

Effet de l'application d'un champ électrique sur la cinétique de croissance de couches d'oxyde contrôlée par diffusion

JECH 48. 16 Mars 2017

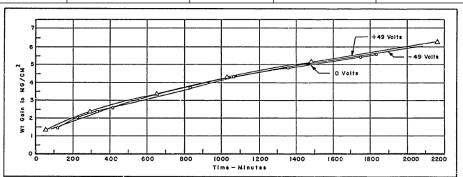
PEREIRA Juan Carlos Encadrante: PERES Véronique

Schéma de principe. T, PO_2 , \vec{E} T, PO₂ M M MO MO MO MO O²⁻ O²⁻ e' e' M²⁺ M²⁺ M^{2+} e' Anode Cathode

2

Institut Mines-Télécom

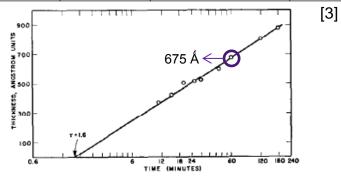
Résumé Bibliographique.


Système	Température (°C)	Atmosphère	Tension (V)	Courant (mA)	Champ Electrique (V/cm)	Anode	Cathode
Fe–25Cr /Cr ₂ O ₃	800	Air/Ar- 25%H ₂ (H ₂ O)	variable	1125	indéterminé	↑ vitesse d'oxydation	↓ vitessed'oxydation

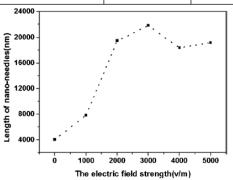
Système	Température (°C)	Atmosphère	Tension (V)	Courant (mA)	Champ Electrique (V/cm)	Anode	Cathode
Ni/NiO	1095	Air	±49	-	indéterminé	Aucun effet	Aucun effet

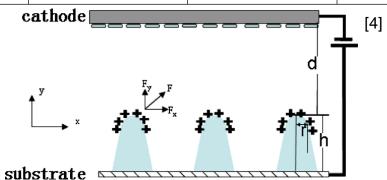
[2]

Saint-Étienne


[1] K. Kawamura et al « Effect of Electric Current on Growth of Oxide Scale on Fe-25Cr Alloy for SOFC Interconnect at 1073 K », J. of The Elec. Soc. V. 159 p 259-264 (2012).

[2] G. Lawless et C. A. Lombard «The Effect of a Static Electric Field on the Oxidation of Certain Metals », Technical Report AFML-TR-65-412, US Air Force (1966)




Système	Température (°C)	Atmosphère	Tension (V)	Courant (mA)	Champ Electrique (V/cm)	Anode	Cathode
Cu/Cu ₂ O	150	Air	Plusieurs centaines	-	9.000-15.500	Aucun effet	Aucun effet

Electric field	Oxide thickness, Å			
(volts/cm)	Specimen +	Specimen		
9000	660			
9000	675	745		
14,000	660	660		
14,000	740	755		
15,500	650	775		
15,500	675	645		
Average	660	716		
Standard deviation	34	60		

Température (°C)	Atmosphère	Tension (V)	Courant (mA)	Champ Electrique (V/cm)	Anode	Cathode
730	Air	50-250	-	10-50	↑ vitesse d'oxydation	-

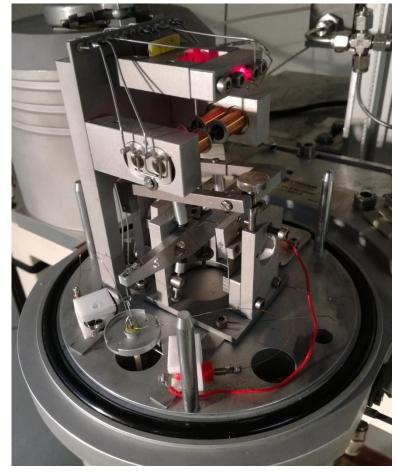
[3] H. H. Uhlig and A. E. Brenner, « Effect of Electric Field on Oxidation of Copper », Acta Metallurgica. Vol 3, (1955) pp 108.

[4] Xiaozhu Li, et al.. « Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism», J. of Applied Physics 024308, (2010) pp. 108

Objectifs Généraux.

Effet de l'application d'un champ électrique sur la cinétique de croissance de couches d'oxyde contrôlée par diffusion.

- Modélisation de la diffusion sous champ électrique. Diffusion chimique + diffusion électrochimique
- Evaluation des effets du champ électrique sur l'oxydation de
 - Alliage de zirconium (Zy4):
 - ✓ Croissance interne pour éviter interaction avec les électrodes.
 - ✓ Cinétique contrôlée par diffusion des anions dans l'oxyde.

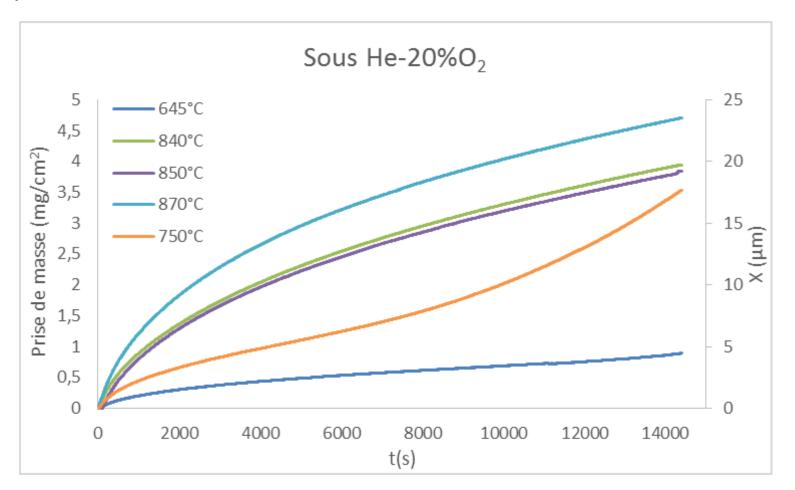

Elément d'alliage	Sn	Fe	O	Cr
Composition (wt.%)	1,32 - 1,35	0,21	0,123 - 0,129	0,11

Démarche et Conditions Expérimentales.

Développement du couplage TG/CE:

Démarche et Conditions Expérimentales.

Développement du couplage TG/CE:



Démarche et Conditions Expérimentales

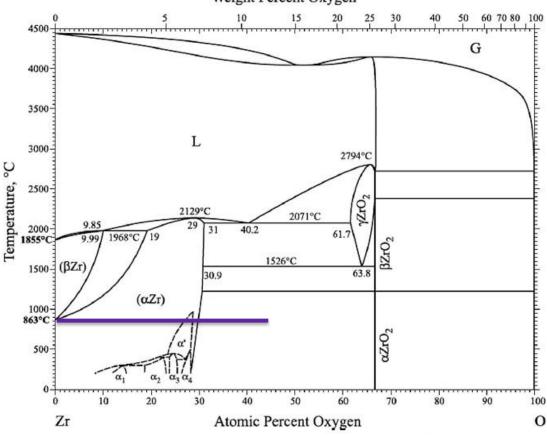
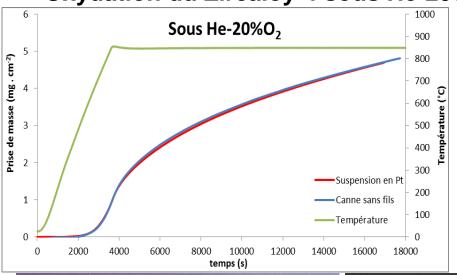
Oxydation du Zircaloy-4 sous 20% oxygène → recherche de la température de travail

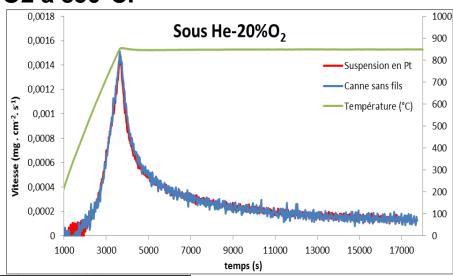
Institut Mines-Télécom

8

Démarche et Conditions Expérimentales

Oxydation du Zircaloy-4 sous 20% oxygène → recherche de la température de travail Weight Percent Oxygen

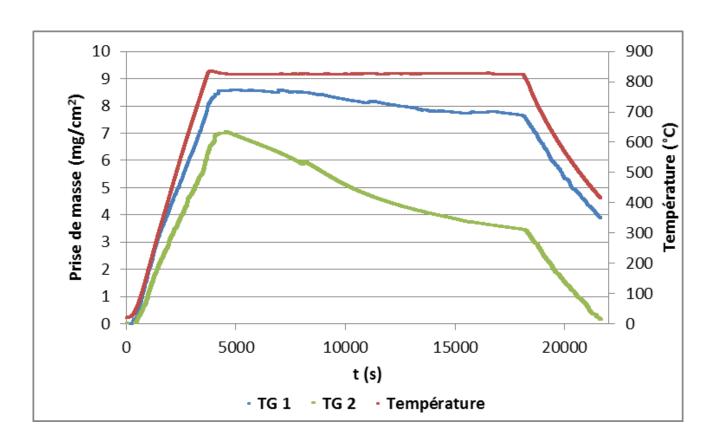

Diagramme du système $Zr - O \rightarrow Domaine \beta$

9

Oxydation du Zircaloy-4 sous He-20% O2 à 850°C.

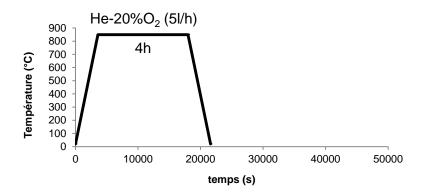
21±1μm

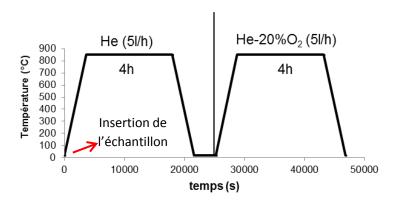
22±1µr

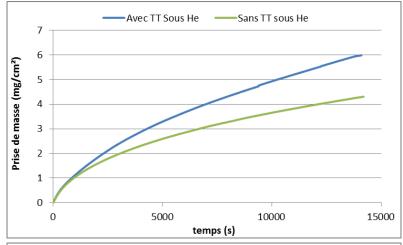

 $Kp=0,116 g^2.m^{-4}.s^{-1}$

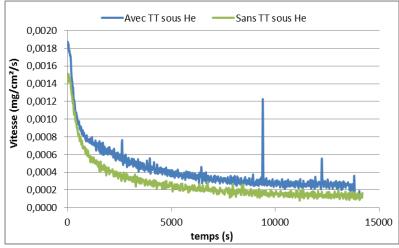
7	Temperature (K)	Kw ((g/m ²) ² /s)	Time range (s)
	773	5.10E-04	
	873	4.61E-03	
	973	2.86E-02	
	1,073	1.18E-01	1.20E+02-9.00E+02
	1,123	2.37E-01	1.200-02-9.000-02
	1,173	5.41E-01	
	1,223	1.29E+00	
	1,253	2.43E+00	

[6] Jong H. B., Ki B. P. & Yong H. J.. Journal of Nuclear Materials 335 (2004) 443-45.

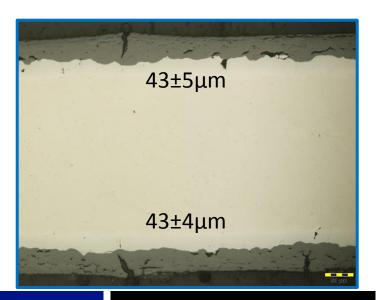

Résultats Zy4.

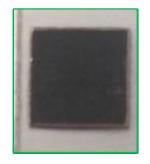

Blancs : dérive liée aux fils électriques

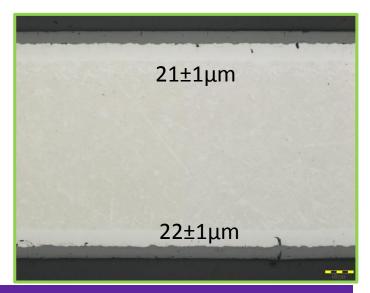




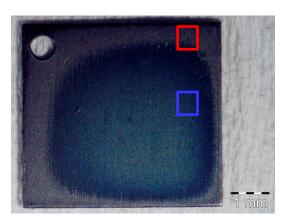
Prétraitement sous He

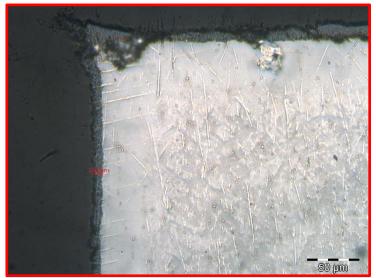




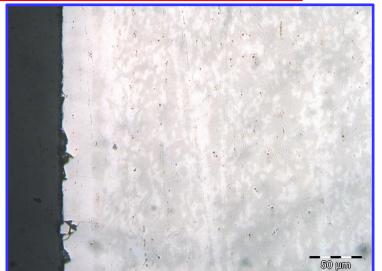

Prétraitement sous He

Sans prétraitement sous He

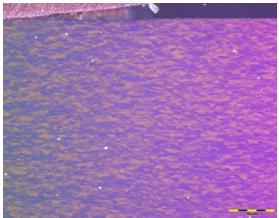


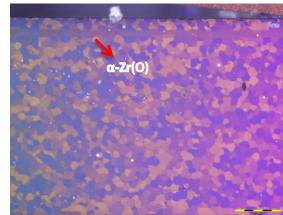


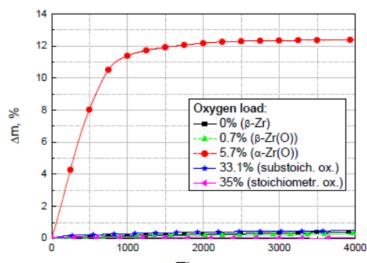
Étude de l'effet du traitement thermique sous He:


Sous He:

Microscopie optique





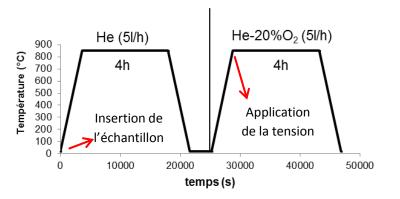

Prétraitement sous He

Zy4 vierge:

Zy4 après TT sous He

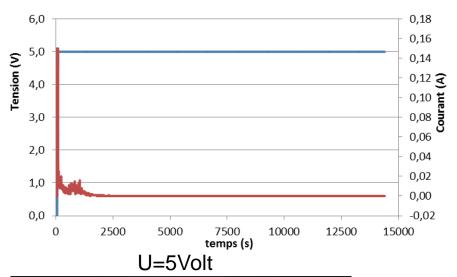
Time, s Réactivité des différentes phases du Zirconium avec l'azote.[5]

- Formation de la phase α -Zr(O)
- Elimination de la texture
- Déformation du réseau [6]

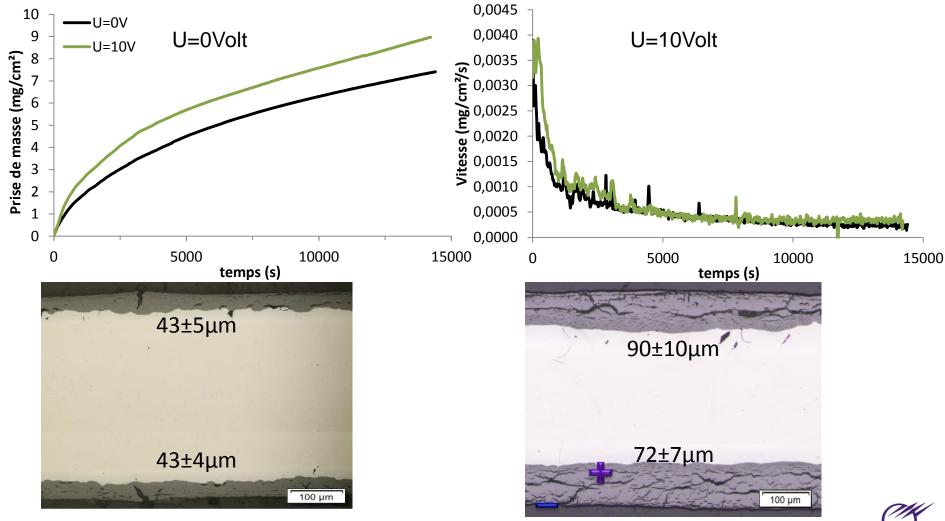

↑Vitesse d'oxydation initiale

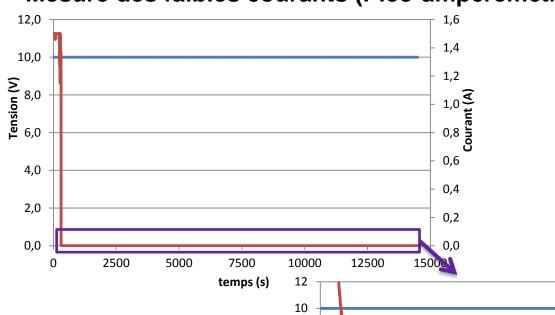
[5]M. Steinbruck et M. Jung. High temperature reaction of α-Zr(O) with nitrogen. Proceedings of ICAPP 2011, paper 11395, Nice, 2-5 mai (2011) [6] Jianlong Lin Thèse « Effect of texture and Microstructure of Zirconium Alloys on Their Oxidation and Oxide Texture» McGill Univ., Montreal, Canada (20


Institut Mines-Télécom

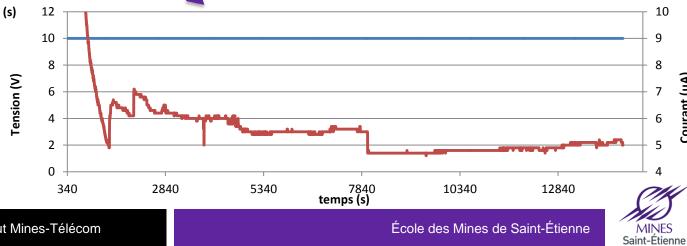

Saint-Étienne

Essais sous tension électrique.




16

Essais sous tension électrique.



Essais sous tension électrique.

Mesure des faibles courants (Pico-ampèremètre):

Conclusions.

- Littérature : pas d'accord sur l'effet d'un champ électrique sur la cinétique d'oxydation des métaux:
- ✓ La température.
- Système métal/oxyde.
- La méthode d'application du champ électrique.
- Influence prétraitement He : accroissement cinétique de corrosion du Zy4 semble être du à:
- \checkmark La formation de la phase α-Zr(O).
- ✓ L'élimination de la texture.
 - Influence application d'une tension de 10Volt accroissement cinétique de corrosion du Zy4 + disymétrie (épaisseur anode > épaisseur cathode)

Perspectives.

- Caractériser conductivité couche d'oxyde (expérinec ScR Dijon)
- Influence alpha ZrO:
- √ Réalisation d'échantillons homogène puis test
- Influence des impureté : Zr pur
- → Modélisation de l'effet du champ et de la surstoeckiométrie.

Merci de votre attention

www.mines-stetienne.fr

Une école de l'Institut Mines-Télécom