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Concentration inequalities for suprema of
unbounded empirical processes

Antoine Marchina∗

June 22, 2017

Abstract

Using martingale methods, we obtain some Fuk-Nagaev type in-
equalities for suprema of unbounded empirical processes associated
with independent and identically distributed random variables. We
then derive weak and strong moment inequalities. Next, we apply our
results to suprema of empirical processes which satisfy a power-type
tail condition.

1 Introduction
Let us consider a sequenceX1, X2, . . . of independent random variables valued
in some measurable space (X ,F). Let Pn denote for every integer n the
empirical probability measure Pn := n−1(δX1 + . . . + δXn). Let F be a
countable class of measurable functions from X into R such that E[f(Xk)] = 0
for all f in F and all k = 1, . . . , n. We assume that F has a square integrable
envelope function Φ, that is

|f | ≤ Φ for any f ∈ F , and Φ ∈ L2. (1.1)

As in Boucheron, Lugosi and Massart [4], we define the wimpy variance σ2

and the weak variance Σ2 by

σ2 := sup
f∈F

1
n

n∑
k=1

E[f 2(Xk)], and Σ2 := E
[

sup
f∈F

1
n

n∑
k=1

f 2(Xk)
]
. (1.2)
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Let us also define

Ek := E sup
f∈F

Pk(f) for any k ∈ {1 . . . , n}. (1.3)

The purpose of this paper is to provide concentration inequalities around its
mean for the random variable

Z := sup{nPn(f) : f ∈ F}, (1.4)

involving σ2, and under the additional assumption of identically distributed
data. Our approach is based on a decomposition of Z into a sum of two
martingales. Then, we control each martingale separately by Fuk-Nagaev
type inequalities : in a first part, by one found by Courbot [7], which allows
us to derive a strong moment inequality (following Petrov [14]), and in a
second part, by one found recently by Rio [17], which allows us to derive a
weak moment inequality. We stress out that we only require that the envelope
function Φ has an `th weak or strong moment, while classical concentration
inequalities for suprema of empirical processes assume uniform boundedness
of F . Let us recall a main result in this direction : the following Bennett type
inequality obtained by Bousquet [5], which is an improvement of Theorem
1.1 in Rio [16] :

Theorem 1.1 ([4], Theorem 12.5). Let X1, . . . , Xn be a sequence of inde-
pendent random variables with values in X and distributed according to P .
Assume that P (f) = 0 and f ≤ 1 for all f ∈ F . Let Z be defined by (1.4)
and set vn := nσ2 +2E[Z], where σ2 is defined in (1.2). Let h be the function
defined, for any u ≥ −1, by h(u) := (1 + u) log(1 + u) − u. Then, for all
t ≥ 0,

P(Z − E[Z] ≥ t) ≤ exp
(
− vn h

(
t

vn

))
(Bousquet’s inequality)

≤ exp
(
− t

2 log
(

1 + t

vn

))
. (Rio’s inequality)

We refer the reader to Section 12 of [4] for an overview of the bounded
case. Here we are interested in unbounded functions. Few results in the
literature concern concentration inequalities for suprema of unbounded em-
pirical processes. Let us first mention the considerable work of Boucheron,
Bousquet, Lugosi and Massart [3], concerning moment inequalities for gen-
eral functions of independent random variables. Their methods are based on
an extension of the entropy method proposed by Ledoux [11]. In particular,
they establish the following generalized moment inequality for suprema of
(possibly unbounded) empirical processes involving σ2 and Σ2 :
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Theorem 1.2 ([4], Theorems 15.14 and 15.5). Let X1, . . . , Xn be a sequence
of independent random variables with values in X . Assume that E[f(Xk)] = 0
for all f ∈ F and all k = 1, . . . , n. Let Z be defined by

Z := sup
f∈F

∣∣∣∣ n∑
k=1

f(Xk)
∣∣∣∣.

Let M := maxk=1,...,n Φ(Xk), where Φ is defined in (1.1). Then, for all ` ≥ 2,

‖(Z − E[Z])+‖` ≤
√
nκ(`− 1)(Σ + σ) + κ(`− 1)

(
‖M‖` + sup

f∈F
k=1,...,n

‖f(Xk)‖2
)
,

where σ2, Σ2 are defined in (1.2) and κ :=
√
e/(
√
e− 1).

For several reasons (see, for instance, discussion after Theorem 3 in [1])
one would like to express the variance factor in terms of σ2 rather than Σ2.
First, observe that Σ2 is greater than σ2. In the bounded case, an application
of the contraction principle gives nΣ2 ≤ nσ2 + 16E[Z], when |f | ≤ 1 for any
f ∈ F (see Corollary 15 in [13]). However, in the unbounded case, Σ2 is
more difficult to compare to σ2. In the setting of Theorem 1.2, one can only
prove the much less efficient inequality

nΣ2 ≤ nσ2 + 32
√
E[M2]E[Z] + 8E[M2],

(see Theorem 11.17 and Section 15 in [4]). Similarly to the bounded case, the
bounds that we will obtain in this paper will involve σ2, and the expectations
Ek rather than the weak variance Σ2. Furthermore, we shall prove in a
particular case that our bounds provide a much more accurate estimate of
the variance.

Einmahl and Li [8] prove a Fuk-Nagaev type inequality for suprema of
empirical processes involving σ2 and the `th strong moment of the envelope
function. They use an improvement of Bousquet’s inequality for suprema of
bounded empirical processes to nonnecessarily identically distributed random
variables obtained by Klein and Rio [9], a truncation argument and the so-
called Hoffman-Jørgensen inequality. Using similar techniques, Adamczak [1]
provides a concentration inequality for suprema of empirical processes under
a semi-exponential tail condition on the envelope function Φ of F :

Theorem 1.3 ([1], Theorem 4). Let X1, . . . , Xn be a sequence of independent
random variables with values in X . Assume that E[f(Xk)] = 0 for all f ∈ F
and all k = 1, . . . , n. For all α ∈]0, 1], let ψα be the function defined, for any
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x > 0, by ψα(x) := exp(xα) − 1 and let ‖.‖ψα denote the associated Orlicz
norm, which is defined by

‖X‖ψα := inf{λ > 0 : E[ψα(|X|/λ)] ≤ 1}, for all random variable X.

Assume now that for some α ∈]0, 1], ‖Φ(Xk)‖ψα < ∞ for all k = 1, . . . n,
where Φ is defined in (1.1). Let Z be defined by Z := supf∈F |

∑n
k=1 f(Xk)|.

Then, for all 0 < η < 1 and δ > 0, there exists a constant C = C(α, η, δ),
such that, for all t ≥ 0,

P(Z − (1 + η)E[Z] ≥ t)

≤ exp
(
− t2

2(1 + δ)nσ2

)
+ 3 exp

(
−
(

t

C‖maxk=1,...,n Φ(Xk)‖ψα

)α)
.

Let us point out that the upper bound in the inequality above (and also
in [8]) do not involve E[Z] or the entropy of the class F . The price to be paid
is the additional factor 1 + η in front of E[Z] and the non explicit constant
C(α, η, δ). More recently, van de Geer and Lederer [18] introduce a new Orlicz
norm (called Bernstein-Orlicz norm), and under some Bernstein conditions
satisfied by the envelope function Φ, they derive exponential inequalities.
Their upper bounds involve the constant K in the Bernstein conditions and
E[Z] (which is bounded up in terms of complexity of F and K). Next, the
same authors in [10], require only that the envelope function Φ has an `th
strong moment and obtained deviation and moment inequalities involving σ2.
However, it concerns the deviation of Z around (1+η)E[Z]. Finally, Marchina
[12] provides deviation inequalities around E[Z] for suprema of randomized
unbounded empirical processes involving only the envelope function Φ, see
for example the following Proposition :
Proposition 1.4 ([12], Proposition 7.14). Let X1, . . . , Xn be a sequence of
independent random variables with values in X . Let Y1, . . . , Yn be a sequence
of independent real-valued symmetric random variables such that the two se-
quences are independent. Let F be a countable class of measurable functions
f : X → R such that −G ≤ f ≤ H for all f ∈ F , where G and H are
nonnegative functions. Define Z = supf∈F

∑n
k=1 Ykf(Xk). Let

s2
k := E[Y 2

k ]E[H2(Xk) +G2(Xk)] and s2 :=
n∑
k=1

s2
k.

Then, for any 2 ≤ ` ≤ 4,

‖(Z − E[Z])+‖`` ≤
1
2

n∑
k=1

E
[
|Yk|`(H`(Xk) +G`(Xk))

]
+ 1

2 s
`‖g‖``,

where g is a standard Gaussian random variable.
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The results of [12] are based on martingale techniques. The purpose of
the present paper is to introduce the wimpy variance in the concentration
inequalities derived from the martingale approach. We shall give deviation
inequalities around E[Z], without extra centering term ηE[Z] and with ex-
plicit constants.

The paper is organized as follows : we first recall some definitions and
notations in Section 2. In Section 3, we state Fuk-Nagaev type inequalities
for Z − E[Z] and the resulting corollaries concerning the weak and strong
moments of order ` > 2. We shall also apply the Fuk-Nagaev inequalities to
bound up the generalized moment E[(Z − E[Z] − t)+]. Finally, in Section
4, we apply the main results to the special case Z = supg∈G

∑n
k=1 Yk g(Xk)

where Yk satisfies a power-type tail condition and G is a class of bounded
functions.

2 Definitions and notations
In this section, we give the notations and definitions which we will use all
along the paper. Let us start with the classical notations x+ := max(0, x)
and xα+ := (x+)α for all real x and α. Next, we define the tail function, the
quantile function and the Conditional Value-at-Risk.

Definition 2.1. Let X be a real-valued random variable.
(i) The distribution function of X is denoted by FX and the càglàd inverse
of FX is denoted by F−1

X .
(ii) The quantile function of X, which is the càdlàg inverse of the tail function
t 7→ 1− FX(t), is denoted by QX .
(iii) Assume that X is integrable. The integrated quantile function Q̃X of X,
which is also known as the Conditional Value-at-Risk (CVaR for short), is
defined by Q̃X(u) := u−1 ∫ u

0 QX(s)ds.

We recall the following elementary properties of these quantities, which
are given and proved by Pinelis [15].

Proposition 2.2. Let X and Y be real-valued and integrable random vari-
ables. Then, for any u ∈]0, 1],
(i) P(X > QX(u)) ≤ u,
(ii) QX(u) ≤ Q̃X(u),
(iii) Q̃X+Y (u) ≤ Q̃X(u) + Q̃Y (u).

Let us now define the following class of distribution functions.
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Notation 2.3. Let q ∈ [0, 1]. Let ψ be a nonnegative random variable and
set bψ,q := F−1(1 − q). We denote by Fψ,q the distribution function defined
by

Fψ,q(x) := (1− q)10≤x<bψ,q + Fψ(x)1x≥bψ,q . (2.1)

These distribution functions will be used to bound up the generalized mo-
ments of nonnegative random variables which are dominated by ψ. Precisely,
let X be a nonnegative random variable stochastically dominated by ψ, that
is P(X > x) ≤ P(ψ > x) for all x > 0. Let ζψ,q be a random variable with
distribution function Fψ,q, where q is such that E[X] = E[ζψ,q]. Then Lemma
1 of Bentkus [2] (see also Lemma 2.1 of Marchina [12]) ensures that for any
function ϕ ∈ H1

+, E[ϕ(X)] ≤ E[ϕ(ζψ,q)], where H1
+ is the class of numerical

functions ϕ defined by

H1
+ :=

{
ϕ : ϕ is convex, differentiable, and lim

x→−∞
ϕ(x) = 0

}
. (2.2)

Now, we recall the definitions of strong and weak norms of a real-valued
random variable X. For all r ≥ 1, let Lr be the space of real-valued random
variables with a finite absolute moment of order r and we denote by ‖X‖r
the Lr-norm of X. Let

Λ+
r (X) := sup

t>0
t (P(X > t))1/r. (2.3)

We say that X have a weak moment of order r if Λ+
r (|X|) is finite. Define

also
Λ̃+
r (X) := sup

u∈]0,1]
u(1/r)−1

∫ u

0
QX(s)ds. (2.4)

From the definition of QX , we have

Λ+
r (X) = sup

u∈]0,1]
u1/rQX(u). (2.5)

Hence, we get that

Λ+
r (X) ≤ Λ̃+

r (X) ≤
(

r
r−1

)
Λ+
r (X). (2.6)

Furthermore, from Proposition 2.2 (iii), Λ̃+
r (.) is sub-additive.

3 Statement of results
Let us first recall the assumptions we work with. Let X1, . . . , Xn be a se-
quence of independent and identically random variables distributed according
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to P with values in X . Let F be a countable class of measurable functions
f : X → R such that P (f) = 0 for all f ∈ F , and we suppose that F has a
square integrable envelope function Φ defined in (1.1). In this situation, the
wimpy variance is σ2 = supf∈F P (f 2). We consider the random variable

Z = sup
f∈F

n∑
k=1

f(Xk). (3.1)

Throughout the rest of the paper, ζk denotes a random variable with distri-
bution function F2 Φ(X1), qk defined in (2.1) where qk is the real in [0, 1] such
that E[ζk] = Ek (Ek is defined in (1.3)). We also set

Vn :=
n∑
k=1

E[ζ2
k ]. (3.2)

Remark 3.1. If the class F satisfies the uniform law of large numbers,
that is supf∈F |Pn(f)| converge to 0 in probability, then En decreases to 0
(see, for instance, Section 2.4 of van der Vaart and Wellner [19]). Now,
from the integrability of Φ2 and (2.1), the convergence of En to 0 implies the
convergence of E[ζ2

n] to 0, which ensures that Vn/n tends to 0. More precise
estimates of Vn will be proved for particular cases in Section 4.

We first derive a Fuk-Nagaev type inequality for Z − E[Z] from one ob-
tained by Courbot [7] concerning martingales.
Theorem 3.2. Let x > 0. For any s > 0, we have

P((Z − E[Z])+ ≥ x) ≤
(

1 + x2

snσ2

)−s/2
+
(

1 + x2

sVn

)−s/2
+ 2nP

(
Φ(X1) ≥ x

2s

)
.

Next, under weak moment conditions, we derive from a Fuk-Nagaev type
inequality for martingales with efficient constants obtained recently by Rio
[17], an other Fuk-Nagaev type inequality for Z − E[Z].
Theorem 3.3. Let ` > 2. Assume that Φ(X1) have a weak moment of order
`. Then for any u ∈]0, 1[,

QZ−E[Z](u) ≤ Q̃Z−E[Z](u) (a)

≤
√

2 log(1/u) (σ
√
n+

√
Vn ) + 3n1/`µ` Λ+

` (Φ(X1))u−1/`, (b)

where µ` := 2 + max(4/3, `/3). Consequently,

P
(
Z − E[Z] >

√
2 log(1/u) (σ

√
n+

√
Vn ) + 3n1/`µ` Λ+

` (Φ(X1))u−1/`
)
≤ u.

(c)
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In the two following results, we derive from Theorems 3.2 and 3.3, strong
and weak moment inequalities for Z − E[Z].

Corollary 3.4. Let ` > 2. Assume that Φ(X1) is L`-integrable. Then

‖(Z −E[Z])+‖` ≤ `1/`√`+ 1 (σ
√
n+

√
Vn ) + 21+1/` n1/`(`+ 1)‖Φ(X1)‖`.

Remark 3.5. Note that `1/` ≤ e1/e ' 1.4447.

Remark 3.6. By analyzing the proofs of Theorem 3.2 and Corollary 3.4, we
can slightly improve the constant 21+1/` to (1 + 2`)1/`.

Corollary 3.7. Let ` > 2. Assume that Φ(X1) have a weak moment of order
`. Then

Λ+
` (Z − E[Z]) ≤ Λ̃+

` (Z − E[Z]) (a)

≤
√

(`/e) (σ
√
n+
√
V ) + 3n1/`µ` Λ+

` (Φ(X1)), (b)

where µ` := 2 + max(4/3, `/3).

3.1 Bound of generalized moment of Z − E[Z]
In this section, we apply Theorem 3.3 to bound up E[(Z − E[Z] − t)+] for
every t > 0. We emphasize that it is of interest to obtain such bounds
in various situations coming from statistical applications, such the study of
rates of convergence for estimators (see, for instance, Comte and Lacour [6]).

Proposition 3.8. Let Z, σ, Vn be defined as in Section 3. Let ` > 2 and
µ` = 2 + max(4/3, `/3). Set also

sn := σ
√
n+

√
Vn, and bn,` := 3n1/`µ` Λ+

` (Φ(X1)).

Then, for any t > 0,

E[(Z − E[Z]− t)+] ≤ sn
e−

1
2 (1+t2/s2

n)√
1 + t2/s2

n

+ bn,`.

Proof. Let us start by recalling the variational expression of E[(X − t)+]
involving Q̃X . Since x < QX(u) if and only if 1− FX(x) > u, we get for any
real t,

E[(X − t)+] = sup
u∈]0,1]

u(Q̃X(u)− t). (3.3)
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Now, Inequality (3.3) and Theorem 3.3 (b) imply

E[(Z − E[Z]− t)+] ≤ sup
u∈]0,1]

u
(
sn
√

2 log(1/u) + bn,` u
−1/` − t

)
≤ sup

u∈]0,1]
u
(
sn
√

2 log(1/u)− t
)

+ bn,`, (3.4)

since u1−1/` ≤ 1. With the change of variables y =
√

2 log(1/u) ∈ [0,∞[,
clearly, the supremum is achieved at

y0 := t

2 sn
+

√√√√1 + t2

4 s2
n

. (3.5)

Then, the supremum in (3.4) is equal to sn e−y
2
0/2/y0. Observing now that

y0 ≥
√

1 + t2/s2
n, we finally get the desired inequality which concludes the

proof.

Remark 3.9. As starting point of the proof, in place of (3.3), we can use the
equality Z − E[Z] D= QZ−E[Z](U), where U is a random variable distributed
uniformly on [0, 1]. However, contrary to the above proof, we then need to
integrate Inequality (b) of Theorem 3.3, which shows the interest of the CVaR.

3.2 Proofs of the main results
Our method is based on a martingale decomposition of Z which we now
recall. We suppose that F is a finite class of functions, that is F = {fi : i ∈
{1, . . . ,m}}. The results in the countable case are derived from the finite case
using the monotone convergence theorem. Set F0 := {∅,Ω} and for all k =
1, . . . , n, Fk := σ(X1, . . . , Xk) and Fkn := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn). Let
Ek (respectively Ekn) denotes the conditional expectation operator associated
with Fk (resp. Fkn). Set also

Z(k) := sup{nPn(f)− f(Xk) : f ∈ F}, (3.6)
Zk := Ek[Z − E[Z]]. (3.7)

The sequence (Zk) is an (Fk)-adapted martingale (the Doob martingale as-
sociated with Z − E[Z]) and

Z − E[Z] =
n∑
k=1

∆k, where ∆k := Zk − Zk−1. (3.8)
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Define now the stopping times τ and τk, respectively Fn-measurable and
Fkn-measurable, by

τ := inf{i ∈ {1, . . . ,m} : nPn(fi) = Z}, (3.9)
τk := inf{i ∈ {1, . . . ,m} : nPn(fi)− fi(Xk) = Z(k)}. (3.10)

Notice first that

Z(k) + fτk(Xk) ≤ Z ≤ Z(k) + fτ (Xk).

From this, conditioning by Fk gives

Ek[fτk(Xk)] ≤ Zk − Ek[Z(k)] ≤ Ek[fτ (Xk)]. (3.11)

Set now ξk := Ek[fτk(Xk)] and let εk ≥ rk ≥ 0 be random variables such that

ξk + rk = Zk − Ek[Z(k)] and ξk + εk = Ek[fτ (Xk)].

Thus (3.11) becomes
ξk ≤ ξk + rk ≤ ξk + εk. (3.12)

Since the stopping time τk is Fkn-measurable, we have by the centering as-
sumption on the elements of F ,

Ekn[fτk(Xk)] = P (fτk) = 0, (3.13)

which ensures that Ek−1[ξk] = 0. Moreover, Ek[Z(k)] is Fk−1-measurable.
Hence we get

∆k = Zk − Ek[Zk]− Ek−1[Zk − Ek[Zk]] = ξk + rk − Ek−1[rk],

which, combined with (3.8), yields the decomposition of Z − E[Z] in a sum
of two martingales :

Z − E[Z] =
( n∑
k=1

ξk

)
+
( n∑
k=1

(rk − Ek−1[rk])
)
. (3.14)

Before proving the results, we provide bounds for their quadratic variations
which will be needed in the proofs.
(i) Bound of ∑n

k=1 Ek−1[ξ2
k].

Notice that the same argument as (3.13) yields Ekn[f 2
τk

(Xk)] = P (f 2
τk

). It
follows from the conditional Jensen inequality that ∑n

k=1 Ek−1[ξ2
k] ≤ nσ2.

(ii) Bound of ∑n
k=1 Ek−1[(rk − Ek−1[rk])2].

First, we observe that Ek−1[rk] is bounded by a deterministic constant. This
is given by the following lemma of exchangeability of variables.
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Lemma 3.10. For any integer j ≥ k, Ek−1[fτ (Xk)] = Ek−1[fτ (Xj)].

Proof. By the definition of the stopping time τ , for every permutation on n
elements σ, τ(X1, . . . , Xn) = τ ◦ σ(X1, . . . , Xn) almost surely. Applying now
this fact to σ = (k j) (the transposition which exchanges k and j), it suffices
to use Fubini’s theorem (recalling that j ≥ k) to complete the proof.

Hence,

Ek−1[εk] = Ek−1[fτ (Xk)]
= Ek−1[fτ (Xk) + . . .+ fτ (Xn)]/(n− k + 1)
≤ Ek−1 sup

f∈F
{f(Xk) + . . .+ f(Xn)}/(n− k + 1) = En−k+1. (3.15)

Since 0 ≤ rk ≤ εk, we thus get that 0 ≤ Ek−1[rk] ≤ En−k+1.
Moreover, (3.12) implies that 0 ≤ rk ≤ 2 Φ(Xk). Then Lemma 1 of

Bentkus [2] ensures that for any function ϕ ∈ H1
+, E[ϕ(rk)] ≤ E[ϕ(ζk)], where

H1
+ is defined in (2.2). Notice that x 7→ x2

+ belongs to H1
+ and rk+ = rk,

whence,
n∑
k=1

Ek−1[(rk − Ek−1[rk])2] ≤
n∑
k=1

Ek−1[r2
k+] ≤

n∑
k=1

E[ζ2
k ].

We are now in a position to prove the main results.

Proof of Theorem 3.2. The key result is the following Fuk-Nagaev inequality
for martingales obtained by Courbot :
Theorem 3.11 ([7], Theorem 1). Let Mn := ∑n

k=1Xk be a martingale in
L2 with respect to a nondecreasing filtration (Fk), such that M0 = 0 and
‖E[X2

k | Fk−1]‖∞ <∞. Define

〈M〉n :=
n∑
k=1

E[X2
k | Fk−1].

Then, for any x, s, v > 0,

P(Mn+ ≥ x) ≤
n∑
k=1

P(sXk+ > x) + P(〈M〉n > v) + exp
(
− s2v

x2 h
(
x2

sv

))
,

where h(x) = (1 + x) log(1 + x)− x.
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We apply the above result to the two martingales in (3.14). The lower
bound h(x) ≥ x log(1 + x)/2 gives us the two first terms of the desired
inequality. It then remains us to bound up the tail functions P((ξk)+ > x) and
P((rk−Ek−1[rk])+ > x), which is simply done using the fact that ξk ≤ Φ(Xk)
and 0 ≤ rk ≤ 2 Φ(Xk). Moreover, observe that

P(Φ(X1) > x/s) + P(2 Φ(X1) > x/s) ≤ 2P(Φ(X1) > x/2s),

which completes the proof.

Proof of Theorem 3.3. First observe that (a) is the property (ii) of Propo-
sition 2.2 and that (c) follows immediately from (b) by the point (i) of the
same Proposition 2.2. Let us now prove (b). Recalling the decomposition
(3.14), the property (iii) of Proposition 2.2 imply

Q̃Z−E[Z](u) ≤ Q̃∑n

k=1 ξk
(u) + Q̃∑n

k=1(rk−Ek−1[rk])(u). (3.16)

Next, to control the terms in the right-hand side, the key result is the fol-
lowing new Fuk-Nagaev inequality obtained by Rio :
Theorem 3.12 ([17], Theorem 4.1). Let Mn := ∑n

k=1Xk be a martingale in
L2 with respect to a nondecreasing filtration (Fk), such that M0 = 0 and for
some constant r > 2,

‖E[X2
k | Fk−1]‖∞ <∞ and

∥∥∥ sup
t>0

(
tr P(Xk+ > t | Fk−1)

)∥∥∥
∞
<∞.

Define

σ =
∥∥∥∥ n∑
k=1

E[X2
k | Fk−1]

∥∥∥∥1/2

∞
and Cw

r (M) =
∥∥∥∥ sup
t>0

(
tr

n∑
k=1

P(Xk+> t | Fk−1)
)∥∥∥∥1/r

∞
.

Then for any u ∈]0, 1[,

Q̃Mn(u) ≤ σ
√

2 log(1/u) + Cw
r (M)µru−1/r,

where µr := 2 + max(4/3, r/3).
As in the proof of Theorem 3.2, we bound up ξk and rk−Ek−1[rk] respec-

tively by Φ(Xk) and 2 Φ(Xk) to get

Cw
`

( n∑
k=1

ξk

)
+ Cw

`

( n∑
k=1

(rk − Ek−1[rk])
)
≤ 3n1/`Λ+

` (Φ(X1)). (3.17)

Recalling the bounds of the quadratic variations of the two martingales that
we found previously, we conclude then the proof by combining (3.16), Theo-
rem 3.12 and (3.17).
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Proof of Corollary 3.4. First, we have (see Petrov [14], p.61–62 and Exercice
2.26) that for any ` ≥ 1,

E[(Z − E[Z])`+] = `
∫ ∞

0
P((Z − E[Z])+ ≥ x)x`−1dx. (3.18)

Hence, using Theorem 3.2, we get

E[(Z − E[Z])`+] ≤ `

2 s
`/2B

(s− `
2 ,

`

2
)
((nσ2)`/2 + (Vn)`/2)

+ 2n`
∫ ∞

0
x`−1 P(Φ(X1) > x/2s)dx, (3.19)

where B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt is the usual Beta function. See now that

for ` ≥ 2 and s := `+ 1, we have

1
2 B

(
s− `

2 ,
`

2

)
=
√
π

2
Γ(`/2)

Γ((`+ 1)/2) ≤ 1.

Finally, we conclude the proof by the change of variables x/2s = y in the
integral term in (3.19) and the subadditivity of the function x 7→ x1/`.

Proof of Corollary 3.7. First, observe that (a) follows directly from (2.6).
Let us now prove (b). We proceed exactly as in Rio [17, Theorem 5.1]. Both
(2.4) and Theorem 3.3 (b) imply

Λ̃+
` (Z−E[Z]) ≤ (σ

√
n+

√
Vn ) sup

u∈]0,1]

(
u1/`

√
2 log(1/u)

)
+3n1/`µ` Λ+

` (Φ(X1)).

(3.20)
Next, observe that u1/`

√
2 log(1/u) ≤

√
(`/e), which concludes the proof.

4 Application to power-type tail
Let Y1, . . . , Yn be a finite sequence of nonnegative, independent and identi-
cally distributed random variables and X1, . . . , Xn a finite sequence of in-
dependent and identically distributed random variables with values in some
measurable space (X ,F) such that the two sequences are independent. Let
P denote the common distribution of the Xk. Let G be a countable class of
measurable functions from X into [−1, 1] such that for all g ∈ G ,

P (g) = 0 and P (g2) < δ2 for some δ ∈]0, 1[. (4.1)

Let G be a measurable envelope function of G that is

|g| ≤ G for any g ∈ G , and G(x) ≤ 1 for all x ∈ R. (4.2)

13



We suppose furthermore that for any positive t,
P(Y1 > t) ≤ t−p for some p > 2. (4.3)

Define now
Z := sup

g∈G

n∑
k=1

Yk g(Xk). (4.4)

Setting X̃k := (Xk, Yk) and F the class of functions from X × R+ into R
which verified that for any f ∈ F there exists a unique g ∈ G such that
f(x, y) = yg(x), we then have Z = supf∈F

∑n
k=1 f(X̃k). Hence, this allows

us to apply results of the previous section. The envelope function of F is
defined by F (x, y) := y G(x). Moreover, we can obtain a more precise bound
for Vn. Indeed, we will use an upper bound for the mean of the suprema
of empirical processes, expressed in terms of the uniform entropy integral,
proved by van der Vaart and Wellner [20]. Let us first recall some classical
definitions.
Definition 4.1 (Covering number and uniform entropy integral). The cov-
ering number N(ε,G ) is the minimal number of balls of radius ε in L2(Q)
needed to cover the set G . The uniform entropy integral is defined by

J(δ,G ) := sup
Q

∫ δ

0

√
1 + logN

(
ε‖G‖Q,2,G

)
dε.

Here, the supremum is taken over all finitely discrete probability distributions
Q on (X ,F) and ‖f‖Q,2 denotes the norm of a function f in L2(Q).

Throughout this section, K denotes an universal constant which may
change from line to line.
Theorem 4.2. Let Z be defined by (4.4). Under conditions (4.1) – (4.3),
the following results hold :
(i) If Y1 is Lp-integrable, then

‖(Z − E[Z])+‖p

≤ p1/p√p+ 1
(
σ
√
n+K

√
p

p− 2

(
nq/4

√
J(δ,G ) +√p n1/p

(
J(δ,G )

δ

)1/q ))
+ 21+1/p n1/p(p+ 1)‖Y1‖p ‖G(X1)‖p. (a)

(ii) Moreover,

Λ̃+
p (Z − E[Z])

≤
√

(p/e)
(
σ
√
n+K

√
p

p− 2

(
nq/4

√
J(δ,G ) +√p n1/p

(
J(δ,G )

δ

)1/q ))
+ 3n1/pµp, (b)
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where q = p/(p− 1) and µp = 2 + max(4/3, p/3).
We now compare Inequality (a) above with results in the literature. Set

Cp := p1/p√p+ 1. Consider first the bounded case : Yk ≤ 1. Integrating the
Rio inequality recalled in Theorem 1.1 and bounding up E[Z] by Proposition
4.5 on next page, one obtains

‖(Z − E[Z])+‖p ≤ Cp

(
σ
√
n+K

√
p

p− 2

(
n1/4

√
J(δ,G ) +√p J(δ,G )

δ

))
.

(4.5)
Remark 4.3. Note that when p tends to infinity, q tends to 1. This allows
us to see (a) as an extension of (4.5) to the unbounded case.
Remark 4.4. In the unbounded case, Theorem 1.2 (of Boucheron & al. [3])
gives that

‖(Z − E[Z])+‖p ≤ Bp σ
√
n+ o(

√
n), (4.6)

where Bp := 2 (1− e−1/2)−1/2√p− 1. Remark that the constant Cp is always
better than the constant Bp. For instance, for p = 4, B4 ' 5.5225 and
C4 ' 3.1623. Furthermore, when p tends to infinity, Bp is equivalent to
3.1884√p while Cp is equivalent to √p.
Proof of Theorem 4.2. First, we bound up the term Vn = ∑n

k=1 E[ζ2
k ]. We

recall that ζk is a random variable with distribution function F2Y1G(X1),qk
(defined in (2.1)) and qk is such that E[ζk] = Ek. Let ψ be a random variable
with tail function defined by P(ψ > t) = t−p for all t ≥ 1 and let ζ̃k be a
random variable with distribution function Fψ,q̃k where q̃k is the real in [0, 1]
such that E[ζ̃k] = Ek. Clearly,

F2Y1G(X1),qk(x) ≥ Fψ,q̃k(x) for any x ∈ R.

Then Lemma 1 of Bentkus [2] ensures that for any ϕ ∈ H1
+, E[ϕ(ζk)] ≤

E[ϕ(ζ̃k)]. In particulary, this implies E[ζ2
k ] ≤ E[ζ̃2

k ]. Therefore, an elementary
calculation yields

Vn ≤ 2−(1−1/p) p

p− 2

(
p− 1
p

) p−2
p−1

n∑
k=1

E
p−2
p−1
k . (4.7)

Next we show how we can obtain a bound for Ek in terms of uniform entropy
integral.
Proposition 4.5. There exists a universal constant K such that for any
integer k ≥ 1,

1
k
E sup
g∈G

∣∣∣ k∑
j=1

Yjg(Xj)
∣∣∣ ≤ K

p

p− 2

(
k−1/2J(δ,G ) + p k(1/p)−1

(
J2(δ,G )

δ2

)1−1/p )
.
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Proof of Proposition 4.5. Let U1, . . . , Uk be k independent copies of a random
variable U distributed uniformly on [0, 1] and let Q be the quantile function
of ψ. Therefore Q(u) = u−1/p for any u ∈]0, 1[. Note that (4.3) implies
QY ≤ Q. Let also κ ∈ R such that

2κ = k δ2

J2(δ,G ) . (4.8)

Let us now define for every j = 1, . . . , dκe,

Ij := {m ∈ {1, . . . , k} : Um ∈]2−j, 21−j]},
Jκ := {m ∈ {1, . . . , k} : Um ≤ 2−dκe}.

Here, b.c and d.e denote the classical floor and ceiling functions. We recall
the basic property of the quantile function QX of a random variable X :
QX(U) has the same distribution as X for any random variable U with the
uniform distribution over [0, 1]. Then,

E sup
g∈G

∣∣∣ k∑
j=1

Yjg(Xj)
∣∣∣ ≤ E1 + E2, (4.9)

where

E1 :=
dκe∑
j=1

E sup
g∈G

∣∣∣ ∑
i∈Ij

Q(Ui)g(Xi)
∣∣∣ and E2 := E sup

g∈G

∣∣∣ ∑
j∈Jκ

Q(Uj)g(Xj)
∣∣∣.

Let us bound up E2. Since G ≤ 1, a straightforward calculation gives

E2 ≤ k
∫ 2−dκe

0
Q(u) du ≤ k

p

p− 1 2−κ(1−1/p). (4.10)

To bound up E1, we first notice that, since Q is decreasing, for any m ∈ Ij,
|Ymg(Xm)| ≤ Q(2−j). We can then apply Theorem 2.1 of Van der Vaart and
Wellner [20] which leads to

E1 ≤ K
(
J(δ,G )

dκe∑
j=1

E
[
|Ij|

1
2
]
Q(2−j) + J2(δ,G )

δ2

dκe∑
j=1

Q(2−j)
)
. (4.11)

By the definition of Ij, it is easy to see that

E
[
|Ij|

]
=

k∑
i=1

i

(
k

i

)
(2−j)i(1− 2−j)k−i = k 2−j.
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Then, Jensen’s inequality yields E[|Ij|
1
2 ] ≤

√
k 2−j. Now, recalling that

Q(u) = u−1/p,
dκe∑
j=1

2−j/2Q(2−j) ≤ 21/p−1/2

1− 21/p−1/2 ≤
2

log(2)
p

p− 2 . (4.12)

Likewise,
dκe∑
j=1

Q(2−j) = 2bκc/p
(
21/p +

bκc−1∑
j=0

2−j/p
)

≤ 2bκc/p
(
21/p + 1

1− 2−1/p

)
≤ 2κ/p

log(2)
p2

p− 2 . (4.13)

Hence, we derive from (4.11) – (4.13),

E1 ≤ K
p

p− 2

(√
k J(δ,G ) + p

J2(δ,G )
δ2 2κ/p

)
. (4.14)

Finally, both (4.9), (4.14), (4.10) and the definition of κ imply Proposition
4.5.

Let us continue the proof of Theorem 4.2. Using the subadditivity of the
functions x 7→ xa for 0 < a < 1, from (4.7) and Proposition 4.5 we obtain
that √

Vn ≤ K

√
p

p− 2

(
nq/4

√
J(δ,G ) +√p n1/p

(
J(δ,G )

δ

)1/q )
. (4.15)

Injecting this bound into Corollary 3.4 gives (a). Similarly, injecting this
bound in Inequality (b) of Corollary 3.7, we conclude the proof of (b) since
Λ+
p (Y1G(X1)) ≤ Λ+

p (ψ) = 1. This ends the proof of Theorem 4.2.
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