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SOME REMARKS ON THE NONLINEAR SCHRÖDINGER

EQUATION WITH FRACTIONAL DISSIPATION.

MOHAMAD DARWICH AND LUC MOLINET.

Abstract. We consider the Cauchy problem for the L2-critical fo-
cussing nonlinear Schrödinger equation with a fractional dissipation.
According to the order of the fractional dissipation, we prove the global
existence or the existence of finite time blowup dynamics with the log-log
blow-up speed for ‖∇u(t)‖L2 .

1. Introduction

In this paper, we study the blowup and the global existence of solutions
for the L2-critical nonlinear Schrödinger equation (NLS) with a fractional
dissipation term:{

iut + ∆u+ |u|
4
du+ ia(−∆)su = 0, (t, x) ∈ [0,∞[×Rd, d ∈ N∗.

u(0) = u0 ∈ Hr(Rd)
(1.1)

where a > 0 is the coefficient of friction, s > 0 and r ∈ R.
The NLS equation (a = 0) arises in various areas of nonlinear optics,

plasma physics and fluid mechanics to describe propagation phenomena in
dispersive media. To take into account weak dissipation effects, one usually
add a linear damping term as in the linear damped NLS equation (see for
instance Fibich [12] ):

iut + ∆u+ iau+ |u|pu = 0, a > 0.

However, in a wide range of situations a frequency-dependent attenuation
has been observed (cf [7]). This motivates to rather complete the NLS
equation with a laplacian term as in the following complex Ginzburg-Landau
equation studied in Passota-Sulem-Sulem [32]:

iut + ∆u− ia∆u+ |u|pu = 0, a > 0,

Now, in many cases of practical importance the damping cannot be de-
scribed by a local term even in the long-wavelength limit. In media with
dispersion the weak dissipation is, in general, non local (see for instance
Ott-Sudan [30]). It is thus quite natural to complete the NLS equation by
a non local dissipative term in order to take into account some dissipation
phenomena.

In this this paper we complete the L2-critical NLS equation (1.2) with a
fractional laplacian of order 2s, s > 0, and study the influence of this term
on the blow-up phenomena for this equation. The fractional laplacian is
commonly used to model fractal (anomalous) diffusion related to the Lévy
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flights (see e.g. Stroock [35], Bardos and all [3], Hanyga [18]). It also appears
in the physical literature to model attenuation phenomena of acoustic waves
in irregular porous random media (cf. Blackstock [4], Gaul [17], Chen-
Holm [7]).

Finally, note that the case of a nonlinear damping of the type ia|u|pu,
has been studied by Antonelli-Sparber and Antonelli-Carles-Sparber (cf. [1]
and [2]). In this case the origin of the nonlinear damping term is multiphoton
absorption.

Recall that the Cauchy problem for the L2-critical focussing nonlinear
Schrödinger equation (a = 0):{

iut + ∆u+ |u|
4
du = 0

u(0) = u0 ∈ Hr(Rd)
(1.2)

has been studied by a lot of authors (see for instance [19], [8], [6]) and it
is known that the problem is locally well-posed in Hr(Rd) for r ≥ 0 : For
any u0 ∈ Hr(Rd), with r ≥ 0, there exist T > 0 and a unique solution
u of (1.2) with u(0) = u0 such that u ∈ C([0, T ]);Hr(Rd)). Moreover, if
the maximal existence time T ∗ of the solution u in Hr(Rd) is finite then
‖u‖

L
4
d

+2(]0,T ∗[×Rd)
=∞.

Let us mention that in the case a > 0 the same results on the local Cauchy
problem for (1.1) can be established in exactly the same way as in the case
a = 0, since the same Strichartz estimates hold (see for instance [29]).

For u0 ∈ H1(Rd), a sharp criterion for global existence for (1.2) has been
exhibited by Weinstein [37]: Let Q be the unique radial positive solution (
see [5], [21]) to

∆Q+Q|Q|
4
d = Q. (1.3)

If ‖u0‖L2 < ‖Q‖L2 then the solution of (1.2) is global in H1(Rd). This
follows from the conservation of the energy and the L2 norm and the sharp
Gagliardo-Nirenberg inequality which ensures that

∀u ∈ H1, E(u) ≥ 1

2
(

∫
|∇u|2)

(
1−

( ∫ |u|2∫
|Q|2

) 2
d

)
. (1.4)

Actually, it was recently proven that any solution of (1.2) emanating from
an initial datum u0 ∈ L2(Rd) with ‖u0‖L2 < ‖Q‖L2 is global and scatters,
i.e. u behaves like the linear evolution of an L2 function for large time,
u(t) ∼ eit∆u+.(cf. [11]).

On the other hand, NLS has unique minimal mass blow-up solution in
H1 up to the symmetries of the equation ( see [23]) that blow up at some
time T > 0 with a H1 norm that grows as 1

T−t .

In the series of papers [24] , [25], [26], [27], Merle and Raphael studied the
blowup for (1.2) with ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + δ, δ small and proved the
existence of the blowup regime corresponding to the log-log law:

‖u(t)‖H1(Rd) ∼
(

log |log(T − t)|
T − t

) 1
2

. (1.5)
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Recall that the evolution of (1.2) admits the following conservation laws
in the energy space H1:

L2-norm : m(u) = ‖u‖L2 =
(∫
|u(x)|2dx

)1/2
.

Energy : E(u) = 1
2‖∇u‖

2
L2 − d

4+2d‖u‖
4
d

+2

L
4
d

+2
.

Kinetic momentum : P (u) = Im(

∫
∇u(x)u(x)) dx.

Now, for (1.1) with a > 0, there does not exist conserved quantities anymore.
However, it is easy to prove that if u is a smooth solution of (1.1) on [0, T [,
then for all t ∈ [0, T [ it holds

‖u(t)‖2L2 + a

∫ t

0
‖(−∆)

s
2u‖2L2 = ‖u0‖2L2 . (1.6)

d

dt
E(u(t)) = −a

∫
|(−∆)

s+1
2 u(t)|2 + aIm

∫
((−∆)su(t))|u(t)|

4
du(t). (1.7)

1

2

d

dt
P (u(t)) = aIm

∫
((−∆)su(t))∇u(t). (1.8)

In [10], the first author studied the case s = 0. He proved the global existence
in H1 for ‖u0‖L2 ≤ ‖Q‖L2 , and showed that the log-log regime is stable by
such perturbations (i.e. there exist solutions that blowup in finite time with
the log-log law).
In [32], Passot, Sulem and Sulem proved that the solutions are global in
H1(R2) for s = 1. However, their method does not seem to apply for any
other values of d.
Our aim in this paper is to establish some results, for s > 0, on the global
existence or the existence of finite time blowup dynamics with the log-log
blow-up speed for ‖∇u‖L2 .

Let us now state our results:

Theorem 1.1. Let d = 1, 2, 3, 4 and 0 < s < 1 then there exists δ0 > 0 such
that ∀a > 0 and ∀δ ∈]0, δ0[, there exists u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 + δ,
such that the solution of (1.1) blows up in finite time in the log-log regime.

Theorem 1.2. Let d ∈ N∗, s ≥ 1 and r ≥ 0. Then the Cauchy problem
(1.1) is globally well-posed in Hr(Rd).

Theorem 1.3. Let d ∈ N∗, 0 < s < 1 and a > 0.

(1) There exists a real number 0 < γ = γ(d) ≤ ‖Q‖L2 such that for any
initial datum u0 ∈ H1(Rd) with ‖u0‖L2 < γ, the emanating solution
u is global in H1 with an energy that is non increasing.

(2) There does not exists any initial datum u0, with ‖u0‖L2 ≤ ‖Q‖L2,
such that the solution u of (1.1) blows up at finite time T ∗ and
satisfies

1

(T ∗ − t)α
. ‖∇u(t)‖L2(Rd) .

1

(T ∗ − t)β
, ∀ 0 < T − t� 1 ,

for some pair (α, β) satisfying 0 < β < 1
2s and β(1+s)−1/2 < α ≤ β.
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Remark 1.1. It is natural to expect that γ = ‖Q‖L2. Indeed, for u0 ∈
H1(Rd) satisfying ‖u0‖L2 ≤ ‖Q‖L2(Rd), (1.6) ensures that ‖u(t)‖L2 < ‖Q‖L2(Rd)

as soon as t > 0 and the solutions of the critical NLS equation with such
initial data are global.

However, in contrary to the case s = 0, we do not succeed to prove this
fact here since the constant Cd appearing in the estimate on the energy
(see subsection 2.3) seems not to be directly related to Q. Assertion (2) of
Theorem 1.3 is a partial result in this direction since it ensures that we do
not have any blowup in the log-log regime, for any 0 < s < 1, and in the
regime 1

t , for any 0 < s < 1
2 , for initial data with critical or subcritical mass.

Acknowledgments : The first author thanks the L.M.P.T. for his kind
hospitality during the development of this work. Moreover, he would like
to thank AUF for supporting this project. The authors would like to thank
the anonymous Referee for valuable remarks and comments.

2. Local and global existence results

In this section, we prove Theorem 1.2 and part (1) of Theorem 1.3. The-
orem 1.2 will follow from an a priori estimate on the critical Strichartz norm
whereas part (1) of Theorem 1.3 follows from a monotonicity of the energy.

2.1. Local existence result. Recall that the main tools to prove the local
existence results for (1.2) are the Strichartz estimates for the associated
linear propagator ei∆t. These Strichartz estimates read

‖ei∆tφ‖LqtLr(Rd) . ‖φ‖L2(Rd)

for any pair (q, r) satisfying 2
q + d

r = d
2 and 2 < q ≤ ∞. Such ordered pair

is called an admissible pair .
For a ≥ 0 and s ≥ 0 we denote by Sa,s the linear semi-group associated with

(1.1), i.e. Sa,s(t) = ei∆t−a(−∆)st. It is worth noticing that Sa,s is irreversible.
The following lemma ensures that the linear semi-group Sa,s enjoys the same
Strichartz estimates as ei∆t.

Lemma 2.1. Let φ ∈ L2(Rd) and s > 0. Then for every admissible pair
(q, r) it holds

‖Sa,s(·)φ‖Lqt>0L
r(Rd) . ‖φ‖L2(Rd) .

Proof. Setting, for any t ≥ 0, Ga,s(t, x) =

∫
e−ixξe−at|ξ|

2s
dξ, it holds

Sa,s(t)ϕ = Ga,s(t, ·) ∗ eit∆ϕ, ∀t ≥ 0 .

Noticing that for s > 0, ‖Ga,s(t, .)‖L1 = ‖G1,s(1, .)‖L1 and that, according

to Lemma 2.1 in [29], G1,s(1, .) ∈ L1(Rd) for s > 0, we get

‖Sa,s(t)φ)‖Lpt>0L
q(Rd) = ‖Ga,s(t, .)∗eit∆(φ)‖Lpt>0L

q(Rd) . ‖eit∆φ‖LptLq(Rd) . ‖φ‖L2 .

�

With Lemma 2.1 in hand, it is not too hard to check that the local
existence results for equation (1.2) (see for instance [8] and [6] for the local
existence and [20] for the continuity with respect to initial data) also holds
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for (1.1) with a ≥ 0 and s > 0. More precisely, we have the following
statement:

Proposition 2.1. Let a ≥ 0, s > 0, r ≥ 0 and u0 ∈ Hr(Rd) with d ∈ N∗.
There exists T > 0 and a unique solution u ∈ C([0, T ];Hr) ∩ L

4
d

+2

T L
4
d

+2 to

(1.1) emanating from u0. In addition, there exists a neighborhood Vu0
(1) of

u0 in Hr(Rd) such that the associated solution map is continuous from Vu0

into C([0, T ];Hr) ∩ L
4
d

+2(]0, T [×Rd).
Finally, let T ∗ be the maximal time of existence of the solution u in Hr(Rd),
then

T ∗ <∞ =⇒ ‖u‖
L

4
d

+2

T∗ L
4
d

+2
= +∞ . (2.1)

2.2. Proof of Theorem 1.2. Let u ∈ C([0, T ];L2(Rd) be the solution ema-
nating from some initial datum u0 ∈ L2(Rd). We have the following a priori
estimates:

Lemma 2.2. Let u ∈ C([0, T ];L2(Rd)) be the solution of (1.1) emanating
from u0 ∈ L2(Rd). Then

‖u‖L∞T L2 ≤ ‖u0‖L2 and ‖(−∆)
s
2u‖L2

TL
2 ≤

1√
2a
‖u0‖L2 . (2.2)

Proof. Assume first that u0 ∈ H∞(Rd). Then (1.6) ensures that the mass
is decreasing as soon as u is not the null solution and (1.6) leads to∫ T

0
‖(−∆)

s
2u(t)‖2L2 dt = − 1

2a
(‖u(T )‖2L2 − ‖u0‖2L2) ≤ 1

2a
‖u0‖2L2 .

This proves (2.2) for smooth solutions. The result for u0 ∈ L2(Rd) follows
by approximating u0 in L2 by a smooth sequence (u0,n) ⊂ H∞(Rd). �

Note that the first estimate in (2.2) implies that ‖u‖L2
TL

2 ≤ T 1/2‖u0‖L2

and thus by interpolation:

‖∇u‖L2
TL

2 . ‖(−∆)
s
2u‖

1
s

L2
TL

2‖u‖
1− 1

s

L2T L2 . T
1
2

(1− 1
s

) (2.3)

Interpolating now between (2.3) and the first estimate of (2.2) we get

‖u‖
L

4
d

+2

T H
2d

4+2d
. T

1
2

(1− 1
s

)

and the embedding H
2d

4+2d (Rd) ↪→ L
4
d

+2(Rd) ensures that

‖u‖
L

4
d

+2

T L
4
d

+2
. ‖u‖

L
4
d

+2

T H
2d

4+2d
. T

1
2

(1− 1
s

) .

Denoting by T ∗ the maximal time of existence of u in L2(Rd) and letting T
tends to T ∗, this contradicts (2.1) whenever T ∗ is finite. This proves that
the solutions are global in Hr(Rd).

Moreover, for s = 1 we have ‖u‖
L

4
d

+2

T L
4
d

+2
. 1 for any T > 0 which

ensures that
‖u‖

L
4
d

+2(R∗+×Rd)
. 1 .

(1)It is worth noticing that for r = 0, the neighborhood Vu0 does not depend only on
‖u0‖Hr but on the Fourier profile of u0 (see for instance [20])
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2.3. Proof of Assertion 1 of Theorem 1.3. Note that the global ex-
istence for any u0 ∈ L2(Rd) with ‖u0‖L2 small enough can be proven, as
for the critical NLS equation, directly by a fixed point argument thanks to
Lemma 2.1. This ensures the global existence in Hr(Rd), r ≥ 0, under the
same smallness condition on ‖u0‖L2 . We will not invoke this fact here and
we will directly prove Assertion 1 of Theorem 1.3 by combining (1.4) and
a monotony result on t 7→ E(u(t)). To do this, we will work with smooth
solutions and then get the result for H1-solutions by continuity with respect
initial data.

So, let u ∈ C([0, T ];H∞(Rd)) be a solution to (1.1) emanating from u0 ∈
H∞(Rd). Then it holds

d

dt
E(u(t)) = −a

∫
|(−∆)

s+1
2 u(t)|2 + aIm

∫ (
(−∆)su(t)

)
|u(t)|

4
du(t)

and Hölder inequalities in physical space and in Fourier space lead to∣∣∣∫ ((−∆)su) |u|
4
du
∣∣∣ ≤ ‖(−∆)su‖L2‖u‖

4
d

+1

L
8
d+2

with

‖(−∆)su‖L2 ≤ ‖(−∆)
s+1

2 u‖
2s
s+1

L2 ‖u‖
1−s
1+s

L2 .

Let us recall the following Gagliardo-Nirenberg inequality (2)

‖u‖
8
d

+2

L
8
d+2
≤ C

8
d

+2

d ‖∇u‖4L2‖u‖
8
d
−2

L2 .

This estimate together with Cauchy-Schwarz inequality (in Fourier space)

‖∇u‖2L2 ≤ ‖(−∆)
s+1

2 u‖
2
s+1

L2 ‖u‖
2s
s+1

L2

lead to

‖u‖
4
d

+1

L
8
d+2
≤ C

4
d

+1

d ‖(−∆)
s+1

2 u‖
2
s+1

L2 ‖u‖
2s
s+1

L2 ‖u‖
4−d
d

L2 .

Combining the above estimates we eventually obtain

d

dt
E(u(t)) ≤ a‖(−∆)

s+1
2 u‖2L2(C

4
d

+1

d ‖u‖4/d
L2 − 1)

which together with (2.2) implies that E(u(t)) is not increasing for ‖u0‖L2 ≤
C

1+ d
4

d .

3. Proof of Assertion 2 of Theorem 1.3

Special solutions play a fundamental role for the description of the dynam-
ics of (NLS). They are the solitary waves of the form u(t, x) = exp(it)Q(x),
where Q the unique positive radial solution to

∆Q+Q|Q|
4
d = Q. (3.1)

The pseudo-conformal transformation applied to the “stationary” solution
eitQ(x) yields an explicit solution for (NLS)

S(t, x) =
1

| t |
d
2

Q(
x

t
)e−i

|x|2
4t

+ i
t

(2)It is proven in [37] that the constant Cd is related for d = 1, 2, 3 to the L2-norm of

the ground state solution of 2∆ψ − ( 4
d
− 1)ψ + ψ

8
d

+1 = 0.



BLOWUP 7

which blows up at T ∗ = 0.
Note that

‖S(t)‖L2 = ‖Q‖L2 and ‖∇S(t)‖L2 ∼
1

t
(3.2)

It turns out that S(t) is the unique minimal mass blow-up solution in H1

up to the symmetries of the equation ( see [23]).
A known lower bound ( see [8] and [6]) on the blow-up rate for (NLS) is

‖∇u(t)‖L2 ≥
C(u0)√
T − t

. (3.3)

Note that this blow-up rate is strictly lower than the one of S(t) given by
(3.2) and of the log-log law given by (1.5).
To prove assertion 2 of Theorem 1.3, we will need the following result (
see [16]) :

Theorem 3.1. Let (vn)n be a bounded family of H1(Rd), such that:

lim sup
n→+∞

‖∇vn‖L2(Rd) ≤M and lim sup
n→+∞

‖vn‖
L

4
d

+2 ≥ m. (3.4)

Then, there exists (xn)n ⊂ Rd such that:

vn(·+ xn) ⇀ V weakly,

with ‖V ‖L2(Rd) ≥ ( d
d+4)

d
4
m
d
2 +1+1

M
d
2
‖Q‖L2(Rd).

Suppose that there exist an initial data u0 with ‖u0‖L2 ≤ ‖Q‖L2 , such
that the corresponding solution u(t) blows up at time T > 0 with the fol-
lowing behavior:

1

(T − t)α
. ‖∇u(t)‖L2(Rd) .

1

(T − t)β
, ∀t ∈ [0, T [, (3.5)

where β > 0 and α ≥ β satisfies α > β(1 + s)− 1/2).
Recalling that

E(u(t)) = E(u0)− a
∫ t

0
K(u(τ))dτ, t ∈ [0, T [, (3.6)

with K(u(t)) =

∫
|(−∆)

s+1
2 u|2 − Im

∫
((−∆)su)|u|

4
du, we obtain that

E(u(t)) . E(u0) +
∣∣∣ ∫ t

0
((−∆)su)|u|

4
dudx

∣∣∣ . E(u0) +

∫ t

0
‖(−∆)su‖L2 ‖u‖

4
d

+1

L
8
d

+2

This last estimate together with

‖u‖
4
d

+1

L
8
d

+2
. ‖∇u‖2L2‖u0‖

4−d
d

L2 and ‖(−∆)s(u)‖L2 ≤ ‖∇u‖2sL2‖u‖1−2s
L2 . ‖∇u‖2sL2

yield

E(u(t)) . E(u0) +

∫ t

0
‖∇u‖2+2s

L2 (τ) dτ. (3.7)
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Note that assumption (3.5) ensures that

0 ≤

∫ t

0
‖∇u(τ)‖2+2s

L2 dτ

‖∇u(t)‖2L2(Rd)

. (T − t)−2β(1+s)+1+2α → 0 as t↗ T, (3.8)

Now, let

ρ(t) =
‖∇Q‖L2(Rd)

‖∇u(t)‖L2(Rd)

and v(t, x) = ρ
d
2u(t, ρx)

and let (tk)k be a sequence of positive times such that tk ↗ T . We set
ρk = ρ(tk) and vk = v(tk, .). The family (vk)k satisfies

‖vk‖L2(Rd) = ‖u(tk, ·)‖L2(Rd) < ‖u0‖L2(Rd) ≤ ‖Q‖L2(Rd) and ‖∇vk‖L2(Rd) = ‖∇Q‖L2(Rd) .

The above estimate on ‖vk‖L2 and (3.7) lead to

0 <
1

2
(

∫
|∇vk|2)

(
1−
(∫ |vk|2∫
|Q|2

)2) ≤ E(vk) = ρ2
kE(u(t)) . ρ2

kE(u0)+ρ2
k

∫ tk

0
‖∇u(τ)‖2+2s

L2 dτ

which, together with (3.8), ensures that lim
k−→+∞

E(vk) = 0. This forces

‖vk‖
4
d

+2

L
4
d

+2
→ d+ 2

d
‖∇vk‖2L2(Rd) =

d+ 2

d
‖∇Q‖2L2(Rd) (3.9)

and thus the family (vk)k satisfies the hypotheses of Theorem 3.1 with

m
4
d

+2 =
d+ 2

d
‖∇Q‖2L2(Rd) and M = ‖∇Q‖L2(Rd) .

Hence, there exists a family (xk)k ⊂ R and a profile V ∈ H1(R) with

‖V ‖L2(Rd) ≥ ‖Q‖L2(Rd), such that,

ρ
d
2
k u(tk, ρk ·+xk) ⇀ V ∈ H1 weakly. (3.10)

Using (3.10), ∀A ≥ 0

lim inf
n→+∞

∫
B(0,A)

ρdn|u(tn, ρnx+ xn)|2dx ≥
∫
B(0,A)

|V |2dx.

But, since lim
n→+∞

ρn = 0, ρnA < 1 for n large enough and thus

lim inf
n→+∞

sup
y∈R

∫
|x−y|≤1

|u(tn, x)|2dx ≥ lim inf
n→+∞

∫
|x−xn|≤ρnA

|u(tn, x)|2dx ≥
∫
|x|≤A

|V |2dx.

Since this it is true for all A > 0 we obtain that

‖u0‖2L2 > lim inf
n→+∞

sup
y∈R

∫
|x−y|≤1

|u(tn, x)|2dx ≥ ‖Q‖2L2

which contradicts the assumption ‖u0‖L2 ≤ ‖Q‖L2 and the desired result is
proven.
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4. Blow up solution.

In this section, we prove the existence of the explosive solutions in the
case 0 < s < 1.

Theorem 4.1. Let 0 < s < 1 and 1 ≤ d ≤ 4. There exist a set of initial
data Ω in H1, such that for any 0 < a < a0 with a0 = a0(s) small enough,
the emanating solution u(t) to (1.1) blows up in finite time in the log-log
regime.

The set of initial data Ω is the set described in [24], in order to initialize
the log-log regime. It is open in H1. Using the continuity with regard to
the initial data and the parameters, we easily obtain the following corollary:

Corollary 4.1. Let 0 < s < 1, 1 ≤ d ≤ 4 and u0 ∈ H1 be an initial
data such that the corresponding solution u(t) of (1.2) blows up in the loglog
regime. There exist β0 > 0 and a0 > 0 such that if v0 = u0+h0, ‖h0‖H1 ≤ β0

and a ≤ a0, the solution v(t) for (1.1) with the initial data v0 blows up in
finite time.

Now to prove Theorem 4.1, we look for a solution of (1.1) such that for t
close enough to blowup time, we shall have the following decomposition:

u(t, x) =
1

λ
d
2 (t)

(Qb(t) + ε)(t,
x− x(t)

λ(t)
)eiγ(t), (4.1)

for some geometrical parameters (b(t), λ(t), x(t), γ(t)) ∈ (0,∞)× (0,∞)×
Rd × R, λ(t) ∼ 1

‖∇u(t)‖L2
, b ∼ −λs

λ where ds
dt = 1

λ2(t)
. The profiles Qb are

suitable deformations of Q related to some extra degeneracy of the problem,
in fact these profile Qb are a reguralization of the exact self similar solutions
to (1.2) which satisfy the nonlinear elliptic equation:

∆Qb −Qb + ib(
d

2
Qb + y.∇Qb) +Qb|Qb|

4
d = 0. (4.2)

Note that our proof is very close to the case of s = 0 (see Darwich [10]).
Actually, as noticed in [33], we only need to prove that in the log-log regime
the L2 norm does not grow, and the growth of the energy( resp the mo-
mentum) is below 1

λ(t)2 (resp 1
λ(t)) . In this paper, we will prove that in the

log-log regime, the growths of the energy and the momentum are bounded
by:

E(u(t)) . log(λ(t))λ(t)−2s, P (u(t)) . log(λ(t))λ(t)
−2s
s+1 .

Let us recall that a fonction u :[0, T ] 7−→ H1 follows the log-log regime if
the following uniform controls on the decomposition (4.1) hold on [0, T ]:

• Control of b(t)

b(t) > 0, b(t) < 10b(0). (4.3)

• Control of λ:

λ(t) ≤ e−e
π

100b(t)
(4.4)

and the monotonicity of λ:

λ(t2) ≤ 3

2
λ(t1),∀ 0 ≤ t1 ≤ t2 ≤ T. (4.5)
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Let k0 ≤ k+ be integers and T+ ∈ [0, T ] such that

1

2k0
≤ λ(0) ≤ 1

2k0−1
,

1

2k+
≤ λ(T+) ≤ 1

2k+−1
(4.6)

and for k0 ≤ k ≤ k+, let tk be a time such that

λ(tk) =
1

2k
, (4.7)

then we assume the control of the doubling time interval:

tk+1 − tk ≤ kλ2(tk). (4.8)

• control of the excess of mass:∫
Rd
|∇ε(t)|2 +

∫
Rd
|ε(t)|2 e−|y| ≤ Γ

1
4

b(t),where Γb ∼ e−
π
b . (4.9)

The main point is to establish that (4.3)-(4.9) determine a trapping region
for the flow. Actually, after the decomposition (4.1) of u, the log-log regime
corresponds to the following asymptotic controls

bs ∼ Ce−
c
b , −λs

λ
∼ b (4.10)

and ∫
Rd
|∇ε|2 . e−

c
b , (4.11)

where we have introduced the rescaled time ds
dt = 1

λ2 .
In fact, (4.11) is partly a consequence of the preliminary estimate:∫

Rd
|∇ε|2 . e−

c
b + λ2(t)E(t). (4.12)

One then observes that in the log-log regime, the integration of the laws
(4.10) yields

λ ∼ e−e
c
b � e−

c
b , b(t)→ 0, t→ T. (4.13)

Hence, the term involving the conserved Hamiltonian is asymptotically neg-
ligible with respect to the leading order term e−

c
b which drives the decay

(4.12) of b. This was a central observation made by Planchon and Raphael
in [33]. In fact, any growth of the Hamiltonian algebraically below 1

λ2(t)

would be enough. In this paper, we will prove that in the log-log regime,
the growth of the energy is estimated by:

E(u(t)) .
(

log
(
λ(t)

))
λ−2s(t). (4.14)

It then follows from (4.12) that:∫
Rd
|∇ε|2 . e−

c
b . (4.15)

An important feature of this estimate of H1 flavor is that it relies on a flux
computation in L2 . This allows one to recover the asymptotic laws for the
geometrical parameters (4.10) and to close the bootstrap estimates of the
log-log regime.

Remark 4.1. Actually, one also needs the bound on the momentum to con-
trol the geometrical parameters (see Lemma 7.2 in [10]).
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4.1. Control of the energy and the kinetic momentum. Let us recall
that we say that an ordered pair (q, r) is admissible whenever 2

q + d
r = d

2 and

2 < q ≤ ∞. We define the Strichartz norm of functions u : [0, T ]×Rd 7−→ C
by:

‖u‖S0([0,T ]×Rd) = sup
(q,r)admissible

‖u‖LqtLrx([0,T ]×Rd) (4.16)

and

‖u‖S1([0,T ]×Rd) = sup
(q,r)admissible

‖∇u‖LqtLrx([0,T ]×Rd) (4.17)

We will sometimes abbreviate Si([0, T ] × R2) with SiT or Si[0, T ], i = 1, 2.
Now we will derive an estimate on the energy, to check that it remains small
with respect to λ−2:

Proposition 4.1. Assuming that (4.4)-(4.9) hold, then the energy and ki-
netic momentum are controlled on [0, T+] by:

|E(u(t))| .
(

log
(
λ(t)

))
λ−2s(t), (4.18)

|P (u(t))| .
(

log
(
λ(t)

))
λ
−2s
s+1 (t). (4.19)

To prove Proposition 4.1, we will need the two following lemmas.

Lemma 4.1. Let u ∈ C([0, T ];H1(Rd)) be a solution of (1.1). Then we
have the following estimation:

‖∇u‖L∞T L2
x

+ ‖(∆)
s+1

2 u‖L2
TL

2
x
. ‖∇u0‖L2

x
+ ‖|u|

4
d∇u‖L1

TL
2
x

Proof. Multiply Equation 1.1 by ∆u, integrate and take the imaginary part,
to obtain :

1

2

d

dt
‖∇u‖2 + a

∫
|(−∆)

s+1
2 u|2 ≤ |

∫
|u|

4
du∆u| = |

∫
∇(|u|

4
du)∇u|

By integrating in time, we get

1

2
‖∇u‖2L∞T L2 +a‖(−∆)

s+1
2 u‖2L2

TL
2
x
≤ 1

2
‖∇u0‖2L2 +‖∇(|u|

4
du)‖L1

TL
2
x
‖∇u‖L∞T L2

Dividing by

√
1
2‖∇u‖

2
L∞T L

2 + a‖(−∆)
s+1

2 u‖2
L2
TL

2
x

we obtain:

‖∇u‖L∞T L2
x

+ ‖(∆)
s+1

2 u‖L2
TL

2
x
. ‖∇u0‖L2 + ‖|u|

4
d∇u‖L1

TL
2
x

�

Lemma 4.2. There exists a real number 0 < α� 1 such that the following
holds: Let u ∈ C([0, T ];H1(Rd)) be the solution of (1.1) emanating from

u0 ∈ H1. For a fixed t ∈]0, T [ we set ∆t = α ‖u0‖
d−4
d

L2 ‖u(t)‖−2
H1. Then

u ∈ C([t, t+ ∆t];H1(Rd)) and we have the following controls

‖u‖S0[t,t+∆t] ≤ 2 ‖u0‖L2

and

‖u‖S1[t,t+∆t] + ‖(−∆)
s+1

2 u‖L2(]t,t+∆t[)L2
x
≤ 2 ‖u(t)‖H1(Rd)
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Proof. We first assume that ∆t > 0 is such that t+∆t < T . Then, according
to Lemma 2.1, it holds∥∥∥∥∫ t

0
Sa,s(t− τ)|u(τ)|

4
du(τ)dτ

∥∥∥∥
S1[t,t+∆t]

.
∥∥∥|u| 4d∇u∥∥∥

L1(]t,t+∆t[)L2
x

.

Using the Hölder inequality we obtain:( ∫
|u|

8
d |∇u|2

) 1
2 ≤

( ∫
|u|

2(4+d)
d
) 2

4+d
( ∫
|∇u|

2(4+d)
d
) d

2(4+d) .

Integrating in time and applying again Hölder inequality we get:∥∥∥|u| 4d ∇u∥∥∥
L1]t,t+∆t[)L2(Rd)

≤
(∫ ( ∫

|u|
2(4+d)
d dx

) 2
4+d

4+d
4 dt

) 4
4+d

×
(∫ ( ∫

|∇u|
2(4+d)
d dx

) d
2(4+d)

4+d
d dt

) d
4+d

.

Thus:∥∥∥|u| 4d ∇u∥∥∥
L1(]t,t+∆t[)L2(Rd)

≤ ‖u‖
4
d

L
4+d
d (]t,t+∆t[)L

8+2d
d (Rd)

‖∇u‖
L

4+d
d (]t,t+∆t[)L

8+2d
d (Rd)

.

But (4+d
d , 8+2d

d ) is admissible, thus we have:∥∥∥|u| 4d ∇u∥∥∥
L1([t,t+∆t])L2(Rd)

≤ ‖u‖
4
d

L
4+d
d ([t,t+∆t])L

8+2d
d (Rd)

‖u‖S1[t,t+∆t].

By Sobolev inequalities we have:

‖u‖
L

4+d
d

[t,t+∆t]L
8+2d
d (Rd)

. ‖u‖
L

4+d
d ([t,t+∆t])H

2d
d+4 (Rd)

≤ (∆t)
d
d+4 ‖u‖

L∞([t,t+∆t])H
2d
d+4 (Rd)

.

Now by interpolation we obtain for d = 1, 2, 3, 4:

‖u‖
L

4+d
d ([t,t+∆t])L

8+2d
d (Rd)

≤ (∆t)
d
d+4 ‖u‖

4−d
d+4

L∞([t,t+∆t])L2(Rd)
‖u‖

2d
d+4

L∞([t,t+∆t])H1(Rd)
,

which, according to (1.6), leads to

‖u
4
d∇u‖L1

tL
2
x
≤ (∆t)

d
d+4 ‖u0‖

4−d
d+4

L2(Rd)
‖u‖

2d
d+4

S1[t,t+∆t]
‖u‖S1[t,t+∆t] . (4.20)

Since by Lemma 4.1 it holds

‖u‖L∞(]t,t+∆t[)H1+‖(∆)
s+1

2 u‖L2(]t,t+∆t[)L2
x
. ‖u(t)‖H1+‖|u|

4
d∇u‖L1(]t,t+∆t[)L2

x
,

we finally get

‖u‖S1[t,t+∆t] + ‖(−∆)
s+1

2 u‖L2(]t,t+∆t[)L2 . ‖u(t)‖H1 + (∆t)
d
d+4 ‖u0‖

4−d
d+4

L2(Rd)
‖u‖

2d
d+4

+1

S1[t,t+∆t]
.

In view of (2.1) and a continuity argument, it follows that u ∈ C([t, t +

∆t];H1(Rd)) for some ∆t ∼ ‖u0‖
d−4
d

L2(Rd)
‖u(t)‖−2

H1(Rd) and

‖u‖S1[t,t+∆t] + ‖(−∆)
s+1

2 u‖L2(]t,t+∆t[)L2 ≤ 2‖u0‖H1 .

In the same way

‖u‖S0[t,t+∆t] . ‖u(t)‖L2(Rd) + (∆t)
d
d+4 ‖u0‖

4−d
4+d

L2(Rd)
‖u‖

2 d
d+4

S1[t,t+∆t]
‖u‖S0[t,t+∆t]
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which ensures that

‖u‖S0[t,t+∆t] ≤ 2 ‖u0‖L2(Rd) .

�

Proof of Proposition 4.1 : According to (4.8), each interval [tk, tk+1], can

be divided into k intervals, [τ jk , τ
j+1
k ] of length less than λ(tk). From (1.7),

we have

|E(u(τ j+1
k ))− E(u(τ jk))| .

∣∣∣∫ τ j+1
k

τ jk

∫
Rd

((−∆)su) |u|
4
dudx

∣∣∣ .
For notation convenience we set Θ =]τ jk , τ

j+1
k [×Rd. By Plancherel formula

and Hölder inequality, it holds∫ τ j+1
k

τ jk

∫
Rd

((−∆)su) |u|
4
dudx dt ≤ ‖(−∆)

s
2 (u|u|

4
d )‖

L
4+2d
4+d (Θ)

‖(−∆)
s
2u‖

L
4+2d
d (Θ)

and, by interpolation, we have

‖(−∆)
s
2u‖2

L
4+2d
d (Θ)

≤ ‖∇u‖2s
L

4+2d
d (Θ)

‖u‖2−2s

L
4+2d
d (Θ)

.

Noticing that the fractional Leibniz rule (see [20]) leads to

‖(−∆)
s
2 (|u|

4
du)‖

L
4+2d
4+d (Θ)

. ‖(−∆)
s
2u‖

L
4+2d
d (Θ)

‖u
4
d ‖
L

4+2d
4 (Θ)

. ‖(−∆)
s
2u‖

L
4+2d
d
‖u‖

4
d

L
4+2d
d (Θ)

,

we finally obtain

|E(u(τ j+1
k ))− E(u(τ jk))| . ‖u‖

4
d

L
4+2d
d (Θ)

‖∇u‖2s
L

4+2d
d (Θ)

‖u‖2−2s

L
4+2d
d (Θ)

.

Since (4
d + 2, 4

d + 2) is an admissible pair, Lemma 4.2 yields

|E(u(τ j+1
k ))− E(u(τ jk))| . λ(tk)

−2s

and summing over j we get

|E(u(tk+1))− E(u(tk))| . kλ(tk)
−2s .

Finally, taking T+ = T and summing from k0 to k+, we obtain:

|E(u(T+))− E(u0)| . k+λ−2s(T+) . log(λ(T ))λ−2s(T ).

Note that the growth of the energy is small with to respect 1
λ2 , because

s < 1.
Let us now proceed with the momentum. According to (1.8) we have :

|P (u(τ j+1
k ))− P (u(τ jk))| .

∫ τ j+1
k

τ jk

∣∣∣∫
Rd
∇u (−∆)su

∣∣∣ .
But∣∣∣∫

Rd
∇u (−∆)su

∣∣∣ =
∣∣∣∫

Rd
((−∆)

s
2

+ 1
4u)(−∆)

s
2
− 1

4∇u
∣∣∣ ≤ ‖(−∆)

s
2

+ 1
4u‖L2(Rd)‖(−∆)

s
2
− 1

4∇u‖L2(Rd)

with

‖(−∆)
s
2
− 1

4∇u‖L2(Rd) = ‖(−∆)
s
2

+ 1
4u‖L2(Rd)
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and, by interpolation,

‖(−∆)
s
2

+ 1
4u‖2L2(Rd) ≤ ‖(−∆)

s
2

+ 1
2u‖2θL2(Rd)‖u‖

2−2θ
L2(Rd)

,

where 0 < θ = 2s+1
2s+2 < 1. Therefore we get

|P (u(τ j+1
k ))− P (u(τ jk))| . (τk+1 − τk)1−θ‖u0‖2−2θ

L2(Rd)
‖(−∆)

s
2

+ 1
2u‖2θL2(Θ)

and Lemma 4.2 ensures that

|P (u(τ j+1
k ))− P (u(τ jk))| . λ2−2θλ−2θ = λ2−4θ = λ

−2s
s+1 .

Summing over j we obtain that:

|P (u(τk)− P (u(τk))| . kλ
−2s
s+1

and summing from k0 to k+, we finally get

|P (u(T+))− P (u0))| . log(λ(T ))λ(T )
−2s
s+1 .

Note that the growth of the momentum is small with respect 1
λ since 1 −

2s
s+1 > 0.
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46(1987), 113–129.

[20] C. E. Kenig, G. Ponce, and L. Vega.Well-posedness and scattering results for the
generalized Korteweg-de-Vries equation via the contraction principle. Comm. Pure
App. Math, 46 (1993), no. 4, 527–620.

[21] M.K Kwong. Uniqueness of positive solutions of ∆u − u + up = 0 in Rn. Arch.
Rational Mech. Anal., 105(1989):243–266.

[22] P.-L. Lions. The concentration-compactness principle in the calculus of variations.
The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(1984):223–
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