important). Then the intersection points give an upper-bound only
of the correct depth, hence an upper-bound only of the correct slope value, see Fig. 15 (Middle) and (Right).

In other words, the present three depth estimations make possible to infer the correct slope scale to set up
consistently the xSTA models, if some depth measurements are available. Indeed, the approach detailed here in
1D can be applied in the 2D case since the estimations are point-wise. Then the inference of the correct slope
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scale from available complete data (including depth measurements) in the weakly sheared areas (sub-regime
1 areas) becomes possible. Next this optimal slope scale can be applied in the xSIA model throughout the
computational domain i.e. where depth data are not available and in the other sub-regime areas.

9 Conclusion

This study proposes a new inverse method to infer the bottom topography b and the friction coefficient C' in
the Shallow Ice Approximation (STA) models. Then the method can be applied to the great majority of the ice
sheet surfaces (sheared flow areas) and to many high mountain glaciers. In a mathematical point of view, the
present inverse method can be applied to any shallow sheared generalized Newtonian fluid flow, for example
lava flows (with the thermal field given), mud flows and many polymer flows. The method is based on the
definition of sub-regimes depending on the slip ratio, different combinations of explicit field expressions with
a linear-quadratic optimal control problem solved by Variational Data Assimilation (where the direct equation
is a gentle linear elliptic equation). This leads to a particularly robust method even in presence of uncertain
surface measurements and independently of the depth measurement locations (on the contrary if inverting the
mass equation only since it is a first order transport equation); also the potential various error measurements
are damped (and not propagated). Finally the difficult question aiming at determining the correct slope scale
in a STA model may be solved by cross-comparing the few depth estimations proposed. While assessing the
method with few difficult academic multi-regime test cases, the only method drawback turned out to be its
relatively low accuracy in the stiff variation areas of the friction coefficient C' (typically in canyon margins
where C' varies of few orders of magnitude). However this demonstrates the method capability to infer a reliable
bottom topography elevation b despite an extremely varying friction coefficient C. This new inverse method
can be straightforwardly extended to unsteady flows if the available surface observations are time-dependent
too (assuming that the initial condition is either not important in the considered time scale or can be efficiently
infered). This promising new inverse method will be assessed with real data sets in a forthcoming study.
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