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Concentration inequalities for suprema of
unbounded empirical processes

Antoine Marchina∗,†

October 10, 2019

Abstract

In this paper, we provide new concentration inequalities for suprema
of (possibly) non-centered and unbounded empirical processes associ-
ated with independent and identically distributed random variables.
In particular, we establish Fuk-Nagaev type inequalities with the opti-
mal constant in the moderate deviation bandwidth. The proof builds
on martingale methods and comparison inequalities, allowing to bound
generalized quantiles as the so-called Conditional Value-at-Risk. Im-
portantly, we also extent the left concentration inequalities of Klein
(2002) to classes of unbounded functions.

1 Introduction
Let T be a countable index set. For each k = 1, . . . , n, let Xk := (Xk,t)t∈T be
a collection of centered real-valued random variables such that X1, . . . , Xn

are independent and identically distributed according to a law P . Define the
envelope of the collection of coordinates by

Mk := sup
t∈T
|Xk,t| for all k = 1, . . . , n. (1.1)

Throughout the paper, we assume that

E[M2
1 ] <∞. (1.2)
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Set now for all t ∈ T , Sn,t := X1,t + . . . + Xn,t. For a given (deterministic)
vector c := (ct)t∈T , we define

Z := sup{Sn,t + nct : t ∈ T }. (1.3)

The vector c is introduced to consider possibly non-centered empirical pro-
cesses. The question asked in this paper is: without the classical boundedness
condition on the random variables Xk,t, how to provide an upper bound on
the upper tail quantiles of Z − E[Z] and E[Z]− Z?

Remark 1.1. In this paper, as in [8, 18], we express the empirical process in
terms of random vector. If the indices t ∈ T are associated with measurable
functions ft : X → R defined on some measurable space (X ,F), and if
Y1, . . . Yn is a sequence of centered iid random variables, then defining Xk,t =
ft(Yk) leads to the other classical notation (in the centered case),

Z = sup
{ n∑
k=1

f(Yk) : f ∈ F
}
,

where F := {ft : t ∈ T }.

First, let us give some definitions and notation.

1.1 Upper tail quantile and Conditional Value-At-Risk
Let X be a real-valued random variable. As usual, we denote by FX its
distribution function and by F−1

X the càdlàg inverse of FX .

Definition 1.2. The “upper tail” quantile function of X, which is the càdlàg
inverse of the tail function t 7→ 1−FX(t), is denoted by QX . It is defined by

QX(u) := inf{x ∈ R : 1− FX(x) ≤ u}.

Note that QX(u) is the value of the usual quantile function at point 1−u.
The basic property of QX is: x < QX(u) if and only if 1− FX(x) > u. This
ensures that QX(U) has the same distribution as X for any random variable
U uniformly distributed over [0 , 1].

Definition 1.3. Assume that X is integrable. The Conditional Value-at-Risk
(CVaR for short) of X is defined by

Q̃X(u) := 1
u

∫ u

0
QX(s)ds for any u ∈ ]0 , 1]. (1.4)
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It is worth noticing that, for any u ∈ ]0 , 1[, if the distribution of X has
no atom at QX(u), then (see, for instance, section 5.9 in Pinelis [24])

E[X | X > QX(u)] = u−1 sup
P(A)≤u

E[X1A] = Q̃X(u).

When X has a finite Laplace transform on a right neighborhood of 0, we
denote by `X the log-Laplace transform of X, given by

`X(t) := logE[exp(tX)] for any t ≥ 0. (1.5)

The Legendre transform `∗X of X is defined by

`∗X(λ) := sup{λt− `X(t) : t > 0} for any λ ≥ 0. (1.6)

We recall that the inverse function of `∗X admits the following variational
expression (see, for instance, Rio [30, Lemma A.2]):

`∗−1
X (x) = inf{t−1(`X(t) + x) : t > 0} for any x ≥ 0. (1.7)

Clearly, one has QX ≤ Q̃X . Moreover,

Q̃X(u) ≤ `∗−1
X (log(1/u)) for any u ∈ ]0 , 1]. (1.8)

This result may be found in Pinelis [24, Theorem 3.4]. In this paper, we will
focus on upper bounds on the CVaR of Z −E[Z] instead of on its upper tail
quantile function (also known as the Value-at-Risk). To a certain extent,
we can consider that the CVaR is superior than the Value-at-Risk since it
has stronger mathematical properties which are very useful in optimization
modeling or statistics. We refer the reader to Pinelis [24] or Rockafellar and
Uryasev [31] (see also the references therein) for more on the CVaR. One
property that will be of interest to us is the subadditivity of the CVaR (see
Theorem 3.4 in [24]):

Proposition 1.4. Let X and Y be real-valued and integrable random vari-
ables (X and Y may not be independent). Then, for any u ∈ ]0 , 1],

Q̃X+Y (u) ≤ Q̃X(u) + Q̃Y (u).

1.2 Aim and organization of the paper
In a well known paper [11], Cirel’son, Ibragimov and Sudakov proved a com-
parison inequality between the quantiles of a supremum of a Gaussian process
and those of a standard Gaussian random variable (see pages 22-23 in [11]).
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Precisely, let (Gt)t∈T be a centered Gaussian process indexed by T such that
ZG := supt∈T Gt <∞ almost surely. Define σ2

G := supt∈T E[G2
t ], and let Y be

a standard Gaussian random variable. They proved that for any u, v ∈ ]0 , 1],

|QZG−E[ZG](u)−QZG−E[ZG](v)| ≤ σG|QY (u)−QY (v)|. (1.9)

Now, combining this inequality with (1.8) yields that for any u ∈ ]0 , 1],

Q̃ZG−E[ZG](u) ≤ σG Q̃Y (u) ≤ σG `
∗−1
Y (log(1/u)) = σG

√
2 log(1/u). (1.10)

For the convenience of the reader, we provide a proof of the first inequality in
(1.10) in Appendix A. Note that this inequality could be also deduced from
Corollary 2 in Bobkov [6].

Since the empirical process Sn,t, t ∈ T , converges fidi (after suitable nor-
malization) towards a Gaussian process, the aim is then to reach an extension
of the Gaussian bound (1.10) for Z − E[Z].

We recall that the bounded case, that is, for all t ∈ T , Xk,t ≤ 1 a.s.
or |Xk,t| ≤ 1 a.s., is handled by Talagrand’s inequality. Precisely, it is the
merit of Talagrand [34] to obtain the first a functional Bennett inequality
for suprema of empirical processes, but with unspecified constants. Ledoux
[19] introduced a new method based on entropic inequalities to recover more
directly Talagrand’s result. This method is the starting point of a series of
paper, mainly to reach optimal constants in Talagrand’s inequality: Massart
[21], Rio [26, 27, 28], Bousquet [9], Klein [16] and Klein and Rio [17]. For an
overview of the results in the bounded case, we refer the reader to Section
12 in the book of Boucheron, Lugosi, and Massart [8].

Our interest, therefore, focuses on the unbounded case: we only assume
that the envelope M1 has a finite p-th moment for some p > 2. There are
only few studies in the literature in this setting. Let us mention the con-
siderable work of Boucheron, Bousquet, Lugosi, and Massart [7] concerning
moment inequalities for general functions of independent random variables.
Their methods are based on an extension of the entropy method proposed
by Ledoux, which allows to derive a moment inequality on ‖(Z − E[Z])+‖p,
p > 2, for centered processes (that is c ≡ 0 in (1.3)). However, considering
the upper bound that their inequality provides on the quantile, we may no-
tice that it is suboptimal in the moderate deviations bandwidth. Precisely,
there is a power u−1/p instead of the term

√
log(1/u) we would like to have

by comparing with the right-hand side in (1.10). Furthermore, it seems be-
yond the scope of classical functional analysis tools to handle non-centered
empirical processes.

Our method is based on a martingale decomposition of Z − E[Z] into a
sum of two martingales. The subadditivity of the CVaR allows us to treat
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each martingale separately. The difficulties lie in the control of their incre-
ments, in particular their conditional variance. To this end, we shall establish
comparison inequalities with respect to a class of convex functions, similar to
Hoeffding’s classical inequalities concerning bounded random variables [15].

In addition, we want our inequalities on Z − E[Z] to generalize those
known for the sums of independent random variables, corresponding to a class
T reduced to one element. When the random variables are unbounded but
with finite variances, their deviations are handled by Fuk-Nagaev inequalities.
The best known constants are given recently by Rio [29] in the context of
real-valued martingales. In the setting of real-valued iid centered random
variables X1, . . . , Xn, he proves that, for any u ∈ ]0 , 1],

Q̃Sn(u) ≤ σ
√

2n log(1/u) + n1/pKp‖X1‖p u−1/p, (1.11)

where Sn := X1 + . . .+Xn, the constant Kp, depending only on p, is explicit
and σ2 := Var(X1). The reader may notice that the constant 1 in front of
the term σ

√
2n log(1/u) is optimal.

The organization of the paper is as follows. In Section 2, we present
our main results which are Fuk-Nagaev and Rosenthal type inequalities for
Z − E[Z] and E[Z] − Z. A detailed application under the assumption that
the Xk,t’s have power tails is given. In Section 3, we derive upper bounds for
E[(Z − E[Z]− t)α+], α ≥ 1. In Section 4, we study left deviation inequalities
which turn out to be easier to obtain than the right ones. All the proofs
are deferred to Section 5. Before starting, let us do some comments on the
variance factor in our inequalities.

1.3 About the variance factor
As a consequence of (1.10), one can derive the following upper bound on the
variance:

Var(ZG) ≤ σ2
G, (1.12)

where σ2
G := supt∈T E[G2

t ] = supt∈T Var(Gt). Then, a natural question is
whether (1.12) is satisfied by Z with

σ2 := sup{Var(X1,t) : t ∈ T } = sup{E[X2
1,t] : t ∈ T }. (1.13)

The answer is no, even in the bounded case (see, for instance, Exercise 11.1
of [8] for a simple counterexample). Let us give another example in the
unbounded case that will be useful in Section 2 to comment on the variance
factor appearing in our results.
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Example 1.5. Let U,U1, . . . , Un be a sequence of iid random variables uni-
formly distributed on [0 , 1]. Let ` > 2, ∆ > 0 and p ∈ ]0 , 1[. Let S be
the set of all finite unions of disjoint intervals with rational endpoints, which
measure is lower than p, and included in [0 ,∆]. Define

Z := sup
S∈S

n∑
k=1

(
U
−1/`
k 1S(Uk)−

∫
S
u−1/`du

)
,

and σ2 := supS∈S Var(U−1/`1U≤∆). Then, for p and ∆ small enough, one
can show that there exists K > 0 such that

1
n

Var(Z)− σ2 ≥ K
(E[Z]

n

) `−2
`−1
. (1.14)

The details of the proof of (1.14) are deferred to Appendix A. Therefrom,
since we want to provide nonasymptotic inequalities, we cannot expect, as
in (1.11), the quantity σ

√
2n log(1/u) in the moderate deviation part: a

corrective term to σ is required. Let us now describe this quantity which
appears in our inequalities.

First, we set for all k = 1, . . . , n,

Ek := E
[

sup
t∈T

1
k

k∑
j=1

Xj,t

]
. (1.15)

Next, we define the following class of distribution functions:

Definition 1.6. Let q ∈ [0 , 1]. Let ψ be a nonnegative random variable
and set bψ,q := F−1

ψ (1 − q). We denote by Fψ,q the distribution function of
ψ1ψ≥bψ,q , that is

Fψ,q(x) := (1− q)10≤x<bψ,q + Fψ(x)1x≥bψ,q for all x ∈ R. (1.16)

Let ψ and X be two nonnegative random variables such that X is first-
order stochastically dominated by ψ, that is P(X > x) ≤ P(ψ > x) for
all x > 0. Let ζψ,q be a random variable with distribution function Fψ,q,
where q is such that E[X] ≤ E[ζψ,q]. Then Lemma 1 of Bentkus [4] (see also
Lemma 2.1 in Marchina [20]) ensures that for any function ϕ in the class
H1

+ := {ϕ : ϕ is convex, differentiable, and limx→−∞ ϕ(x) = 0},

E[ϕ(X)] ≤ E[ϕ(ζψ,q)]. (1.17)

If E[X] = E[ζψ,q], then the above inequality is true for any convex function. In
order to have a better understanding of this result, see that the distributions
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Fψ,q, q ∈ [0 , 1], are the extremal ones satisfying 0 ≤ X ≤st ψ, where ≤st
denote the first-order stochastic dominance. If ψ = b is a constant, the
extremal distributions are the two-valued ones µq := (1−q)δ0+qδb, q ∈ [0 , 1].
And it is well known that for any convex function ϕ, E[ϕ(X)] ≤

∫
ϕdµq0 ,

where q0 is such that E[X] =
∫
xdµq0 (see Hoeffding [15]). Then (1.17)

is an extension of Hoeffding’s comparison inequality to unbounded random
variables.

Notation 1.7. Throughout the rest of the paper, ζk denotes a random vari-
able with distribution function F2M1, qk where qk is the greatest real in [0 , 1]
such that E[ζk] = Ek. Define also

Vn :=
n∑
k=1

E[ζ2
k ], and vn := Vn

n
. (1.18)

The variance factor in our inequalities is
√
n(σ + √vn). We can see

that √vn is indeed a “corrective” term. If the class T satisfies the uniform
law of large numbers, that is supt∈T |n−1Sn,t| converges to 0 in probability,
then En decreases to 0 (see, for instance, Section 2.4 of van der Vaart and
Wellner [35]). Now, from the square integrability of M1 and the definition of
the random variable ζn, the convergence of En to 0 implies the convergence
of E[ζ2

n] to 0, which ensures that Vn = o(n) as n tends to infinity. Thus,√
n(σ +√vn) ∼ σ

√
n as n tends to infinity.

2 Fuk-Nagaev and Rosenthal type inequali-
ties

In this Section we provide Fuk-Nagaev and Rosenthal type inequalities for
Z−E[Z] and E[Z]−Z. We first introduce some more definitions and notation.
For any real-valued integrable random variable X and any r ≥ 1, define

Λ+
r (X) := sup

t>0
t (P(X > t))1/r. (2.1)

We say that X has a weak moment of order r if Λ+
r (|X|) is finite. We denote

by Lwr the space of real-valued random variables with a finite weak moment
of order r. Note that from the definition of QX , we have (see, for instance,
Chapter 4 of Bennett and Sharpley [1])

Λ+
r (X) = sup

u∈]0,1]
u1/rQX(u). (2.2)

7



2.1 Fuk-Nagaev type inequalities
We will now formulate the main results of this part, starting by right-hand
side deviations.

Theorem 2.1. Let Z be defined by (1.3). Let p > 2 and let µp := 2 +
max(4/3, p/3). Assume that M1 ∈ Lwp . Then for any u ∈ ]0 , 1[,

Q̃Z−E[Z](u) ≤
√

2n log(1/u) (σ +√vn ) + 3n1/pµp Λ+
p (M1)u−1/p. (a)

Consequently,

P
(
Z > E[Z] +

√
2n log(1/u) (σ +√vn ) + 3n1/pµp Λ+

p (M1)u−1/p
)
≤ u. (b)

Remark 2.2. For any real-valued random variable X, by Markov’s inequal-
ity, Λ+

p (X) ≤ ‖X‖p. Then, if the envelope M1 has a finite p-th moment, one
can replace the weak moment Λp

+(M1) by the strong moment ‖M1‖p.

Remark 2.3. Note that an upper bound on the CVaR of Z immediately gives
an upper bound on the upper tail quantile of

Z∗ := max
k≤n

sup
t∈T

{ k∑
j=1

Xj,t + kct

}
. (2.3)

Indeed, for any u ∈ ]0 , 1[,

QZ∗(u) ≤ Q̃Z(u)

≤ E[Z] +
√

2n log(1/u) (σ +√vn ) + 3n1/pµp Λ+
p (M1)u−1/p. (2.4)

The first inequality follows from a byproduct of Doob’s maximal inequality
which can be found in Gilat and Meilijson [13].

The term vn depends only on Ek, k = 1, . . . , n, and on the tail distribution
of M1 (see (1.18)). We provide below a useful and explicit upper bound on
vn:

Lemma 2.4. One has

vn ≤
(
2Λ+

p (M1)
) p
p−1 p

p− 2

(
1− 1

p

) p−2
p−1 1

n

n∑
k=1

E
p−2
p−1
k .

If a Donsker theorem holds, one can consider that En � n−1/2 (see, for
instance, van der Vaart and Wellner [35]). Then Lemma 2.4 yields that

vn ≤ Kp n
− 1

2
p−2
p−1 , (2.5)
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where Kp is a constant depending only on p. This upper bound has to be
linked with Inequality (1.14). Indeed, we have shown in Example 1.5, which
is a particular case of power-type tail, that we have to add to σ2 in the
variance factor, a term which is at least of order n−

1
2
p−2
p−1 when En � n−1/2.

Thus, it supports the idea that our additional term vn is of a correct order.
For left-hand side deviations, the concentration bounds are similar but the

proofs are simpler than for the right-hand side. In fact, it has already been
noted by Samson [32] in the context of transport methods, that martingale
like techniques allow to obtain left deviations more easily as regard to the
entropy method introduced by Ledoux.

Theorem 2.5. Let Z be defined by (1.3). Let p > 2 and let µp := 2 +
max(4/3, p/3). Assume that M1 ∈ Lwp and that for some r ≥ p, mr

r :=
supt∈T E[(−X1,t)r+] <∞. Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) ≤
√

2n log(1/u) (σ +√vn ) + n1/rµ`mru
−1/r. (a)

Consequently,

P
(
Z < E[Z]−

√
2n log(1/u) (σ +√vn )− n1/rµrmru

−1/r
)
≤ u. (b)

2.2 Weak and strong Rosenthal type inequalities
We start by weak Rosenthal inequalities derived from the inequalities of the
previous section. We first introduce some more notation. Define

Λ̃+
r (Y ) := sup

u∈]0,1]
u(1/r)−1

∫ u

0
QY (s)ds = sup

u∈]0,1]
u1/rQ̃Y (u). (2.6)

Hence, we get that

Λ+
r (Y ) ≤ Λ̃+

r (Y ) ≤
(

r
r−1

)
Λ+
r (Y ). (2.7)

Furthermore, from the subadditivity of the CVaR (Proposition 1.4), Λ̃+
r (.) is

subadditive, which implies that Λ̃+
r (.) is a norm on the space Lwr .

Now, when the envelope M1 has a weak moment of order p > 2, pro-
ceeding as in Rio [29], we derive from Theorems 2.1 and 2.5 the following
inequalities:

Corollary 2.6. Let Z be defined by (1.3). Let p > 2 and let µp := 2 +
max(4/3, p/3). Assume that M1 have a weak moment of order p. Then

Λ+
p (Z − E[Z]) ≤ Λ̃+

p (Z − E[Z]) (a)

≤
√

(p/e)
√
n (σ +√vn ) + 3n1/pµp Λ+

p (M1). (b)
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Moreover,

Λ+
p (E[Z]− Z) ≤ Λ̃+

p (E[Z]− Z) (c)

≤
√

(p/e)
√
n (σ +√vn ) + n1/pµp Λ+

p (M1). (d)

The variational formula (2.6) ensures that these inequalities above are
the optimal ones that can be achieved from the Fuk-Nagaev type inequalities
in Theorems 2.1-2.5. Unfortunately, such a formula linking strong moments
of order p > 2 of a real-valued random variable and its CVaR does not exist.
For this reason, to obtain an upper bound on ‖Z − E[Z]‖p for p > 2, we
directly reinvest the martingale decomposition of Z−E[Z] used in the proofs
of previous theorems, that we associate with Rosenthal inequalities for real-
valued martingales. Those with best known constants are given by Pinelis
[25, Corollary 1]. His result holds for any p > 2, but for p ∈ ]2 , 4], the
constants are close to optimality (see the discussion pages 701-702 in [25])
and are easy to express. We obtain the following inequality:

Theorem 2.7. Let Z be defined by (1.3). Let p ∈ ]2 , 4]. Assume that
‖M1‖p <∞. Then

‖Z − E[Z]‖p ≤ (p− 1)1/p√n(σ +√vn ) + (21/p + 1)n1/p‖M1‖p.

Let us now recall the moment inequality for suprema of empirical pro-
cesses obtained by Boucheron, Bousquet, Lugosi and Massart [7] (see The-
orems 15.14 and 15.5 in [8]): let p > 2 and define Z̃ := supt∈T |

∑n
k=1Xk,t|.

Then

‖(Z̃ − E[Z̃])+‖p ≤
√
κ(p− 1)

√
n(σ + Σ)

+ κ(p− 1)
(
‖ max
k=1,...,n

Mk‖p + sup
t∈T
‖X1,t‖2

)
, (2.8)

where κ :=
√
e/(
√
e − 1) and Σ2 := E[supt∈T n−1∑n

k=1X
2
k,t]. Let us now

comment the differences with our result Theorem 2.7:

• In fact, Inequality (2.8) does not require the identical distribution of
the sequenceX1, . . . , Xn. However, contrary to Theorem 2.7, Inequality
(2.8) concerns centered empirical processes, that is c ≡ 0 in (1.3).

• The moment inequality (2.8) is only given for the positive part of Z̃ −
E[Z̃].
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• To compare the constant in front of the variance factor, let us the con-
sider the upper bound that the authors provided on Σ2 (see Theorem
11.17 in [8]):

nΣ2 ≤ nσ2 + 32‖ max
k=1,...,n

Mk‖2 E[Z̃] + 8‖ max
k=1,...,n

Mk‖2
2. (2.9)

Combining (2.9) with (2.8) leads to the following behavior:

‖(Z̃ − E[Z̃])+‖p ≤ 2κ
√
p− 1σ

√
n+ o(

√
n ). (2.10)

Note that Bp := 2κ
√
p− 1 is increasing in p, B2 ≈ 3.1184 and B4 ≈

5.5225. By comparison, our constant Cp := (p − 1)1/p is increasing on
[2 , 4], C2 = 1 and C4 ≈ 1.3161.

• Let us now compare the variance factor by comparing vn to Σ2 − σ2.
To this end, we will use a version of Pisier lemma which can be found
in Rio [30, Appendix D]. It states that for any 0 < r < p,

‖ max
k=1,...,n

Mk‖r ≤
(
n
∫ 1/n

0
Qr
M1(u)du

)1/r

≤
(

p

p− r

)1/r
n1/p. (2.11)

Putting this upper bound in (2.9) yields that

Σ2 − σ2 ≤ Kp n
− 1

2(1− 2
p) + o

(
n−

1
2(1− 2

p)
)
.

Now, see that n−
1
2
p−2
p−1 = o

(
n−

1
2(1− 2

p)
)
. Thus, recalling (2.5), one can

say that Σ2 − σ2 is of a larger order than vn.

2.3 Application to power-type tail
Let Y1, . . . , Yn be a finite sequence of nonnegative iid random variables and
let X1, . . . , Xn be a finite sequence of iid random variables with values in
some measurable space (X ,F) such that the two sequences are independent.
Let P denote the common distribution of the Xk’s. Let F be a countable
class of measurable functions from X into [−1 , 1] such that for all f ∈ F ,

P (f) = 0 and P (f 2) < δ2 for some δ ∈ ]0 , 1[. (2.12)

Let F be a measurable envelope function of F , that is

|f | ≤ F for any f ∈ F , and F (x) ≤ 1 for all x ∈ X . (2.13)
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We suppose furthermore that for some constant ` > 2,

P(Y1 > t) ≤ t−` for any t > 0. (2.14)

Define now
Z := sup

f∈F

n∑
k=1

Yk f(Xk). (2.15)

We associate to each f ∈ F an unique index t, and we define T the set of all
these indices. Set for all k = 1, . . . , n, X̃k,t := Ykf(Xk). Then, we have Z =
supt∈T

∑n
k=1Xk,t. This allows us to apply results of the previous section. The

envelope of the collection of coordinates Mk is defined by Mk := YkF (Xk).
Recalling Lemma 2.4, the remaining task to provide a useful bound on

vn is to upper bound the quantities Ek, k = 1, . . . , n. This will be done by
using local maximal inequalities for empirical processes due to van der Vaart
and Wellner [36, Theorem 2.1]. The upper bound is expressed in terms of
uniform entropy integral. Let us first recall some classical definitions.

Definition 2.8 (Covering number and uniform entropy integral). The cov-
ering number N(ε,G , ν) is the minimal number of balls of radius ε in L2(ν)
needed to cover the set G . The uniform entropy integral is defined by

J(δ,G ) :=
∫ δ

0
sup
ν

√
1 + logN

(
ε‖F‖ν,2,F , ν

)
dε.

Here, the supremum is taken over all finitely discrete probability distributions
ν on (X ,F) and ‖f‖ν,2 denotes the norm of a function f in L2(ν).

Lemma 2.9. There exists a universal constant K such that for any integer
k ≥ 1,

1
k
E sup
g∈G

∣∣∣ k∑
j=1

Yjg(Xj)
∣∣∣ ≤ K

`

`− 2

(
k−1/2J(δ,G )+ ` k−(1−1/`)

(
J2(δ,G )

δ2

)1−1/` )
.

Remark 2.10. For a numerical value of the (universal) constant K, we refer
the reader to Section 3.5.1 in the book [14] of Giné and Nickl. Moreover, the
terms `/(`− 2) and ` are certainly not optimal and could be improved. They
are given for sake of completeness.

The result of van der Vaart and Weller deals with bounded empirical
processes. The proof of Lemma 2.9 is based on a truncation argument asso-
ciated with their result. Chernozhukov, Chetverikov and Kato [10, Theorem
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5.2] have extended the result of van der Vaart and Wellner to unbounded
empirical processes. In our setting, it provides the following upper bound:

1
k
E sup
g∈G

∣∣∣ k∑
j=1

Yjg(Xj)
∣∣∣

≤ K

(
k−1/2

√
`

`− 2J(δ,G) + k−1J
2(δ,G)
δ2 ‖ max

j=1,...,k
Mj‖2

)
, (2.16)

where K is a universal constant. Using now Pisier lemma (2.11) to bound
above ‖maxj=1,...,kMj‖2, (2.16) becomes

1
k
E sup
g∈G

∣∣∣ k∑
j=1

Yjg(Xj)
∣∣∣ ≤ K

√
`

`− 2

(
k−1/2J(δ,G)+k−(1−1/`)J

2(δ,G)
δ2

)
. (2.17)

Compared to Lemma 2.9, the constants in ` are better. Namely, in place
of the terms `/(` − 2) and ` in Lemma 2.9, the right-hand side of (2.17)
contains the smaller terms

√
`/(`− 2) and 1 respectively. However, the ex-

ponent of the term J2(δ,G)/δ2, which is (1− 1/`) in Lemma 2.9, leads to a
better estimate as δ is small compared to the exponent 1 in (2.17). Indeed,
if logN

(
ε‖F‖ν,2,F , ν

)
is not larger than H(1/ε) for some nondecreasing

function H, independent of ν and satisfying some minor conditions, then
J2(δ,G)/δ2 is of an order of H(1/δ) which then increases as δ tends to 0 (see,
for instance, Theorem 3.5.6 in [14]). We stress out that such an hypothesis
on the covering number applies in many situations including VC-classes of
functions. Nevertheless, the generality of Chernozhukov, Chetverikov and
Kato’s result makes it possible to upper bound the Ek’s in other cases than
the one considered here.

We now apply Theorem 2.7 combined with Lemmas 2.4 and 2.9.

Theorem 2.11. Let Z be defined by (2.15).
(i) Assume that ` ∈ ]2 , 4] and ‖M1‖` ≤ 1. Then

‖Z − E[Z]‖`

≤ (`− 1)1/`√n
(
σ+K`

(
n−

1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 +n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/` ))
+ (21/` + 1)n1/`. (a)

13



(ii) Moreover, for any ` > 2,

Λ̃+
` (Z − E[Z])

≤
√

(p/e)
√
n

(
σ +K`

(
n−

1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/` ))
+ 3n1/`µ`, (b)

and

Λ̃+
p (E[Z]− Z)

≤
√

(p/e)
√
n

(
σ +K`

(
n−

1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/` ))
+ n1/`µ`, (c)

where µ` = 2 + max(4/3, `/3).

Let us compare with the bounded case: Yk ≤ 1 for all k = 1, . . . , n.
Integrating Rio’s inequality for suprema of bounded empirical processes [27,
Theorem 1] and using Lemma 2.9, one obtains for any ` > 2,

‖(Z − E[Z])+‖` ≤ C`
√
n
√
σ2 + 2E[Z]/n (2.18)

≤ C`
√
n
(
σ +K`

(
n−1/4

√
J(δ,G ) + n−1/2 J(δ,G )

δ

))
.

(2.19)

Notice that the term

n−
1
4
`−2
`−1 (J(δ,G ))

1
2
`−2
`−1 + n−

1
2 (1−2/`)

(
J(δ,G )

δ

)1−2/`

in Theorem 2.11 tends to n−1/4
√
J(δ,G ) + n−1/2 J(δ,G )/δ as ` tends to ∞.

Thus, we can see our results as extensions of (2.18) to the unbounded case.

3 Upper bounds on E[(Z − E[Z]− t)α+] and
Q2(E[Z]− Z;u)

In this section, we provide a general upper bound on E[(Z−E[Z]−t)α+], where
t ∈ R, α ≥ 1, in terms on generalized quantiles. In order to explain the result,
we start by considering the case α = 1 which is based on Theorem 2.1. We
emphasize that it is of interest to obtain such bounds in various situations
coming from statistical applications, such as study of rates of convergence
for estimators (see, for instance, Comte and Lacour [12]).

14



3.1 Case α = 1
Let X be an integrable real-valued random variable and let t ∈ R. Since
QX(U) and X have the same distribution for any random variable U uni-
formly distributed on [0 , 1],

E[(X − t)+] =
∫ 1

0
(QX(s)− t)+ds. (3.1)

Now, recalling that x < QX(u) if and only if P(X > x) > u, we get
∫ 1

0
(QX(s)− t)+ds =

∫ P(X>t)

0
(QX(s)− t)ds = sup

u∈]0,1]

∫ u

0
(QX(s)− t)ds. (3.2)

Note that the right-hand side of (3.2) is equal to supu∈]0,1] u(Q̃X(u) − t).
Combining this fact with (3.1) leads to the following variational formula

E[(X − t)+] = sup
u∈]0,1]

u(Q̃X(u)− t). (3.3)

Thus, from the upper bound on Q̃Z−E[Z] given in Theorem 2.1 we derive the
following:

Proposition 3.1. Let Z be defined by (1.3). Let p > 2 and µ` = 2 +
max(4/3, p/3). Set also

sn :=
√
n(σ +√vn), and bn,p := 3n1/pµp Λ+

p (M1).

Then, for any t > 0,

E[(Z − E[Z]− t)+] ≤ sn
e−

1
2 (1+t2/s2

n)√
1 + t2/s2

n

+ bn,p.

Remark 3.2. A similar upper bound on E[(E[Z]−Z− t)+] can be obtain by
using Theorem 2.5 instead of Theorem 2.1.

The variational formula (3.3) gives a direct advantage of having an upper
bound on the CVaR instead of on the log-Laplace transform of Z−E[Z], since
the calculation we have to do is more straightforward. Indeed, to obtain
an upper bound on E[(Z − E[Z] − t)+] from an upper bound on the log-
Laplace transform, we first have to derive a deviation inequality by Markov’s
inequality and then to integrate it from t to +∞.
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3.2 Case α ≥ 1
In this section, we want to generalize the variational formula (3.3) to E[(X−
t)α+], α ≥ 1. To this end, we consider the generalized quantiles Qα(X;u), α ≥
1, introduced by Pinelis [24, Section 3]. In particular, note that Q1(X;u) =
Q̃X(u). The general definition is somehow complicated, so we do not recall
it. However, Pinelis proves the following formula (see [24, Theorem 3.3]):

Qα(X;u) = inf
s∈R
{s+ u−1/α‖(X − s)+‖α}. (3.4)

For properties on these quantiles, the reader is referred to [24, Theorem 3.4].
We only recall that Qα(X;u) is nondecreasing in α, subadditive in X, and
Qα(X;u) ≤ `∗−1

X (log(1/u)) for all α ≥ 1. From Sion’s minimax theorem, we
derive the following variational formula which generalizes (3.3):

Lemma 3.3. Let α ≥ 1. Let X be an integrable real-valued random variable.
Then

‖(X − t)+‖α = sup
u∈]0,1]

u1/α(Qα(X;u)− t).

The interest of these generalized quantiles Qα in our setting is similar to
that of the CVaR Q̃. Indeed, our method lies in a decomposition of Z−E[Z]
into a sum of two martingales. The subadditivity property allows to analyze
each martingale separately. Moreover, some comparison inequalities on real-
valued martingales directly give upper bounds on their quantiles Qα: see, for
instance, Bentkus [3] for cases with α ∈ {1, 2, 3} or Pinelis [22, 23] for cases
with α ∈ {3, 5}. In the next statement, we give an exemple of such bounds
in the case α = 2 for E[Z]−Z and under the additional assumption that the
random variables X1,t, t ∈ T , are bounded from below.

Proposition 3.4. Assume that for all t ∈ T , X1,t ≥ −1. Let Z be defined by
(1.3). Let θ1, . . . , θn be a sequence of iid two-valued centered random variables
taking the values 1 and −σ2. Set Bn := ∑n

k=1 θk. Then for any u ∈ ]0 , 1],

Q2(E[Z]− Z;u) ≤ Q2(Bn;u) +
√
n
√

2vn log(1/u). (a)

Consequently,

‖(E[Z]− Z − t)+‖2 ≤ ‖(Bn − t)+‖2 +√nvn
√

(2/e). (b)

Remark 3.5. If σ2 ≥ 1, then (see, for instance, Lemma 2.36 in Bercu,
Delyon and Rio [5])

Q2(Bn;u) ≤ Q∞(Bn;u) ≤ σ
√

2n log(1/u). (3.5)
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Thus, Inequality (a) of Proposition 3.4 provides a subGaussian bound. If
σ2 < 1, the inequality above does not hold. However, one has

Q2(Bn;u) ≤ Q∞(Bn;u) ≤ σ
√

2n log(1/u) + 1− σ2

3 log(1/u). (3.6)

We refer the reader to Theorem 2.28 and Exercise 6 in Section 2.9 of [5] for
a proof.

4 Left deviation inequalities
As mentioned in Section 2, the left tails are easier to handle than the right
tails. Notably, the left-hand side deviations of Z heavily depend on the
behavior of the left tails of X1,t, t ∈ T . For example, in Theorem 2.1, the
term Λ+

p (M1) involves the behavior of right and left tails, while the term mr

in Theorem 2.5 only involves the behavior of the left tails. In this section,
we give left deviation inequalities under the additional assumption on the
Xk,t’s, of subGamma tails on the left, and of subGaussian tails on the left
(our terminology follows [8]).

4.1 Under subGamma tails on the left assumption
Here we assume that X1,t admits a subGamma tail on the left for all t ∈ T .
To the best of our knowledge, there exists only one exponential inequality
for the left-hand side deviations of suprema of empirical processes in the
unbounded case (from one side) which is due to Klein [16]. More precisely,
Klein provides an upper bound on the Laplace transform of E[Z]− Z which
implies the following deviation inequality:

Theorem 4.1 (Theorem 1.1 (3) in [16]). Assume that for all t ∈ T , X1,t ≤ 1,
and for all integer p ≥ 2, |E[Xp

1,t]| ≤ σ2p!/2. Then

P
(
Z < E[Z]−

√
2xṼn − x−

x
√

2Ṽn
√
x+

√
Ṽn/2

)
≤ exp(−x),

where Ṽn = nσ2 + 2E[Z].

The objective here, is to relax the boundedness assumption on the right.
Our main result is the following:
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Theorem 4.2. Assume that there exists a positive constant c such that for
any t ∈ T and any λ ∈ ]0 , c[,

logE[exp(−λX1,t)] ≤
σ2λ2

2(1− cλ) . (4.1)

Let Z be defined by (1.3). Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) ≤
√

2n log(1/u)
(
σ +√vn

)
+ c log(1/u). (a)

Consequently, for any x > 0,

P
(
Z < E[Z]−

√
2nx

(
σ +√vn

)
− cx

)
≤ exp(−x). (b)

Remark 4.3. If the random variables X1,t, t ∈ T , satisfy Bernstein’s mo-
ment conditions on the left, then the hypothesis (4.1) above is satisfied. Pre-
cisely, assume that there exists a positive constant c such that, for any integer
p ≥ 3, and all t ∈ T ,

E[(−X1,t)p+] ≤ p!cp−2

2 σ2. (4.2)

Then, since E[X1,t] = 0 for all t ∈ T , logE[exp(−λX1,t)] ≤ σ2λ2

2(1−cλ) . We refer
the reader to Bercu, Delyon and Rio [5] (see the proof of their Theorem 2.1)
for a proof.

4.2 Under subGaussian tails on the left assumption
Here we assume that X1,t admits a subGaussian tail on the left for all t ∈ T .
We show in the following theorem that Z − E[Z] is subGaussian on the left.

Theorem 4.4. Assume that

C(T ) := sup
λ>0

sup
t∈T

2
λ2 logE[exp(−λX1,t)] <∞. (4.3)

Let Z be defined by (1.3). Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) ≤
√

2n log(1/u)
(√

C(T ) +√vn
)
. (a)

Consequently, for any x > 0,

P(Z < E[Z]− x) ≤ exp

− x2

2n
(√

C(T ) +√vn
)2

 . (c)
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If for all t ∈ T , X1,t is a centered Gaussian random variable with variance
equals to σ2

t , then we can apply the above result with C(T ) = supt∈T σ2
t =:

σ2. However we can prove the more precise following result:

Proposition 4.5. Assume that for any t ∈ T , X1,t is a centered Gaussian
random variable. Let then σ2 := supt∈T Var(X1,t). Let Y be a standard
Gaussian random variable. Then for any u ∈ ]0 , 1[,

Q̃E[Z]−Z(u) ≤ σ
√
n Q̃Y (u) +

√
2n log(1/u)√vn

Note that, even if X1, . . . , Xn are iid Gaussian vectors, this result is be-
yond the scope of Cirel’son, Ibragimov, and Sudakov’s paper [11] since Sn,t,
t ∈ T , is not a Gaussian process in general.

Example 4.6. Let Y1, . . . , Yn be a finite sequence of nonnegative iid random
variables and let X1, . . . , Xn be a finite sequence of iid random variables with
values in some measurable space (X ,F) such that the two sequences are in-
dependent. Let T be a countable set, (At)t∈T a family of Borel sets in X
and (σt)t∈T a family of positive reals such that σ := supt∈T σt < ∞. Then
Proposition 4.5 applies to

Z := sup
t∈T

n∑
k=1

Yk(21Xk∈At − 1).

5 Proofs

5.1 Preliminaries
The starting point of the proofs is based on a martingale decomposition
of Z which we now recall. We suppose that T is a finite class of func-
tions, that is T = {ti : i ∈ {1, . . . ,m}}. The results in the countable
case are derived from the finite case using the monotone convergence theo-
rem. Set F0 := {∅,Ω} and for all k = 1, . . . , n, Fk := σ(X1, . . . , Xk) and
Fkn := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn). Let Ek (respectively Ekn) denote the
conditional expectation operator associated with Fk (resp. Fkn). Set also

Zk := Ek[Z], (5.1)
Z(k) := sup{Sn,t −Xk,t + nct : t ∈ T }. (5.2)

The sequence (Zk) is an (Fk)-adapted martingale (the Doob martingale as-
sociated with Z − E[Z]) and

Z − E[Z] =
n∑
k=1

∆k, where ∆k := Zk − Zk−1. (5.3)
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Define now the random indices τ and τk, respectively Fn-measurable and
Fkn-measurable, by

τ := inf{i ∈ {1, . . . ,m} : Sn,ti + ncti = Z}, (5.4)
τk := inf{i ∈ {1, . . . ,m} : Sn,ti −Xk,ti + ncti = Z(k)}. (5.5)

Notice first that
Z(k) +Xk,tτk

≤ Z ≤ Z(k) +Xk,tτ .

From this, conditioning by Fk gives

Ek[Xk,tτk
] ≤ Zk − Ek[Z(k)] ≤ Ek[Xk,tτ ]. (5.6)

Set now ξk := Ek[Xk,tτk
] and let εk ≥ rk ≥ 0 be random variables such that

ξk + rk = Zk − Ek[Z(k)] and ξk + εk = Ek[Xk,tτ ].

Thus (5.6) becomes
ξk ≤ ξk + rk ≤ ξk + εk. (5.7)

Since the random index τk is Fkn-measurable, we have by the centering as-
sumption on the random variables Xk,t, t ∈ T ,

Ekn[Xk,tτk
] = 0, (5.8)

which ensures that Ek−1[ξk] = 0. Moreover, Ek[Z(k)] is Fk−1-measurable.
Hence we get

∆k = Zk − Ek[Z(k)]− Ek−1[Zk − Ek[Z(k)]] = ξk + rk − Ek−1[rk],

which, combined with (5.3), yields the decomposition of Z−E[Z] into a sum
of two martingales:

Z − E[Z] = Ξn +Rn, (5.9)

where
Ξn :=

n∑
k=1

ξk and Rn :=
n∑
k=1

(rk − Ek−1[rk]). (5.10)

The strategy of the proofs is to treat the two martingales separately. And
the main difficulty lies in the control of their quadratic variations, especially
that of Rn.
(i) Upper bound on ∑n

k=1 Ek−1[ξ2
k].
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Lemma 5.1. One has

〈Ξ〉n :=
n∑
k=1

Ek−1[ξ2
k] ≤ nσ2.

Proof. First, notice that the same argument as in (5.8) yields

Ekn[X2
k,tτk

] ≤ σ2.

Thus, Lemma 5.1 follows from the conditional Jensen inequality.

(ii) Upper bound on ∑n
k=1 Ek−1[(rk − Ek−1[rk])2].

We recall that ζk denotes a random variable with distribution function
F2M1,qk (defined in Definition 1.6) where qk is such that E[ζk] = Ek.

Lemma 5.2. One has

〈R〉n :=
n∑
k=1

Ek−1[(rk − Ek−1[rk])2] ≤
n∑
k=1

E[ζ2
k ].

Proof. First, we observe that Ek−1[rk] is bounded by a deterministic con-
stant. This will be a consequence of the following lemma of exchangeability
of variables.
Lemma 5.3. For any integer j ≥ k,

Ek−1[Xk,τ ] = Ek−1[Xj,τ ].

Proof of Lemma 5.3. Pointing out that τ is a function of X1, . . . , Xn, one
has for every permutation π on n elements,

τ(X1, . . . , Xn) = τ ◦ π(X1, . . . , Xn) almost surely,

leading to
Ekn[Xk,τ ] = Ekn[Xk,τ◦π].

This implies

Ek−1[Xk,τ ] = Ek−1[Xk,τ◦π] for any k = 1, . . . , n.

Taking now j ≥ k and applying the previous equality to the transposition
π := (k j) which exchanges k and j, it yields by Fubini’s theorem that

Ek−1[Xk,τ ] = Ek−1[Xj,τ ],

which concludes the proof.
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Therefrom,

Ek−1[εk] = Ek−1[Xk,τ ]

= 1
n− k + 1Ek−1[Xk,τ + . . .+Xn,τ ]

≤ 1
n− k + 1 Ek−1 sup

t∈T
{Xk,t + . . .+Xn,t} = En−k+1. (5.11)

Since 0 ≤ rk ≤ εk, we thus get

0 ≤ Ek−1[rk] ≤ En−k+1.

Next, (5.7) implies that 0 ≤ rk ≤ 2Mk. Therefore, the comparison
inequality (1.17) ensures that for any function ϕ ∈ H1

+, Ek−1[ϕ(rk)] ≤
E[ϕ(ζn−k+1)]. Since rk ≥ 0 and x 7→ x2

+ belongs to H1
+, we get

Ek−1[(rk − Ek−1[rk])2] ≤ Ek−1[r2
k] = Ek−1[r2

k+] ≤ E[ζ2
n−k+1].

Finally, summing for k = 1, . . . , n leads to
n∑
k=1

Ek−1[(rk − Ek−1[rk])2] ≤
n∑
k=1

E[ζ2
k ] = Vn, (5.12)

which ends the proof of Lemma 5.2.

Before proving main results, let us explain why left deviation inequalities
are easier to handle than the right ones.

5.2 Upper bound on Q̃−Rn

To study the left deviations, we write

E[Z]− Z = Ξo
n +Ro

n, (5.13)

where Ξo
n = −Ξn and Ro

n = −Rn. We will control the martingales Ξn and
Ξo
n in the same manner. For Ro

n, the above analysis implies that Ro
n is a

martingale with bounded from above increments and then it is a subGaussian
martingale as shown by the lemma below.
Lemma 5.4. For any t ≥ 0, we have

`Ron(t) := logE[exp(tRo
n)] ≤ t2Vn

2 . (a)

Consequently, for any u ∈ ]0 , 1[,

Q̃Ron(u) ≤ `∗−1
Ron

(log(1/u)) ≤
√

2n vn log(1/u), (b)

where vn = Vn/n.
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Proof. We recall that

Ek−1[rk]− rk ≤ En−k+1 and Ek−1[(Ek−1[rk]− rk)2] ≤ E[ζ2
n−k+1]. (5.14)

Thus, max(E[ζ2
k ], E2

k) = E[ζ2
k ]. Applying now the inequality for real-valued

martingales with differences bounded from above proved by Bentkus [2] (see
his Inequality (2.16)), we get for any t ≥ 0,

E[exp(tRo
n)] ≤ exp(t2Vn/2), (5.15)

which then gives (a). Now, it is a classical calculation that

inf
t>0

{1
t

(
t2Vn

2 + x
)}

=
√

2Vn x =
√

2n vn x, (5.16)

where the infimum is given by the optimal value tx =
√

2x/Vn. Finally, (1.8)
ends the proof of (b).

5.3 Proofs of Section 2
First, we recall some results concerning real-valued martingales. Let Mn :=∑n
k=1Xk be a martingale in L2 with respect to a nondecreasing filtration (Fk),

such that M0 = 0 and E[X2
k | Fk−1] ≤ b2

k almost surely for all k = 1, . . . , n,
where bk’s are some positive reals. Define

Bn =
√√√√ n∑
k=1

b2
k.

We start by a Fuk-Nagaev type inequality obtained by Rio [29]:

Theorem 5.5 ([29], Theorem 4.1). Let r > 2 such that∥∥∥ sup
t>0

(
tr P(Xk+ > t | Fk−1)

)∥∥∥
∞
<∞.

Define

Cw
r (M) =

∥∥∥∥ sup
t>0

(
tr

n∑
k=1

P(Xk+ > t | Fk−1)
)∥∥∥∥1/r

∞
.

Then for any u ∈ ]0 , 1[,

Q̃Mn(u) ≤ σ
√

2 log(1/u) + Cw
r (M)µru−1/r,

where µr := 2 + max(4/3, r/3).
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Next, we recall the following Rosenthal-type inequality obtain by Pinelis
[25]:
Theorem 5.6 ([25], Theorem 1 and Inequality (10)). Let r ∈ ]2 , 4]. Then

‖Mn‖r ≤ (r − 1)1/rBn +
( n∑
k=1

E[|Xk|r]
)1/r

.

We are now in a position to prove the main results.

Proof of Theorem 2.1. First, observe that (b) follows immediately from (a)
since for any real-valued random variable X and any u ∈ ]0 , 1[, one has
QX ≤ Q̃X and P(X > QX(u)) ≤ u. Let us now prove (a). Recalling the
decomposition (5.9), Proposition 1.4 implies

Q̃Z−E[Z](u) ≤ Q̃Ξn(u) + Q̃Rn(u). (5.17)

With the notation of Rio’s Theorem, since ξk ≤Mk and rk−Ek−1[rk] ≤ 2Mk,
one has

Cw
` (Ξn) ≤ n1/`Λ+

` (M1), (5.18)
Cw
` (Rn) ≤ 2n1/`Λ+

` (M1). (5.19)

Recalling the bounds on the quadratic variations of Ξn and Rn given by
Lemmas 5.1-5.2, we then conclude the proof of (a) by combining (5.17)–
(5.19) and Theorem 5.5.

Proof of Lemma 2.4. By homogeneity, we may assume that Λ+
p (M1) = 1.

Let ψ be a random variable with tail function defined by P(ψ > t) = t−` for
all t ≥ 1 and let ζ̃k be a random variable with distribution function F2ψ,q̃k ,
where q̃k is the real in [0, 1] such that E[ζ̃k] = Ek. Clearly,

F2M1,qk(x) ≥ F2ψ,q̃k(x) for any x ∈ R.

In other words, ζ̃k dominates ζk for the first-order stochastic dominance.
Then Lemma 1 of Bentkus [4] ensures that for any convex function ϕ,

E[ϕ(ζk)] ≤ E[ϕ(ζ̃k)]. (5.20)

Thus, applying this inequality to ϕ(x) = x2,

E[ζ2
k ] ≤ E[ζ̃2

k ]. (5.21)

Moreover, a straightforward calculation yields that

E[ζ̃2
k ] ≤ 2

p
p−1

p

p− 2

(
1− 1

p

)(p−2)/(p−1)
E

(p−2)/(p−1)
k . (5.22)

The claim follows by summing for k = 1, . . . , n,.
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Proof of Theorem 2.5. As for the right deviations, we only have to prove
(a). We recall that E[Z] − Z = Ξo

n + Ro
n. We shall use Rio’s inequality

again to control Ξo
n and the Gaussian upper bound Lemma 5.4 to control

Ro
n. Contrary to the previous proof, since we do not use Rio’s inequality on

Ro
n, it is interesting to provide a better upper bound on Cw

r (Ξo
n). First, by

Markov’s inequality,

Cw
r (Ξo

n) ≤
∥∥∥∥ n∑
k=1

Ek−1[(−ξk)r+]
∥∥∥∥1/r

∞
. (5.23)

Furthermore, using the same trick as in (5.8), we obtain

Ek−1[(−ξk)r+] ≤ mr
r. (5.24)

Combining now (5.23)-(5.24), Theorem 5.5 and Lemma 5.4 ends the proof.

Proof of Corollary 2.6. First, observe that (a) and (c) follow directly from
(2.7). Let us now prove (b). We proceed exactly as in Rio [29, Theorem 5.1].
Both (2.6) and Theorem 2.1 (a) imply

Λ̃+
` (Z−E[Z]) ≤ (σ

√
n+

√
Vn ) sup

u∈]0,1]

(
u1/`

√
2 log(1/u)

)
+3n1/`µ` Λ+

` (Φ(X1)).

(5.25)
Next, observe that supu∈]0,1] u

1/`
√

2 log(1/u) =
√

(`/e), which concludes the
proof of (b). The same is done for the proof of (d) by using Theorem 2.5 (a)
instead of Theorem 2.1 (a).

Proof of Theorem 2.7. First, we apply Theorem 5.6 to the martingale Ξn.
Then, it follows from Lemma 5.1 and the definition of Mk that

‖Ξn‖p ≤ (p− 1)1/pσ
√
n+ n1/p‖M1‖p. (5.26)

Next, we do the same for the martingale Rn, using Lemma 5.2 instead of
Lemma 5.1. We only need to handle E[|rk − Ek−1[rk]|p]. It is done by the
following:
Lemma 5.7. E[|rk − Ek−1[rk]|p] ≤ E[|rk|p].

This result only uses the fact that rk is a nonnegative random variable.
It is a probably known fact, but for sake of completeness, we give a proof in
Appendix A. Now, since 0 ≤ rk ≤ 2Mk, we deduce that

‖Rn‖p ≤ (p− 1)1/p√nvn + 21/pn1/p‖M1‖p. (5.27)

The claim follows by combining (5.26) and (5.27).
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Proof of Lemma 2.9. As in the proof of Lemma 2.4, ψ denotes a random
variable such that P(X > t) = t−` for all t ≥ 1. Notice that Qψ(u) = u−1/`

for any u ∈ ]0 , 1[ and that (2.13) implies QY ≤ Qψ. Let also κ ∈ R be such
that

2κ = k δ2

J2(δ,G ) . (5.28)

Let U1, . . . , Uk be k independent copies of a random variable U distributed
uniformly on [0 , 1]. Let us now define for every j = 1, . . . , dκe,

Ij := {m ∈ {1, . . . , k} : Um ∈ ]2−j , 21−j]},
Jκ := {m ∈ {1, . . . , k} : Um ≤ 2−dκe}.

Here, b.c and d.e denote the classical floor and ceiling functions. Recall that
QX(U) and X have the same distribution. Then,

E sup
g∈G

∣∣∣ k∑
j=1

Yjg(Xj)
∣∣∣ ≤ E1 + E2, (5.29)

where

E1 :=
dκe∑
j=1

E sup
g∈G

∣∣∣ ∑
i∈Ij

Qψ(Ui)g(Xi)
∣∣∣ and E2 := E sup

g∈G

∣∣∣ ∑
j∈Jκ

Qψ(Uj)g(Xj)
∣∣∣.

Let us bound above E2. Since G ≤ 1, a straightforward calculation gives

E2 ≤ k
∫ 2−dκe

0
Qψ(u) du ≤ k

`

`− 1 2−κ(1−1/`). (5.30)

To bound above E1, we first notice that, since Qψ is decreasing, for any
m ∈ Ij, |Ymg(Xm)| ≤ Qψ(2−j). We can then apply Theorem 2.1 of Van der
Vaart and Wellner [36] which leads to

E1 ≤ K
(
J(δ,G )

dκe∑
j=1

E
[
|Ij|

1
2
]
Qψ(2−j) + J2(δ,G )

δ2

dκe∑
j=1

Qψ(2−j)
)
. (5.31)

By the definition of Ij, it is easy to see that

E
[
|Ij|

]
=

k∑
i=1

i

(
k

i

)
(2−j)i(1− 2−j)k−i = k 2−j.

Then, Jensen’s inequality yields E[|Ij|
1
2 ] ≤

√
k 2−j. Now, recalling that

Qψ(u) = u−1/`,
dκe∑
j=1

2−j/2Qψ(2−j) ≤ 21/`−1/2

1− 21/`−1/2 ≤
2

log(2)
`

`− 2 . (5.32)
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Likewise,

dκe∑
j=1

Qψ(2−j) = 2bκc/`
(
21/` +

bκc−1∑
j=0

2−j/`
)

≤ 2bκc/`
(
21/` + 1

1− 2−1/`

)
≤ 2κ/`

log(2)
`2

`− 2 . (5.33)

Hence, we derive from (5.31) – (5.33),

E1 ≤ K
`

`− 2

(√
k J(δ,G ) + `

J2(δ,G )
δ2 2κ/`

)
. (5.34)

Finally, (5.29), (5.34), (5.30) and the definition of κ imply Lemma 2.9.

Proof of Theorem 2.11. Inequality (a) follows from Theorem 2.7, Lemmas
2.4-2.9 and the subadditivity of the functions x 7→ xa, for 0 < a < 1. Sim-
ilarly, (b) and (c) follow by using Corollary 2.6 instead of Theorem 2.7 and
the fact that Λ+

` (Y1G(X1)) ≤ Λ+
` (ψ) = 1.

5.4 Proof of Section 3
Proof of Proposition 3.1. Inequality (3.3) and Theorem 2.1 (a) imply

E[(Z − E[Z]− t)+] ≤ sup
u∈]0,1]

u
(
sn
√

2 log(1/u) + bn,p u
−1/p − t

)
≤ sup

u∈]0,1]
u
(
sn
√

2 log(1/u)− t
)

+ bn,p, (5.35)

since u1−1/p ≤ 1. With the change of variables y =
√

2 log(1/u) ∈ [0 ,+∞[,
the supremum is achieved at

y0 := t

2 sn
+

√√√√1 + t2

4 s2
n

. (5.36)

Then, the supremum in (5.35) is equal to sn e−y
2
0/2/y0. Observing now that

y0 ≥
√

1 + t2/s2
n, we finally get the desired inequality which concludes the

proof.

Proof of Lemma 3.3. Define f : [0 , 1]× R→ R by

f(u, s) := u1/α(s− t) + ‖(X − s)+‖α.
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Note that, since α ≥ 1, for any s ∈ R, u 7→ f(u, s) is concave and for any
u ∈ [0 , 1], s 7→ f(u, s) is convex. Thus, we can apply Sion’s minimax theorem
[33] which implies that

sup
u∈[0,1]

inf
s∈R

f(u, s) = inf
s∈R

sup
u∈[0,1]

f(u, s). (5.37)

For any s < t,
‖(X − t)+‖α ≤ ‖(X − s)+‖α = sup

u∈[0,1]
f(u, s). (5.38)

Moreover, for any s > t,
‖(X − t)+‖α = ‖((X − s) + (s− t))+‖α

≤ ‖(X − s)+‖α + (s− t)
= sup

u∈[0,1]
f(u, s). (5.39)

Thus, (5.38) and (5.39) give
inf
s∈R

sup
u∈[0,1]

f(u, s) = ‖(X − t)+‖α. (5.40)

Finally, we derive from (3.4) that
sup
u∈]0,1]

(Qα(X;u)− t) = sup
u∈]0,1]

inf
s∈R

f(u, s) = sup
u∈[0,1]

inf
s∈R

f(u, s). (5.41)

The claim follows by combining (5.41), (5.37) and (5.40)

Proof of Proposition 3.4. Inequality (b) directly follows from Lemma 3.3 and
(a). Let us prove (a). Recalling the decomposition (5.13), the subadditivity
property of the quantile Q2 yields that

Q2(E[Z]− Z;u) ≤ Q2(Ξo
n;u) +Q2(Ro

n;u). (5.42)
Moreover, from the properties of Q2 and Lemma 5.4,

Q2(Ro
n;u) ≤ `∗−1

Ron
(log(1/u)) ≤

√
n
√

2vn log(1/u). (5.43)
Note that −ξk = −Ek[Xk,tτk

] ≤ 1 since we assume that X1,t ≥ −1 for all
t ∈ T . Thus, Ξo

n is a martingale with increments (−ξk) satisfying
− ξk ≤ 1 and Vark−1(−ξk) ≤ σ2. (5.44)

Then, one has the following comparison inequality (see, for instance, Bentkus[3,
Lemma 4.4]),

E[(Ξo
n − t)2

+] ≤ E[(Bn − t)2
+] for any t ∈ R. (5.45)

Combined with (3.4), it yields for any u ∈ ]0 , 1],
Q2(Ξo

n;u) ≤ Q2(Bn;u). (5.46)
Finally, Inequality (a) follows from (5.42), (5.43) and (5.46).
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5.5 Proofs of section 4
Proof of Theorem 4.2. As previously, we only have to prove (a). Recall that

〈Ξo〉n :=
n∑
k=1

Ek−1[(−ξk)2] ≤ nσ2. (5.47)

Furthermore, as in (5.8), since τk is Fkn-measurable, the conditional Jensen
inequality implies that for any λ ≥ 0,

Ek−1[exp(λξok)] ≤ Ek−1Ekn[exp(−λXk,tτk
)] ≤ σ2λ2

2(1− cλ) , (5.48)

where we use the assumption (4.1) in the last inequality. An immediate
induction on n gives that

logE[exp(λΞo
n)] ≤ n

σ2λ2

2(1− cλ) . (5.49)

Now, it is a classical calculation that

inf
λ∈]0,1/c[

(
σ2t

2(1− λc) + x

λ

)
= cx+

√
2xσ2, (5.50)

where the infimum is given by the optimal value λx =
√

2x/(
√
σ2 + c

√
2x).

Recalling (1.8), one concludes that for any u ∈ ]0 , 1[,

Q̃Ξn(u) ≤ c log(1/u) + σ
√

2n log(1/u). (5.51)

Finally, combining Lemma 5.4, (5.51) and the subadditivity property of Q̃
implies inequality (a) of the theorem and completes the proof.

Proof of Theorem 4.4. As previously mentioned, we only have to prove (a).
By reasoning in the same way as (5.48), the assumption on the Xk,t’s allows
us to derive that

logE[exp(λΞo
n)] ≤ n

λ2

2 C(T ), (5.52)

for any λ ≥ 0. Therefore, the same conclusion as in the proof of Theorem
4.2 yields that

Q̃Ξon(u) ≤
√

2nC(T ) log(1/u), (5.53)

for any u ∈ ]0 , 1[. The claim follows by associating this fact with Lemma
5.4.
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Proof of Proposition 4.5. Let ϕ be a convex function. Then by Jensen’s in-
equality,

Ek−1[ϕ(−ζk)] ≤ Ek−1[ϕ(−Xk,tτk
)]. (5.54)

Now, since τk is Fkn-measurable, conditionally to Fkn , −Xk,tτk
is a centered

Gaussian random variable with variance equals to σ2
tτk

. Thus, since σ2
tτk
≤ σ2,

Ek−1Ekn[ϕ(−Xk,tτk
)] ≤ E[ϕ(σY )], (5.55)

where Y is standard Gaussian random variable. The proof of (5.55) is de-
ferred to Appendix A. Now, by an induction on n, we derive that for any
convex function ϕ,

E [ϕ (Ξo
n)] ≤ E

[
ϕ

(
σ

n∑
k=1

Yk

)]
, (5.56)

where Y1, . . . , Yn is a sequence of iid standard Gaussian random variables,
independent of the other random variables. Then, by the variational formula
(3.4) for α = 1, we have for any u ∈ ]0 , 1],

Q̃Ξon(u) ≤ Q̃σ
∑n

k=1 Yk
(u). (5.57)

Now, since Q̃X depends only on the distribution of X, the right-hand side
in (5.57) is equal to σ

√
n Q̃Y (u), where Y is a standard Gaussian random

variable. The claim follows by combining this fact with Lemma 5.4.

Acknowledgments. Many thanks to Emmanuel Rio for enlightening dis-
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Appendix A: Additional proofs
Proof of Inequality (1.10). Let X = ZG − E[ZG]. Recall that QX(U) has
the same distribution as X for any random variable U with the uniform
distribution over [0 , 1]. It implies that Q̃X(1) = E[X]. Now, since E[X] = 0,
one has ∫ u

0
QX(s)ds = −

∫ 1

u
QX(s)ds.

Moreover, ∫ 1

u
QX(y)dy = 1− u

u

∫ u

0
QX

(
u+ 1− u

u
s
)
ds.

Hence, combining this two facts and using the comparison inequality (1.9),

Q̃X(u) = 1− u
u

∫ u

0
QX(s)ds+

∫ u

0
QX(s)ds

= 1− u
u

∫ u

0

(
QX(s)−QX

(
u+ 1− u

u
s
))
ds

≤ σG
1− u
u

∫ u

0

(
QY (s)−QY

(
u+ 1− u

u
s
))
ds

= σG Q̃Y (u).

This concludes the proof of (1.10).
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Proof of Inequality (1.14). First, note that

Z = sup
S∈S

n∑
k=1

(U−1/`
k 1S(Uk)−

∫
S
u−1/`du) =

n∑
k=1

(U−1/`
k 1Uk≤∆ −

∫
S
u−1/`du).

Next,

1
n

Var(Z) = Var(U−1/`1U≤∆) = `

`− 2 ∆(`−2)/` − `

`− 1 ∆2(`−1)/`. (A.1)

Moreover, for all S ∈ S,

σ2
S := Var(U−1/`1S(X)) ≤

∫ p

0
u2/`du = `

`− 2 p
`−2/`. (A.2)

Combining (A.1) and (A.2), and choosing p and ∆ small enough, we derive

1
n

Var(Z)− σ2 ≥ K
`

`− 2∆(`−1)/`, (A.3)

for a constant K > 0. See now that
1
n
E[Z] = E[U−1/`1U≤∆] =

(
1 + 1

`− 1

)
∆(`−2)/(`−1), (A.4)

which implies

∆ =
(
`− 1
`

E[Z]
n

) `
`−1
. (A.5)

Putting (A.5) into (A.3) leads to

1
n

Var(Z)− σ2 ≥ K1

(E[Z]
n

) `
`−1
, (A.6)

where K1 > 0, which ends the proof.

Proof of Lemma 5.7. The lemma follows from the following general result:
Lemma A.1. Let p > 2. Let X be a nonnegative, Lp-integrable, random
variable. Then

E[|X − E[X]|p]− E[|X|p] ≤ −2(E[X])p−1E[X1X≤E[X]/2].

Assume that E[X] = 1. The general case follows by considering X/E[X].
Let M = E[X1X≤1/2], and define for any x ≥ 0,

fp(x) = |x− 1|p − |x|p.
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Let gp := fp1[0,1/2] and hp := fp1[1/2,+∞[. Since gp is a decreasing and convex
function,

E[gp(X)] ≤ E[gp(X1X≤1/2)]
≤ (1− 2M)gp(0) + 2Mgp(1) = 1− 2M. (A.7)

Next, since hp is concave,

E[hp(X)] ≤ hp(1) = −1. (A.8)

Now, since fp = gp+hp, the claim follows by combining (A.7) and (A.8).

Proof of Inequality (5.55). The claim is an application of the following gen-
eral comparison result:
Lemma A.2. Let X be a centered random variable. Let 0 ≤ a ≤ b. Then,
for any convex function ϕ

E[ϕ(aX)] ≤ E[ϕ(bX)].

Let ϕ be a C2 convex function. Using the following version of Taylor’s
formula

ϕ(x) = ϕ(0) + xϕ′(x) + |x|2
∫ 1

0
(1− s)ϕ′′(sx)ds, x ∈ R,

we get

E[ϕ(aX)] = ϕ(0) + a2 E
[
|X|2

∫ 1

0
ϕ′′(saX)ds

]
= ϕ(0) + abE

[
|X|2

∫ a/b

0

(
1− b

a
t

)
ϕ′′(tbX)dt

]
.

Now, since ϕ′′ ≥ 0 and 0 ≤ a ≤ b,

abE
[
|X|2

∫ a/b

0

(
1− b

a
t

)
ϕ′′(tbX)dt

]
≤ b2 E

[
|X|2

∫ 1

0
(1− t)ϕ′′(tbX)dt

]
.

Therefrom,
E[ϕ(aX)] ≤ E[ϕ(bX)].

The general case follows from the monotone convergence theorem since any
convex function can be approximated by an increasing sequence of C2 convex
Lipschitz functions.
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