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Abstract—This paper proposes novel distributed control meth-
ods for the coupled dynamics of tokamak safety factor and
electron temperature. The distributed control is performed using
Electron Cyclotron Resonance Heating (ECRH) actuation. The
control design is based on infinite dimensional setting using
Lyapunov analysis for partial differential equations (PDEs). The
coupled dynamics is modeled by two 1D linearized resistive
diffusion equations. We first propose a combined control of both
dynamics based on a stability analysis. A composite control is
then synthesized using singular perturbation theory where the
fast component of the electron temperature is decoupled from
the slow component induced by the magnetic field dynamics
(the inverse of the safety factor being the associated controlled
variable). Both control methods are evaluated using the RAPTOR
simulator for tokamak devices and applied to the tokamaks TCV
and ITER.

Index Terms—Distributed control methods, controlled ther-
monuclear fusion, Tokamak devices, partial differential equa-
tions, singular perturbation theory.

I. INTRODUCTION

Tokamaks are large devices using a magnetic field to confine
a heat plasma in the shape of a torus. The aim of tokamak
research is to build a reliable power production system using
controlled thermonuclear fusion [1]. Heating of the tokamak
plasma comes from the electric currents obtained from several
sources. The main source of current in a tokamak is the
one induced by the transformer action caused by the central
ohmic coil. Other sources of current are neutral-beam injection
and radio-frequency (RF) antennas. There are several plasma
parameters, such as the safety factor q (related to the magnetic
flux) and the temperature of the electrons Te, that are defining
the plasma state. The design of a steady-state fusion reactor
relies on the development of so-called advanced tokamak
operation scenarios in which these plasma parameters profiles
are optimized.

Simultaneous control of multiple plasma parameters profiles
is a challenge, in particular because of the coupling between
the magnetic flux and the pressure profiles. The safety factor is
one of the key parameters to analyze the plasma magnetohy-
drodynamics (MHD) stability and performance. The electron
temperature determines the plasma resistivity, which governs
the evolution of the safety factor profile [2]. This makes these
two dynamics highly coupled. In this work we focus on the
simultaneous control of the poloidal magnetic flux gradient
z and the electron temperature Te. These two parameters
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are modeled by nonlinear coupled resistive diffusion partial
differential equations (PDEs).

The control models of the two coupled equations can be
obtained by first principles or be data-driven. Data-driven
models are obtained using system identification and parameter
estimation techniques. Such models and simultaneous feed-
back control of the magnetic and kinetic plasma parameters
can be found in [3], [4], [5], [6]. Control-oriented models
using the first principles of physics to describe the magnetic
flux profile in tokamak plasmas are proposed in [7], [8],
and control-oriented models considering both the coupled
poloidal flux and the electron temperature PDEs can be found
in [9], [10]. Nevertheless, some of the transport coefficients
are not well known and empirical models are developed for
these coefficients. For example, estimation methods for heat
transport coefficients are proposed in [11], [12], [13].

Numerous results were obtained on designing control al-
gorithms for the safety factor profile using Multi Input Multi
Output (MIMO) lumped models [14], [15], [16], [17], [18]. A
simple control algorithm based on the singular value decom-
position of the experimentally-deduced linear static response
model for integrated control of q and Te profiles is given in
[19]. A control algorithm for simultaneous control of the q and
Te profiles based on a MIMO approach for finite dimensional
systems based on a first principles model is presented in [10].

In this paper we focus on developing control algorithms
based on infinite dimensional control theory. Several works
used this method to control the safety factor profile, with
different levels of simplification regarding the impact of the
temperature profile (trough the plasma resistivity and the
bootstrap currents). In [20], a strict Lyapunov control func-
tion for the diffusion equation of the poloidal magnetic flux
gradient is computed. In this work, the resistivity coefficient is
considered to be varying in space and time, and the input-to-
state stability (ISS) properties of the system were examined.
In [21], a Lyapunov-based control strategy using sum-of-
squares is used to maximize the bootstrap current considering
a resistivity bounded between two external profiles. In [22]
a proportional integral (PI) controller is developed for H∞
stabilization of the spatial distribution of the current profile
supposing also a bounded resistivity. In this paper we consider
diffusion coefficients that vary in space and time and extend
the infinite dimensional Lyapunov analysis proposed by [20]
to the system given by the two coupled PDEs for z and Te
profiles. We examine the stability of the nominal system and
design a control strategy that improves the convergence rate
to the desired equilibrium point. For this aim we proposed a
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control Lyapunov function for the coupled linearized diffusion
equations with non-constant coefficients.

For the control of the coupled profiles we propose two
control strategies: one that uses one control Lyapunov function
for both variables and one that decouples the variables using
singular perturbation theory. The first method is suitable for
the small tokamaks while the second is more suitable for big
scale tokamaks, for which the difference between the time
scales of the two states is larger. For the second method, the
model is decoupled using the theory of singularly perturbed
PDE systems, in which a small parameter ε is introduced:
it represents the typical ratio of the thermal and resistive
diffusion time scales. Singular perturbation theory is widely
used in a control system theory [23], [24], [25]. Research
works in boundary control of singularly perturbed partial
differential equations with constant transport coefficients are
introduced in [26], [27]. A composite control strategy is used,
where separate controls are calculated for the slow and fast
dynamics of the system. In this work, only the external heating
systems are used as the constrained distributed control inputs
and the induced plasma current is assumed to have given
reference value.

The control methods developed in this paper are imple-
mented on RAPTOR (RApid Plasma Transport simulatOR)
[28]. RAPTOR is a control-oriented, physics-based code for
simulating the 1D plasma coupled poloidal flux diffusion and
the electron temperature transport. The transport equations
used in this simulator are nonlinear and tuned to match the
data coming from real operating tokamaks [29]. The code
is used as a tool for real time control applications design,
fast plasma simulation and as a real-time observer running
in parallel with the plasma discharge in TCV tokamak. Our
control results are evaluated on two tokamak simulations using
RAPTOR: TCV and ITER. The international thermonuclear
experimental reactor (ITER) is the leading research project
that aims to prove the feasibility of using thermonuclear
fusion for energy production. This experiment is currently
under construction in Cadarache, France, and should present
the transition from experimental studies of plasma physics to
fusion power stations that are capable of producing sustainable
energy. There exists a number of smaller currently operational
tokamak devices, such as JET, DIII-D, TCV and JT-60U, that
are used for experimental research. The experiments of these
tokamaks have made significant progress towards realizing the
goal of fusion energy.

The paper is organized as follows. In Section II the coupled
PDEs for z and Te are presented and the control problem
is defined. In Section III the simplified linearized model is
derived. This linearized model is used to develop the control
strategies. A Lyapunov function for stability analysis is com-
puted and used for convergence rate control in Section IV. In
Section V the model is decoupled using singular perturbation
theory and composite control is computed for the decoupled
system. The control implementation is presented in Section VI.
In Section VII the results from the control implemented in the
nonlinear RAPTOR simulator are presented.

The main variables definitions are given in Table I.

Variable Symbol Unit
a small plasma radius m
BΨ poloidal magnetic field T
BΦ toroidal magnetic field T
B0 toroidal magnetic field at the center T
Ip total plasma current A
jni non inductive effective current density A/m2

jbs bootstrap current density A/m2

jni auxiliary sources current density A/m2

ne electron density profile m−3

pe electron pressure profile eV m−3

Pec electron cyclotron heating power W
Qe electron heating power density W/m3

QOH ohmic power density W/m3

Qaux auxiliary sources power density W/m3

Qei electron-ion loss power density W/m3

Qrad radiation loss power density W/m3

Ti ions temperature profile eV
Te electrons temperature profile eV
Vloop Toroidal loop voltage V
x normalized spatial variable m
Zeff effective value of the plasma charge
z poloidal magnetic flux gradient T/m3

η|| plasma resistivity Ω×m
ψ magnetic flux of the poloidal field T/m2

φ toroidal magnetic flux T/m2

q safety factor
ι rotational transform
χe electron diffusivity m2/s
R0 magnetic center location m
ρ spatial variable m
µ0 permeability of vacuum H/m

TABLE I: Most relevant physical variables and units

II. PROBLEM DESCRIPTION

A. Magnetic flux dynamics

For control design we are interested in the evolution of the
safety factor q (or its reciprocal, the rotational transform ι),
which is one of the key parameters to analyze the plasma
stability and transport. The safety factor denotes the ratio of
toroidal to poloidal turns for a given magnetic field surface
within a tokamak. The equation that defines q is:

q =
1

ι
=
∂Φ

∂Ψ
=
∂Φ/∂x

∂Ψ/∂x
=

2πB0a
2x

∂Ψ/∂x
(1)

where Ψ is the poloidal magnetic flux, Φ is toroidal magnetic
flux, B0 the toroidal magnetic field at the center of the vacuum
vessel and x = ρ/a is a normalized variable of the equivalent
radius of the magnetic surfaces, ρ =

√
Φ
πB0

, a being the small
plasma radius.

We consider as controlled magnetic state the space deriva-
tive of the magnetic flux z = ∂Ψ

∂x , since the variables of main
interest (q, ι and current profiles) depend on z. To design
a control law with real-time capabilities, we consider the
simplified one-dimensional model for z (using the cylindrical
approximation, which can be easily alleviated but simplifies
the notations) as in [8]:

∂z

∂t
=

∂

∂x

(
η||

µ0a2x

∂

∂x
(xz)

)
+

∂

∂x
(η||Rojni) (2)

with boundary conditions:

z(0, t) = 0, ∀t ≥ 0

z(1, t) = −Roµ0Ip(t)

2π
, ∀t ≥ 0

(3)
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and initial condition:

z(x, 0) = z0(x), ∀x ∈ [0, 1] (4)

where R0 is the major radius of the plasma (assumed constant
in time), µ0 is the permeability of vacuum and η‖(x, t) is
the parallel electrical resistivity of the plasma. Ip(t) is the
total plasma current and jni(x, t) is the non-inductive current-
density. The non-inductive current density is obtained by
combining the auxiliary sources of current density jaux(x, t)
(current drive radio-frequency (RF) systems) and the bootstrap
current density jbs(x, t):

jni = jaux + jbs (5)

The parameters η‖(x, t) and jbs(x, t) are highly dependent
on the dynamics of the electron temperature Te(x, t). The
simplified models used in this work for these parameters are
given in Appendix A.

The auxiliary sources are used for current drive (jaux) and
external heating (Qaux, see next section) of the plasma. In
this work they are considered as the control inputs. There are
different sources that can be operated in tokamak machines,
such as neutral beam injection and RF antennas operated at ion
cyclotron, electron cyclotron or lower hybrid frequencies. The
auxiliary current is obtained as the sum of currents produced
by the RF antennas. In this work, we aim at finding the
optimal profile shape of jaux(x, t) that achieves the desired
control action. Such shape depends on the coupling of the RF
with the plasma and only a limited number of engineering
parameters (such as the power, phase and position of the
antennas) are available for control, thus limiting the number
of degrees of freedom. We use the notation u(t) to refer to
all variable parameters in the auxiliary sources that can be
manipulated and used as control inputs to obtain the desired
jaux(x, t) profile. The simplified expression of jaux(x, t)
for the configurations of the simulator used in this work is
presented in Section VI.

In this paper we focus on developing a control strategy
for the evolution of z, which can be directly related to the
rotational transform ι(x, t) = 1

2πB0a2x
z(x, t) (a parameter that

is most often used as the controlled state in tokamaks).

B. Electron temperature dynamics

In tokamak plasma the transport phenomena of the electron
temperature Te and density ne are coupled and modeled by a
diffusion equation. This equation is obtained from simplified
1D energy transport and is presented as in [30], using the
cylindrical approximation, as:

3

2

∂
(
neTe

)
∂t

=
1

a2

1

x

∂

∂x
(xneχe

∂Te
∂x

) +Qe (6)

with boundary conditions:

∂Te
∂x

(0, t) = 0,∀t ≥ 0

Te(1, t) = Te,edge(t),∀t ≥ 0
(7)

and initial condition:

Te(x, 0) = T0(x), ∀x ∈ [0, 1] (8)

where χe(x, t) is the electron diffusivity and Qe(x, t) is the
total electron heating power density. Note that χe and Qe
depend on both z and Te, rendering the system coupled and
nonlinear.

The electron heating energy source (the algebraic difference
between the supplied and lost energies) is calculated as a sum
of several contributions:

Qe = QOH −Qei −Qrad +Qaux (9)

where QOH(x, t) is the ohmic effect power density, Qei(x, t)
is the electron-ion heat exchange power density and Qrad(x, t)
is the radiation power density. Their simplified models used
in this work are given in Appendix A. The auxiliary heating
power density Qaux(x, t) comes from the auxiliary sources
that are used as control inputs. As for jaux(x, t), our feedback
control approach is designed to optimize the engineering
inputs u to achieve the desired Qaux(x, t) profile. The model
used for this variable depends on the considered tokamak de-
vice and it is adapted to our test case presented in Section VI.
Note that the same u sets both jaux and Qaux.

The goal of this work is to design a control strategy for
the coupled dynamics of the inverse of the safety factor ι and
the electron temperature Te. Even though in the test cases
considered in Section VI we are limited by using only the
electron cyclotron current drive (ECCD) antennas with fixed
position, the generality of the control strategy can easily be
extended to include other non-inductive actuators and it does
not require a fixed position and shape of the actuators as in
the most of the other works presented previously.

III. LINEARIZED COUPLED DYNAMICS

For control purpose we linearize the model at a given
equilibrium state (z, T e). This equilibrium is calculated by
taking the values of the plasma parameters when the inputs
(u, Ip) are constant during a sufficiently long time for the
system to reach a steady state. An equilibrium is defined as a
stationary solution of (2) and (6) as:

0 =
∂

∂x

(
η‖

µ0a2x

∂

∂x
(xz)

)
+

∂

∂x
(η‖Rojni)

0 =
1

a2

1

x

∂

∂x
(xneχe

∂T e
∂x

) +Qe

(10)

The linearized model is derived around the steady state by
substituting, in the reference model from Section II, z = z+ z̃,
Te = T e+ T̃e, u = u+ ũ and Ip = Ip+ Ĩp using Taylor series
with first order approximation. Here (z, T e, u, IP ) denotes
the equilibrium point of the system and (z̃, T̃e, ũ, Ĩp) denotes
the variations around this point. The model is simplified
additionally by considering the following assumptions:
• the electron density profile is constant during the heat

process, ne = ne(x);
• the space variations of the electron density are neglected

with respect to those of the temperature: ∂ne/∂x �
∂Te/∂x;

• only the auxiliary heating/current drive systems are con-
sidered as controlled inputs, while Ip is assigned with
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a reference value, Ip(t) = Ip. Note that Ip(t) could be
used as a controlled input in our framework using the
methods described in [31].

Under these assumptions, the simplified linearized coupled
model coming from (2) and (6) is derived as:

∂z̃

∂t
=
∂

∂x

(
a1(x)

x

∂

∂x

(
xz̃
))

+
∂

∂x

(
a2(x)T̃e

)
+

∂

∂x

(
a3(x)

∂T̃e
∂x

)
+

∂

∂x

(
a4(x)z̃

)
+

∂

∂x

(
a5(x)j̃aux(u, x, t)

)
ε
∂T̃e
∂t

=
1

x

∂

∂x

(
xb1(x)

∂T̃e
∂x

)
− b2(x)T̃e

+
1

x

∂

∂x

(
xb3(x)z̃

)
+
b4(x)

x

(
∂

∂x
(xz̃)

)
+ b5(x)Q̃aux(u, x, t)

(11)

with boundary conditions:

z̃(0, t) = 0,∀t ≥ 0

z̃(1, t) = 0∀t ≥ 0

∂T̃e
∂x

(0, t) = 0,∀t ≥ 0

T̃e(1, t) = T̃e,edge(t),∀t ≥ 0

(12)

and initial condition:

z̃(x, t0) = z̃0; T̃e(x, t0) = T̃e,0,∀x ∈ [0, 1] (13)

The coefficients of these PDEs are given in (50).
In this model ε stands for the typical ratio between the

energy confinement time and the characteristic resistive diffu-
sion time. This parameter varies with the size of the different
tokamak devices. In a small tokamak such as TCV this
parameter is ε ≈ 0.07, and in a large tokamak such as ITER
this parameter is ε ≈ 0.01, which makes the relative time
constants of the dynamics and the impact of the couplings
between the states to be very diverse.

IV. STABILITY ANALYSIS AND CONTROL OF THE COUPLED
SYSTEM

A. Stability analysis

The stability of the coupled dynamics is analyzed with the
following Lyapunov function candidate:

V (z̃, T̃e) =
1

2

∫ 1

0

[
z̃ T̃e

] [x2p1(x) 0
0 γx2p2(x)

] [
z̃

T̃e

]
dx

(14)

where p1(x) > 0 and p2(x) > 0 for x ∈ [0, 1] are polynomial
functions. The candidate Lyapunov function is chosen as a
weighted L2([0, 1]) norm and it is multiplied by the term x
to handle the singularity at x = 0, which comes from the
cylindrical representation of the system. The scaling parameter
γ is added to balance the differences of amplitude between z̃
and T̃e. The stability of our coupled system of linearized
equations is established with the following theorem.

Theorem 1. Suppose that for a given positive number α1,
there exist polynomials p1 and p2 such that p1(x) > 0 and
p2(x) > 0 for all x ∈ [0, 1], and

A1(x) + α1A2(x) ≤ 0 (15)

for all x ∈ [0, 1], where:

A1(x) =


A1,1(x) A1,2(x) A1,3(x) A1,4(x)
A1,2(x) A2,2(x) A2,3(x) 0
A1,3(x) A2,3(x) A3,3(x) A3,4(x)
A1,4(x) 0 A3,4(x) A4,4(x)

 (16)

A2(x) =
1

2


x2 0 0 0
0 γx2 0 0
0 0 0 0
0 0 0 0

 (17)

and the elements in the A1(x) matrix are given in (18).
Then the time derivative V̇ of V defined in (14) along the

solutions of (11) and (12) verifies:

V̇ ≤ −α1

max
x∈[0,1]

(
p1(x), p2(x)

)V
+

∫ 1

0

x2p1(x)
∂

∂x

(
a4(x)j̃aux(ũ, x, t)

)
z̃dx

+ γ

∫ 1

0

x2p2(x)

ε
b5(x)Q̃aux(ũ, x, t)T̃edx,∀t ≥ 0

(19)

Proof. See Appendix B.

The nominal stability (ũ = 0) is then directly obtained with
the following corollary.

Corollary 1. If the conditions of Theorem 1 are satisfied, the
system (11) with ũ = 0, boundary conditions (12) and initial
condition (13) is globally exponentially stable. The conver-
gence rate of the system satisfies V (t) ≤ e−β1tV (z̃0, T̃e,0),
where β1 = −α1/[ max

x∈[0,1]

(
p1(x), p2(x)

)
].

Proof. This result is directly obtained by setting ũ = 0: the
variations of the auxiliary current and power density are zero
(j̃aux = Q̃aux = 0) and from Theorem 1, the following
inequality is obtained:

V̇ ≤ −β1V, ∀t ≥ 0 (20)

Integrating this inequality over time implies the desired in-
equality on V (t).

B. Calculation of the Lyapunov Function

To compute the polynomial functions p1 and p2 involved
in Theorem 1, let us consider them as Legendre polynomials.
Using Legendre polynomials, the inequality (15) is formulated
and solved as an LMI problem that is defined with x in the
range [0, 1]. Legendre polynomials are orthogonal in the range
[−1, 1], and the polynomials p1 and p2 can be expanded in this
interval in terms of them as [32]:

p1(x) =

N1∑
i=0

c1,iPi(x), p2(x) =

N2∑
i=0

c2,iPi(x)
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A1,1 =
1

2

(
3xp′1(x) + x2p′′1(x)− p1(x)

)
a1(x) +

1

2
a′1(x)

(
x2p′1(x) + 3xp1(x)

)
− 2xp1(x)a4(x)− x2p′1(x)a4(x)

A1,2 =− xp1(x)a2(x)− 1

2
x2p′1(x)a2(x) +

γ

2ε
xb3(x)

(
xp′2(x) + p2(x)

)
+

γ

2ε
xp2(x)b4(x)

A1,3 =− 1

2
x2p1(x)a4(x), A1,4 = −xp1(x)a3(x)− 1

2
x2p′1(x)a3(x)

A2,2 =− γ

ε
x2p2(x)b2(x) +

γ

2ε
b1(x)

(
(x2p′′2(x) + 2xp′2(x) + p2(x)

)
+

γ

2ε
b′1(x)

(
x2p′2(x) + xp2(x)

)
A2,3 =− 1

2
x2p1(x)a2(x)− γ

2ε
x2b3(x)p2(x) +

γ

2ε
x2p2(x)b4(x)

A3,3 =− x2p1(x)a1(x), A3,4 = −1

2
x2p1(x)a4(x), A4,4 = −γ

ε
x2b1(x)p2(x)

(18)

where c1,1, ..., c1,N1 and c2,1, ..., c2,N2 are constant, Pi(x) is
the i− th order Legendre polynomial, and N1 and N2 are the
order of the Legendre polynomials for p1 and p2, respectively.

Sampling the interval [0, 1] and representing p1 and p2 as
a sum of Legendre polynomials permit us to formulate the
following LMI problem:

Maximize α1 ≥ 0
such that the polynomials p1(x) and p2(x) satisfy:

1) 0 < p1(x) ≤ p1,max and 0 < p2(x) ≤ p2,max,∀x ∈
[0, 1]

2) A1(x) + α1A2(x) ≤ 0,∀x ∈ [0, 1]

This LMI problem for finding the unknown constant parame-
ters c1,1, ..., c1,N1 and c2,1, ..., c2,N2 is solved using YALMIP
toolbox [33] for MATLAB R©.

C. Convergence rate control

Considering the results of Theorem 1, a control strategy can
be defined to accelerate the convergence rate of the system.
This is done with the following corollary.

Corollary 2. If the conditions of Theorem 1 are verified, the
feedback control parameters ũ can be calculated to obtain the
following equality:∫ 1

0

x2p1(x)
∂

∂x

(
a4(x)j̃aux(ũ, x, t)

)
z̃dx

+ γ

∫ 1

0

x2p2(x)

ε
b5(x)Q̃aux(ũ, x, t)T̃edx = −α2V

(21)

where α2 > 0 is a tuning parameter. Using this feedback
control, the system (11) with boundary conditions (12) is
globally exponentially stable and the convergence rate of
the Lyapunov function satisfies V̇ ≤ −β2V , where β2 =
(α1 + α2)/[ max

x∈[0,1]

(
p1(x), p2(x)

)
].

The convergence rate is thus increased by a factor
α2/[ max

x∈[0,1]

(
p1(x), p2(x)

)
] by designing a control law that

solves (implicitly) equation (21) for ũ.
Note that this controller is suitable for systems with com-

mensurate time scales, such as small scale tokamaks in which
there is no significant time scales difference between the
fast and the slow components. This control strategy is less
appropriate for large scale tokamaks, where ε is very small.

Indeed, using only one candidate Lyapunov function is not
effective enough to control the convergence rate of a system
that consists of several components with different time scales
[23]. The control strategy for large tokamaks is discussed in
the next section.

V. SYSTEM DECOUPLING USING SINGULAR
PERTURBATION THEORY

In large tokamak machines, the dynamics of the evolution
of z is much slower than the dynamics of Te [3]. To deal
with the two time scales we introduce the small (constant)
parameter, ε that represents the typical ratio between the en-
ergy confinement time and the characteristic resistive diffusion
time. To apply the singular perturbation theory we divide the
system into two different time scales by introducing the fast
time scale τ = εt. Using this time scale we can isolate the
slow variables, which are considered as fixed in the fast time
scale and using static equations they are separated from the
fast component.

Considering that ε� 1, the electrons temperature dynamics
can be decomposed into two components: the slow component
T̃s that evolves with the (slow) variations of the magnetic
flux and the fast component T̃f that reacts more rapidly to
inputs variation. We thus have that T̃e = T̃s+ T̃f . At the slow
time scale, the static equation for the electron temperature is
computed using the assumption that ∂T̃s/∂τ << ∂T̃f/∂τ in
the heat equation. In this equation T̃e is replaced by T̃s, which
denotes the slow variation of the temperature. T̃s is called the
quasi-steady state (QSS) and is determined by:

0 =
1

x

∂

∂x

(
xb1(x)

∂T̃s
∂x

)
− b2(x)T̃s +

1

x

∂

∂x

(
xb3(x)z̃

)
+
b4(x)

x

(
∂

∂x
(xz̃)

)
+ b5(x)Q̃aux,s(ũs, x, t)

(22)

where ũs is the slow component of the input and with
boundary conditions:

∂T̃s
∂x

(0, t) = 0 ; T̃s(1, t) = T̃e,edge(t) (23)

The solution of T̃s(x, t) is calculated at each time instant from
z̃ and ũs in (22) using numerical methods. The evolution of
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the fast dynamics is included with a boundary layer model,
obtained in the fast time scale as:

∂T̃f
∂τ

=
1

x

∂

∂x

(
xb1(x)

∂T̃f
∂x

)
− b2(x)T̃f

+ b5(x)Q̃aux,f (ũf , x, τ)

(24)

with boundary conditions:

∂T̃f
∂x

(0, τ) = 0 ; T̃f (1, τ) = 0 (25)

where ũf stands for the fast component of the input.
The magnetic field component z̃ writes in terms of T̃s as:

∂z̃

∂t
=
∂

∂x

(
a1(x)

x

∂

∂x

(
xz̃
))

+
∂

∂x

(
a2(x)T̃s

)
+

∂

∂x

(
a3(x)

∂T̃s
∂x

)
+

∂

∂x

(
a4(x)z̃

)
+

∂

∂x

(
a5(x)j̃aux(us, x, t)

) (26)

with boundary conditions:

z̃(0, t) = 0 ; z̃(1, t) = 0 (27)

Our dynamics is thus composed of two PDEs at evolving
at different time scales, (24) and (26) with their boundary
and initial conditions, and one PDE that acts as an algebraic
constraint, (22) with its boundary conditions. The composite
control is obtained by separately calculating and combining
the slow and the fast components as ũ = ũs + ũf .

A. Slow component stability and control
The slow component of the control is calculated by consid-

ering only the magnetic flux as setting the slow dynamics of
the system (26)-(27). To compute the stability of this dynam-
ics, the following Lyapunov function candidate is chosen:

Vs(z̃) =
1

2

∫ 1

0

x2ps(x)z̃2dx (28)

The evolution of this Lyapunov function is inferred from the
following theorem.

Theorem 2. Suppose that for a given positive number α3 there
exists a polynomial ps such that ps(x) > 0 for all x ∈ [0, 1]
and satisfying, for all x ∈ [0, 1],

a1(x)

2

(
3xp′s(x) + x2p′′s (x)− ps(x)

)
+
a′1(x)

2

(
x2p′s(x) + 3xps(x)

)
+ a4(x)

(
xps(x) +

x2

2
p′1(x)

)
+
x2

2
a′4(x)p1(x) ≤ −α3

2
x2

(29)

Then the time derivative V̇s of the function Vs defined by (28)
verifies:

V̇s ≤− β3Vs +

∫ 1

0

x2ps(x)
∂

∂x

(
a2(x)T̃s + a3(x)

∂T̃s
∂x

)
z̃dx

+

∫ 1

0

x2ps(x)
∂

∂x

(
a5(x)j̃aux(ũs, x, t)

)
z̃dx

(30)

where β3 = α3

max
x∈[0,1]

ps(x)

Proof. See Appendix C.

We use the dynamics (30) to design a convergence rate
controller, as described in the following corollary.

Corollary 3. If the conditions of Theorem 2 are verified, the
feeedback control parameters of the slow component, ũs can
be calculated to obtain the following relation:

∫ 1

0

x2ps(x)
∂

∂x

(
a2(x)T̃s + a3(x)

∂T̃s
∂x

)
z̃dx

+

∫ 1

0

x2ps(x)
∂

∂x

(
a5(x)j̃aux(ũs, x, t)

)
z̃dx = −α4Vs

(31)

where α4 > 0 is a tuning parameter. Using this feedback
control, the system (26) with boundary conditions (27) is
globally exponentially stable with a convergence rate that
satisfies V̇s ≤ −β4Vs, where β4 = α3+α4

max
x∈[0,1]

ps(x) .

B. Fast component stability and control

The fast component of the system has dynamics governed
by (24)-(25). To compute the stability of this system (boundary
layer system), the following candidate Lyapunov function is
selected:

Vf (T̃f ) =
1

2

∫ 1

0

pf (x)T̃ 2
f dx (32)

and its dynamics is studied in the following theorem.

Theorem 3. Suppose that for a given positive number α5 there
exists a polynomial pf such that pf (x) > 0 for all x ∈ [0, 1]
and satisfying, for all x ∈ [0, 1],

b1(x)

2

(
x2p′′f (x) + 2xp′f (x) + pf (x)

)
+
b′1(x)

2

(
x2p′f (x) + xpf (x)

)
− x2b2(x)pf (x) ≤ −α5

2
x2

(33)

Then the time derivative V̇f of the function Vf defined by (32)
verifies:

V̇f ≤ −β5Vf +

∫ 1

0

x2pf (x)b5(x)Q̃aux,f (ũf , x, τ)T̃fdx

(34)

where β5 = α5

max
x∈[0,1]

pf (x) .

Proof. See Appendix D.

The convergence rate of the boundary layer system is
controlled using the following corollary.

Corollary 4. If the conditions of Theorem 3 are verified, the
feedback control parameters of the boundary layer system ũf
can be calculated to obtain the following relation:∫ 1

0

x2pf (x)b5(x)Q̃aux,f (ũf , x, τ)T̃fdx = −α6Vf (35)
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where α6 > 0 is a tuning parameter. Using this feedback
control, the system (24) with boundary conditions (25) is
globally exponentially stable with a convergence rate that
satisfies V̇ ≤ −β6V , where β6 = α5+α6

max
x∈[0,1]

pf (x) .

Numerical algorithms to solve the functional equation (29)
to find ps from Theorem 2 and the functional equation (33) for
pf from Theorem 3, can be found in [20], [34]. In this work,
these inequalities are scalar and they are found using Legendre
polynomials and the algorithm solving the LMI problem, as
the one defined in Section IV-B.

VI. CONTROL IMPLEMENTATION

A. Auxiliary current and power density models

The auxiliary sources are modeled as simple weighted
Gaussian distributions as proposed in [8], with the analytical
parametrization defined for RAPTOR in [9]. These distribu-
tions approximate both the power and current densities. The
total auxiliary current density is computed as the sum of the
current densities induced by each ECCD antenna:

jaux =

naux∑
i=1

jaux,i (36)

where naux denotes the number of the auxiliary sources. Each
individual auxiliary current drive is modeled as:

jaux,i =
T e
ne
jdis,i(x)Paux,i(t) (37)

which represents the product of the weighted Gaussian distri-
butions jdis,i(x) (given in [9]), representing the normalized
reference current density deposition profiles by the input
powers Paux,i(t) and the current-drive efficiency (T e

ne
).

Similarly, the total auxiliary power density is composed by
the sum of the individuals induced by each ECCD antenna:

Qaux =

naux∑
i=1

Qaux,i (38)

The individual auxiliary power densities are modeled as:

Qaux,i = Qdis,i(x)Paux,i(t) (39)

where Qdis,i(x) (given in [9]) is a normalized reference power
density deposition profile for the i-th auxiliary source.

In our control application, the weighted Gaussian distribu-
tions of Qdis,i(x) and jdis,i(x) are fixed by the choice of the
position and distribution of the electron cyclotron antennas.
This means that only the input powers Paux(t) are available
to achieve the desired control signal. Thus, the control inputs
are presented as a combination of the powers of the auxiliary
sources u(t) = [Paux,1(t), ..., Paux,naux

(t)].

B. Calculation of the control inputs

The control is implemented using only a limited number of
actuators (the powers of the ECCD clusters Paux,i(t)) while
our convergence rate controllers imply the evolution of full
spatial distributions. An extra step is thus needed to optimize
the engineering parameters according to the control objective.
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Fig. 1: Normalized auxiliary electron cyclotron deposition
profiles for the TCV configuration: current-drive jaux (bottom,
×1020 m−5A

keVW ) and power density Qaux (top, m−3).
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Fig. 2: Normalized auxiliary electron cyclotron deposition
profiles for ITER simulation: current-drive jaux (1020 m−5A

keVW )
and normalized auxiliary electron cyclotron power density
Qaux (m−3) .

For the practical implementation of the control strategy
proposed in Corollary 2, the following optimization problem
is formulated to find the engineering parameters at each time
instant:

min
ũ

J(ũ)

subject to : −α2V ≤ J(ũ) ≤ 0

ũmin ≤ ũ ≤ ũmax

(40)

with

J(ũ) =

∫ 1

0

x2p1(x)
∂

∂x

(
a4(x)j̃aux(ũ, x)

)
z̃ dx

+

∫ 1

0

x2 γp2(x)

ε
b5(x)Q̃aux(ũ, x)T̃e dx
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where ũmin and ũmax stand for the minimum and maximum
values of the allowed power for each antenna.

Remark. The convergence rate of the system in this section is
calculated from a practical implementation standpoint. It takes
into account the limitations of the current and of the power
distribution profiles, imposed by the limitations of the auxiliary
heating sources. These limitations make the equality (21) to
be very restrictive and difficult to achieve. The optimization
(40) solves the optimal engineering parameters to reach the
desired convergence rate α2 in a less strict way. Therefore, the
closed-loop system is stable and the convergence rate varies
in the range: −β1V ≤ V̇ ≤ −β2V (between the open-loop
and unconstrained control values), depending on the actuators
limitations.

When the system is divided into two components using
singular perturbation theory (decoupled control), there are two
objective functions that should be solved: one for the slow
component (31) and one for the fast component (35). Com-
bining these two functions for feedback control design, the
following multi-objective optimization problem is formulated:

min
ũ=ũs+ũf

ω1Js(ũs) + ω2Jf (ũf )

subject to :− α4Vs ≤ Js(ũs) ≤ 0

− α6Vf ≤ Jf (ũf ) ≤ 0

ũmin ≤ ũs + ũf ≤ ũmax

(41)

with

Js(ũs) =

∫ 1

0

x2ps(x)
∂

∂x

(
a2(x)T̃s + a3(x)

∂T̃s
∂x

)
z̃ dx

+

∫ 1

0

x2ps(x)
∂

∂x

(
a5(x)j̃aux(ũs, x)

)
z̃ dx

Jf (ũf ) =

∫ 1

0

x2pf (x)b5(x)Q̃aux,f (ũf , x)T̃f dx

The weights ω1, ω2 > 0 are the tuning parameters of the
multi-objective optimization problem, and T̃s is found as the
solution of (22) at each time instant using z̃ and ũs.

VII. RESULTS
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Fig. 3: Numerical solution of p1(x) and p2(x) for TCV

The two control strategies presented in the previous sections
are evaluated using the nonlinear tokamak simulator RAPTOR.
While real tokamak experiments for feedback control purposes
are particularly difficult to obtain, RAPTOR provides a valid
alternative as it includes the main physical properties of
the plasma at the time scales of our study and has been
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Fig. 5: Evolution of ι (top) and Te (bottom) at different plasma
radii for the TCV simulation. The reference profile is modified
at t = 0.3 s and a disturbance (extra source) is added at t =
0.5 s.
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Fig. 6: Comparison of the final profiles of ι and Te obtained
in open and closed loop for the TCV simulation.

successfully compared with experimental measurements on
numerous test cases. Our first control approach (coupled case)
is first evaluated on the small tokamak TCV (ε ≈ 0.07) and
then on the largest one ITER (ε ≈ 0.01). It is compared
on ITER with our second control approach, emphasizing the
interest for considering the different time scales separately for
large tokamaks.
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Fig. 4: Time-evolution of the normalized Lyapunov function in TCV simulations.
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control of TCV.

A. TCV control

The strategy presented in Section IV is tested on the TCV
configuration. The feedback control is calculated solving the
optimization problem given in (40). In this configuration, the
flat-top plasma current is set to a constant Ip = 120 kA,
while the EC antennas are used as control inputs. The control
inputs are those available in the real TCV experiment and
constituted by two EC heating and current drive antennas. The
positions of the antennas set one on-axis current deposition
with power Pec1 and an off-axis one with power Pec2. The
deposition width is ωdep = 0.35 and the location of its peak is
xdep = 0 for both clusters. The configuration of the reference
values of jaux and Qaux is shown in Fig. 1. The linearized
model is obtained by extracting the parameters of the model
corresponding to a stationary state when a constant value of the
powers of the antennas is applied with Pec1 = Pec2 = 500 kW.

Using these plasma parameters, the Lyapunov function
of the system is calculated using the method presented in
Section IV-B and the polynomials of the Lyapunov function
were obtained as 5th order Legendre polynomials, presented

in Fig. 3. The solver finds the maximum value of α1 = 0.03,
which provides some robustness margin. In Fig. 4a the evolu-
tion of the nominal system (zero inputs) is compared with the
calculated exponential convergence rate e−β1tV(0). We can
see that the inequality is satisfied and is relatively conservative,
as a larger value of the convergence rate could be found. The
calculation of the Lyapunov function proves its existence and
the stability of the dynamics around the linearization profiles.

To test the control approach, several reference profiles are
extracted, with open-loop simulation, using different fixed
values of the powers P ec1 and P ec2. The reference profiles are
used as reference trajectories for the tracking control and the
corresponding powers vector u are included as a feedforward
input, e.g. u = u + ũ. In real tokamak experiment, the
calculation of the feed-forward stationary values should be
done using online numerical methods to solve the static plasma
equations, for example as the one proposed in [18].

Saturations are set on the actuators and the power inputs
are limited within the range of 0 to 1 MW. The reference
profile is modified at t = 0.3 s to test the performance when
the values of the nonlinear plasma parameters are different
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from the values used for linearization (modeling errors). At
0.5 s a disturbance is introduced using a third EC source with
xdep = 0.2 and ωdep = 0.35, to illustrate the robustness of
the controller with respect to deviations from the calculated
equilibrium point. The simulation results for ι and Te tracking
are presented in Fig. 5: the feedback controller starts at 0.1 s
and the results are compared with the open-loop (feedforward
only) response of the system. Comparing the open and closed
loop responses, the feedback control clearly gives a faster
convergence rate and manages to attenuate the offset induced
by the disturbances. This is further emphasized on the final
values of the ι and Te profiles in Fig. 6. The control inputs
are presented in Fig. 7, showing the evolution of the current
and heat depositions, and the related input powers. The input
saturations during the transients are successfully handled by
the controller.

The time-evolutions of the Lyapunov function for several
cases are compared in Fig. 4b. In this figure, the convergence
rates of the closed-loop and the open-loop responses are
compared with and without disturbance. In the both cases, the
closed-loop system converges faster to the reference point than
the open-loop system. The convergence rate of the closed-loop
system is set by tuning the value of α2. Increasing the value
of this parameter decreases the settling time and the steady
state error. However, if α2 is too large the system response
begins to oscillate and may become unstable. An α2 too large
also implies a large input usage and larger overshoot of the
fast-varying electron temperature.

B. ITER control

Our control methods are evaluated and compared on a
second tokamak by setting RAPTOR with a configuration
based on the ITER machine in L-mode. Even though RAPTOR
is not the most suitable simulator for ITER and the model is
not as accurate as the one of TCV, this configuration is used to
test the performance of the composite control in a large scale
tokamak that has a larger difference in the time scales. In this
configuration three EC antennas are used as actuators. The
reference values of jaux and Qaux are presented in Fig. 2. The
plasma current is set to a constant Ip = 7 MA and a linearized
model is obtained by extracting the parameters corresponding
to a stationary state when constant values of the powers of
the EC antennas are Pec1 = Pec2 = Pec3 = 7 MW. The input
powers are limited in the range of 0 to 10 MW. As for the
TCV simulations, several reference profiles are obtained to
test the controller performance. An additional EC antenna is
introduced to test the robustness with respect to deviations
from the calculated equilibrium point.

Since both control methods necessitate a choice concerning
the relative importance of the magnetic flux control with
respect to the electrons heat control, we consider two control
cases: Case 1 emphasizes the convergence rate of z̃ while T̃e
is the priority for Case 2. Both control methods are evaluated
on each case.

We first implement the coupled control presented in Sec-
tion IV. The convergence rate is set by the tuning parameter α1

and the nature of the response depends highly on the choice of

Fig. 8: Evolution ι (top) and Te (bottom) in the ITER simula-
tion with the coupled controller and with convergence priority
given to z̃ (Case 1, small γ) or T̃e (Case 2, large γ).

the scaling parameter γ (which multiplies T̃e in the Lyapunov
function (14)). When γ is low (Case 1), the control is more
effective for the performance of the slow variable z̃ while the
convergence rate of Te is difficult to tune (typically enduring
high overshoots). When the value of γ is high (Case 2), the
performance of the convergence rate of Te can be tuned but the
convergence rate of z̃ is free. To improve the convergence rate
of z̃ we need in this case to increase the value of α1, which
induces oscillations in the Te profile. The results from these
simulations are presented in Fig. 8. While the convergence of
ι and Te is achieved in both control cases, the disparity in
the convergence rates of the two dynamics renders the relative
tuning particularly difficult to achieve, motivating the system
decoupling approach.

We now apply the composite control presented in Sec-
tion V. The polynomials of the Lyapunov functions, presented
in Fig. 10, are computed separately for the fast and the
slow components. The maximum values of the convergence
rate parameters are calculated numerically as α4 = 0.01
and α7 = 9.3. The difference between these two values
was expected due to the difference in the time scales. The
solution of the slow component of the temperature (22) is
numerically calculated at each time instant and subtracted
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Fig. 9: Evolution of Te and ι in the ITER simulation with
composite control for Case 1 and Case 2 .

from T̃e to estimate the fast component of the temperature
T̃f . The output parameters ι(x, t) and Te(x, t) at several
locations are presented in Fig. 9 for the two control cases.
For Case 1 a feedback control is applied only on the slow
component of the system. The results from this simulation
have similar performance as in the case when the method
presented in Section IV is applied and low γ is used. For
Case 2 the composite control combines the feedback control
of the fast and slow components. The effect of the feedback
control on the boundary layer system can be observed on
Te(x, t): applying a control on the boundary layer system
results in a reduced overshoot and a better convergence of
the fast component at the cost of a slower convergence of the
slow component. This behavior is also observed on the time-
evolution of the slow and the fast Lyapunov functions starting
from t = 600s (when the reference profiles are changed)
in Fig. 11. The controlled inputs for these simulations are
presented in Fig. 13 (Case 1) and Fig. 12 (Case 2).

The tuning of the closed-loop performance with the compos-
ite control can be done by changing the values of the weighting
parameters ω1,2 to obtain the desired balance between the two

components. The convergence rate of the closed-loop system
is selected by the choice of α4 and α6 for the performance
of the slow and fast component, respectively. Increasing the
value of α4 decreases the settling time and decreases the
steady state error of the slow component, but increases the
overshoot of the electron temperature. By increasing the value
of α6 the convergence rate of the fast component is improved
and the overshot of the electron temperature is decreased. If
α6 is increased further, it leads to high oscillations of the
fast varying component. Note also that when the two control
functions are calculated separately we can apply different
sampling periods for the two parameters, which improves the
computational efficiency and the performance of the feedback
control.
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Fig. 10: Numerical solution of the composite control polyno-
mials ps and pf for ITER.

VIII. CONCLUSIONS AND FUTURE WORK

Integrated feedback control algorithms for coupled current
and electron temperature profiles in tokamaks are developed
and tested in this work. The plasma states are modeled as two
coupled inhomogeneous 1D diffusion PDEs and a control-
oriented model is proposed using linearized simple models
for the controlled plasma parameters. The control design is
based on the infinite dimensional settings by using control
Lyapunov functions. Our first control method is based on the
coupled dynamics and on a single Lyapunov function. The
different time scales of the two states motivated a second
control strategy designed by decoupling the two time scales of
the system using singular perturbation theory. Both controllers
are evaluated using the nonlinear RAPTOR tokamak plasma
simulator, parametrized for the TCV and ITER tokamak ma-
chines. The different times scales in the two machines permits
to compare the two control strategies. In the future, our control
strategies can be used in a real tokamak machine using the
state observer for the plasma profiles developed in [35]. A
future perspective is also to consider the ohmic heating sources
in the control design, as a boundary input.

APPENDIX A
SIMPLIFIED MODELS OF THE PLASMA PARAMETERS

The parallel resistivity of the plasma scales inversely with
the electron temperature. In this work we are using the
neoclassical resistivity model as in [36]:

η‖ = cneo(ρ)ηSpitz (42)
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Fig. 11: Time-evolution of the two normalized Lyapunov functions of the composite control (Vs and Vf ) for the ITER simulation.

Fig. 12: Evolution of the input profiles j̃aux(x, t) [A/m2] (top left) and Q̃aux(x, t) [W/m3] (top right), and input powers
Paux(t) (below) applied to the ITER configuration with composite control for Case 1.

where cneo(ρ) is the neoclassical correction, and the Spitzer
conductivity ηSpitz is given by:

ηSpitz =
ksp(ρ)Zeff

T
3/2
e

(43)

where ksp(ρ) is the spatial profile and Zeff is the constant
effective value of the plasma charge.
The bootstrap current is a self-generated current due to col-
lisions between trapped particles and passing particles. The
model of the bootstrap current density is simplified as in [9]:

jbs =
kbs(x)

∂Ψ/∂x

(
L31(x)

∂ne
∂x

Te

+

(
L31(x) +RpeL32(x) + (1−Rpe)L34(x)

)
∂Te
∂x

ne

)
(44)

where kbs(x),L31(x),L32(x),L34(x) depend on magnetic
configuration of the plasma equilibrium and Rpe is the ratio
between electron and total pressure.

The heat diffusion coefficient in the electrons temperature
equation is not well known and there is no consensus about
the mathematical formulation: only some empirical models are
developed for this coefficient. For the control model in this

work a simple empirical local transport model of the Bohm
type is used, given as in [37]:

χe = 2.510−4 Te
B0

| 5pe |
pe

q2 ∝ 2.510−4 | 5neTe |
B0ne

q2 (45)

where pe = neTe is the electron pressure. The ohmic effect
power density QOH comes from the heating caused by the
induced current as:

QOH =
η||

µ2
0R

2
0a

3x2

(
∂

∂x
(xz)

)2

(46)

The electron-ion heat exchange can be written as Qei =
neνeq(Te − Ti), where νeq is the neoclassical equipartition
rate given in [30].
For the ion temperature, a simplified model is used, where it
is directly related to Te by Ti = fTi(x)Te, where fTi(x) is a
function chosen to best match the simulation results as in [8].
The electron-ion heat exchange can then be written in terms
of Te as:

Qei = neνeq(Te − Ti)
= neνeq(1− fTi(x))Te = fei(x)Te

(47)
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Fig. 13: Evolution of the input profiles j̃aux(x, t) [A/m2] (top left) and Q̃aux(x, t) [W/m3] (top right), and input powers
Paux(t) (below) applied to the ITER configuration with composite control for Case 2.

The radiation loss power density Qrad [1] is calculated as:

Qrad = frad(x)T 1/2
e (48)

where frad = kbemn
2
eZeff and kbem = 5.35 ×

105Wm3/(keV )1/2 is the Bremsstrahlung radiation coeffi-
cient.

APPENDIX B
PROOF OF THEOREM 1

Proof. The time derivative of the Lyapunov function is:

V̇ =

∫ 1

0

x2p1(x)
∂z̃

∂t
z̃dx+ γ

∫ 1

0

x2p2(x)
∂T̃e
∂t

T̃edx

= V̇1,1 + V̇1,2 + V̇2,1 + V̇2,2 + V̇2,3 + V̇2,4

(49)

where:

V̇1,1 =

∫ 1

0

x2p1(x)
∂

∂x

(
a1(x)

x

∂

∂x

(
xz̃
))
z̃dx

V̇1,2 =

∫ 1

0

x2p1(x)
∂

∂x

(
a2(x)T̃e + a3(x)

∂T̃e
∂x

+ a4(x)z̃
)
z̃dx

V̇2,1 =
1

ε

∫ 1

0

xp2(x)
1

x

∂

∂x

(
xb1(x)

∂T̃e
∂x

)
T̃edx

V̇2,2 = −1

ε

∫ 1

0

x2p2(x)b2(x)T̃ 2
e

V̇2,3 =
1

ε

∫ 1

0

xp2(x)
∂

∂x

(
xb3(x)z̃

)
T̃e

V̇2,4 =
1

ε

∫ 1

0

xp2(x)b4(x)

(
∂

∂x
(xz̃)

)
T̃edx

V̇2,5 =
1

ε

∫ 1

0

x2p2(x)b5(x)Q̃aux(ũ, x, t)T̃edx

Integrating V̇1,1 by parts and considering the boundary
conditions (12) we get:

V̇1,1 = xp1(x)z̃a1(x) ∂
∂x

(
xz̃
)∣∣∣∣1

0

−
∫ 1

0
x2p1(x)a1(x)

(
∂z̃
∂x

)2

dx

−
∫ 1

0

(
2p1(x) + xp′1(x)

)
a1(x)z̃2dx

−
∫ 1

0

(
x2p′1(x) + 3xp1(x)

)
a1(x)z̃ ∂z̃∂xdx

Integrating again by parts some terms in V̇1,1, we get:

V̇1,1 = − 1
2a1(x)

(
x2p′1(x) + 3xp1(x)

)
z̃2

∣∣∣∣1
0

−
∫ 1

0
x2p1(x)a1(x)

(
∂z̃
∂x

)2

dx

+ 1
2

∫ 1

0

(
3xp′1(x) + x2p′′1(x)− p1(x)

)
a1(x)z̃2dx

+ 1
2

∫ 1

0
a′1(x)

(
x2p′1(x) + 3xp1(x)

)
z̃2dx

Integrating V̇1,2 and V̇2,1 by parts and considering the bound-
ary conditions (12) we get:

V̇1,2 = −
∫ 1

0

(
2xp1(x) + x2p′1(x)

)
a2(x)z̃T̃edx

+
∫ 1

0
x2p1(x)a2(x) ∂z̃∂x T̃edx

+
∫ 1

0
x2p1(x)a3(x) ∂z̃∂x

∂T̃e

∂x dx

−
∫ 1

0

(
2xp1(x) + x2p′1(x)

)
a3(x)z̃ ∂T̃e

∂x dx

−
∫ 1

0

(
2xp1(x) + x2p′1(x)

)
z̃2a4(x)z̃dx

+x2p1(x)a4(x) ∂z̃∂x z̃dx
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and

V̇2,1 = 1
εx

2p2(x)b1(x)T̃e
∂T̃e

∂x

∣∣∣∣1
0

− 1
ε

∫ 1

0

(
xp2(x) + x2p′2(x)

)
b1(x)T̃e

∂T̃e

∂x dx

− 1
ε

∫ 1

0
x2p2(x)b1(x)

(
∂T̃e

∂x

)2

dx

= 1
2ε

∫ 1

0
b1(x)

(
(x2p′′2(x) + 2xp′2(x) + p2(x)

)
T̃ 2
e dx

+ 1
2ε

∫ 1

0
b′1(x)

(
x2p′2(x) + xp2(x)

)
T̃ 2
e dx

− 1
ε

∫ 1

0
x2p2(x)b1(x)

(
∂T̃e

∂x

)2

dx

− 1
ε

(
p2(x) + xp′2(x)

)
b1(x)T̃ 2

e

∣∣∣∣1
0

We assume that T̃e,edge is very small compared to the tem-
perature in the center of the plasma and we can consider it as
zero in the analysis.

Integrating V̇2,3 and V̇2,4 by parts and considering the
boundary conditions (12) we get:

V̇2,3 =− 1

ε

∫ 1

0

xb3(x)

(
xp′2(x) + p2(x)

)
z̃T̃edx

− 1

ε

∫ 1

0

x2b3(x)p2(x)
∂z̃

∂x
T̃edx

(51)

and

V̇2,4 =
1

ε

∫ 1

0

xp2(x)b4(x)z̃T̃edx

+
1

ε

∫ 1

0

x2p2(x)b4(x)
∂z̃

∂x
T̃edx

(52)

The derivative of the Lyapunov function combining (49)-

(52) can be written as:

V̇ =

∫ 1

0


z̃

T̃e
∂z̃
∂x
∂T̃e

∂x


T

A1(x)


z̃

T̃e
∂z̃
∂x
∂T̃e

∂x

 dx
+

∫ 1

0

x2p1(x)
∂

∂x

(
a4(x)j̃aux(ũ, x, t)

)
z̃dx

+ γ

∫ 1

0

x2p2(x)

ε
b5(x)Q̃aux(ũ, x, t)T̃edx

(53)

where the matrix A1(X) is given in (16).
Combining the inequality (15) and (53) implies (19).

APPENDIX C
PROOF OF THEOREM 2

Proof. The time derivative of the Lyapunov function is:

V̇s = 1
2

∫ 1

0
x2ps(x)∂z̃∂t z̃dx

=
∫ 1

0
x2ps(x) ∂

∂x

(
a1(x) ∂

∂x (xz̃)

)
z̃dx

+
∫ 1

0
x2ps(x) ∂

∂x

(
a4(x)z̃

)
z̃dx

+
∫ 1

0
x2ps(x) ∂

∂x

(
a2(x)T̃s + a3(x)∂T̃s

∂x

)
z̃dx

+
∫ 1

0
x2ps(x) ∂

∂x

(
a5(x)j̃aux(ũs, x, t)

)
z̃dx

Integrating by parts and considering the boundary conditions
(27), we get the following inequality:

V̇s ≤
1

2

∫ 1

0

(
3xp′s(x) + x2p′′s (x)− ps(x)

)
a1(x)z̃2dx

+
1

2

∫ 1

0

a′1(x)

(
x2p′s(x) + 3xps(x)

)
z̃2dx

+

∫ 1

0

a4(x)

(
xps(x) +

1

2
x2p′1(x)

)
z̃2dx

−
∫ 1

0

1

2
x2a′4(x)p1(x)z̃2dx

+

∫ 1

0

x2ps(x)
∂

∂x

(
a2(x)T̃s + a3(x)

∂T̃s
∂x

)
z̃dx

+

∫ 1

0

x2ps(x)
∂

∂x

(
a5(x)j̃aux(ũs, x, t)

)
z̃dx

(54)

a1(x) =
η‖

µ0a2
, a2(x) =

1

µ0a2

∂η‖

∂T e

∂

∂x

(
x(z)

)
+

∂η

∂T e
R0jni +

∂jaux
∂T e

ηR0 + η‖R0
kbs(x)

z

(
L31(x)

∂ne
∂x

)
a3(x) =η||R0ne

kbs(x)

z

(
L31(x) +RpeL32(x) + (1−Rpe)L34(x)

)
a4(x) =− η||R0

kbs(x)

z2

(
L31(x)

∂ne
∂x

T e +

(
L31(x) +RpeL32(x) + (1−Rpe)L34(x)

)
∂T e
∂x

ne

)

a5(x) =η||R0, b1(x) =
2ε

3a2

(
χe +

∂T e
∂x

∂χe
∂(∇T e)

)
, b2(x) = − 2ε

3ne

(
fei(x) +

1

2
frad(x)T

−1/2

e − 4

3

∂η||

∂T e

neµ2
0R

2
0a

3x2

( ∂
∂x

(xz)
)2)

b3(x) =
ε

a2

∂χe
∂z

∂T e
∂x

, b4(x) =
4ε

3

η‖

neµ2
0R

2
0a

3x

(
∂

∂x
(xz)

)
, b5(x) =

2ε

3ne
(50)
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Combining the inequalities (29) and (54) implies (30).

APPENDIX D
PROOF OF THEOREM 3

Proof. The derivative of the Lyapunov function for the fast
dynamics is:

V̇f =

∫ 1

0

x2pf (x)
1

x

∂

∂x

(
xb1(x)

∂T̃f
∂x

)
T̃fdx

−
∫ 1

0

x2pf (x)b2(x)T̃ 2
f dx

+

∫ 1

0

x2pf (x)b5(x)Q̃aux,f (ũf , x, t)T̃fdx

(55)

Integrating by parts and considering the boundary conditions
of the boundary layer system (25), we have:

V̇f =
1

2

∫ 1

0

b1(x)

(
(x2p′′f (x) + 2xp′f (x) + pf (x)

)
T̃ 2
f dx

+
1

2

∫ 1

0

b′1(x)

(
x2p′f (x) + xpf (x)

)
T̃ 2
f dx

−
∫ 1

0

x2pf (x)b1(x)

(
∂T̃f
∂x

)2

dx

−
∫ 1

0

x2pf (x)(b2(x))T̃ 2
f dx

+

∫ 1

0

x2pf (x)b5(x)Q̃aux,f (ũf , x, t)T̃fdx

(56)

Combining the inequalities (33) and (56) implies (34).
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[8] E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana, and
P. Moreau, “A control-oriented model of the current profile in tokamak
plasma,” Plasma Physics and Controlled Fusion, vol. 49, no. 7, p. 1075,
2007.

[9] F. Felici, O. Sauter, S. Coda, B. Duval, T. Goodman, J. Moret, J. Paley,
T. Team et al., “Real-time physics-model-based simulation of the current
density profile in tokamak plasmas,” Nuclear Fusion, vol. 51, no. 8, p.
083052, 2011.

[10] J. E. Barton, W. P. Wehner, E. Schuster, F. Felici, and O. Sauter,
“Simultaneous closed-loop control of the current profile and the electron
temperature profile in the TCV tokamak,” in American Control Confer-
ence, Chicago, USA, 2015, pp. 3316–3321.

[11] M. van Berkel, H. J. Zwart, G. M. D. Hogeweij, G. Vandersteen,
H. van den Brand, M. R. de Baar, and the ASDEX Upgrade Team,
“Estimation of the thermal diffusion coefficient in fusion plasmas taking
frequency measurement uncertainties into account,” Plasma Physics and
Controlled Fusion, vol. 56, no. 10, p. 105004, 2014.

[12] S. Mechhoud, E. Witrant, L. Dugard, and D. Moreau, “Estimation of heat
source term and thermal diffusion in tokamak plasmas using a Kalman
filtering method in the early lumping approach,” IEEE Transactions on
Control Systems Technology, vol. 23, no. 2, pp. 449–463, 2015.

[13] D. Kim, A. Merle, O. Sauter, and T. Goodman, “Simple predictive
electron transport models applied to sawtoothing plasmas,” Plasma
Physics and Controlled Fusion, vol. 58, no. 5, p. 055002, 2016.

[14] L. Laborde, D. Mazon, D. Moreau, A. Murari, R. Felton, L. Zabeo,
R. Albanese, M. Ariola, J. Bucalossi, F. Crisanti et al., “A model-based
technique for integrated real-time profile control in the JET tokamak,”
Plasma Physics and Controlled Fusion, vol. 47, no. 1, p. 155, 2005.

[15] M. D. Boyer, J. Barton, E. Schuster, T. C. Luce, J. R. Ferron, M. L.
Walker, D. A. Humphreys, B. G. Penaflor, and R. D. Johnson, “First-
principles-driven model-based current profile control for the DIII-D
tokamak via LQI optimal control,” Plasma Physics and Controlled
Fusion, vol. 55, no. 10, p. 105007, 2013.

[16] M. D. Boyer, J. Barton, E. Schuster, M. L. Walker, T. C. Luce,
J. R. Ferron, B. G. Penaflor, R. D. Johnson, and D. A. Humphreys,
“Backstepping control of the toroidal plasma current profile in the DIII-
D tokamak,” IEEE Transactions on Control Systems Technology, vol. 22,
no. 5, pp. 1725–1739, 2014.

[17] E. Maljaars, F. Felici, M. De Baar, J. van Dongen, G. Hogeweij, P. Gee-
len, and M. Steinbuch, “Control of the tokamak safety factor profile with
time-varying constraints using mpc,” Nuclear Fusion, vol. 55, no. 2, p.
023001, 2015.

[18] N. M. T. Vu, R. Nouailletas, L. Lefèvre, and F. Felici, “Plasma q-
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