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On the Komlós, Major and Tusnády strong approximation for

some classes of random iterates

Christophe Cuny∗, Jérôme Dedecker†and Florence Merlevède‡

June 22, 2017

Abstract

The famous results of Komlós, Major and Tusnády (see [15] and [17]) state that it is possible to

approximate almost surely the partial sums of size n of i.i.d. centered random variables in L
p (p > 2) by

a Wiener process with an error term of order o(n1/p). Very recently, Berkes, Liu and Wu [3] extended

this famous result to partial sums associated with functions of an i.i.d. sequence, provided a condition

on a functional dependence measure in Lp is satisfied. In this paper, we adapt the method of Berkes, Liu

and Wu to partial sums of functions of random iterates. Taking advantage of the Markovian setting, we

shall give new dependent conditions, expressed in terms of a natural coupling (in L
∞ or in L

1), under

which the strong approximation result holds with rate o(n1/p). As we shall see our conditions are well

adapted to a large variety of models, including left random walks on GLd(R), contracting iterated random

functions, autoregressive Lipschitz processes, and some ergodic Markov chains. We also provide some

examples showing that our L1-coupling condition is in some sense optimal.

1 Introduction

In this paper we shall adapt the approach of Berkes-Liu-Wu [3] to certain classes of Markov
chains. To motivate this work, let us describe in detail the example of the left random walk on
GLd(R), d ≥ 2 (the group of invertible d-dimensional real matrices).

Let (εn)n≥1 be independent random matrices taking values in G = GLd(R), with common
distribution µ. Let ‖ · ‖ be the euclidean norm on R

d. We shall say that µ has a moment of
order p ≥ 1 if ∫

G
(logN(g))pµ(dg) <∞ , (1)

where N(g) := max(‖g‖, ‖g−1‖).
Let A0 = Id and for every n ≥ 1, An = εn · · · ε1. Recall that if µ admits a moment of order

1 then

lim
n→∞

1

n
log ‖An‖ = λµ P-a.s., (2)
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where λµ := limn→+∞ n−1
E(log ‖εn · · · ε1‖) is the so-called first Lyapunov exponent (see for

instance [14]). For any x ∈ Sd−1, we want to describe as precisely as possible the asymptotic
behavior of the quantity

log ‖Anx‖ . (3)

The left random walk of law µ started at x ∈ Sd−1 is the Markov chain defined by W0,x := x
and Wn,x = εnWn−1,x for n ≥ 1. As usual, to handle the quantity (3), we consider the partial
sums associated with the random variables (Xn,x)n≥1 given by

Xn,x := h(εn,Wn−1,x) , n ≥ 1 ,

where for every g ∈ G and every y ∈ R
d − {0},

h(g, y) = log

(‖g · y‖
‖y‖

)
.

By definition of h, and since Xn,x = h(εn, An−1x), we easily see that, for any x ∈ Sd−1,

Sn,x =

n∑

k=1

Xk,x = log ‖Anx‖ . (4)

Hence, the asymptotic behavior of (3) can be deduced from the asymptotic behavior of partial
sums of functions of the Markov chain Wn,x.

This problem can be tackled under some assumptions on µ (strong irreducibility and prox-
imality, see subsection 3.1 for more details) which implies that the chain (Wn)n≥0 admits an
unique invariant measure ν defined on the projective space X := Pd−1(R

d) of Rd − {0}. Un-
der these assumptions on µ, and assuming moreover that µ has a moment of order p ∈ (2, 4),
Cuny-Dedecker-Jan [7] proved the following strong approximation result: there exists σ2 ≥ 0
such that, for every (fixed) x ∈ Sd−1, one can redefine (log ‖Anx‖)n≥1 without changing its
distribution on a (richer) probability space on which there exist iid random variables (Ni)i≥1

with common distribution N (0, σ2), such that,

log ‖Anx‖ − nλµ −
n∑

i=1

Ni = o(n1/p
√

log n) a.s. (5)

If µ has a moment of order p = 4, the same authors showed that this strong approximation
holds with a rate of order O(n1/4

√
log(n)(log log n)1/4).

To prove (5), Cuny-Dedecker-Jan used a martingale approximation (as described for instance
in Cuny-Merlevède [9]), together with some appropriate upper bounds on the quantities

sup
‖x‖=1,‖y‖=1

E (|Xk,x −Xk,y|) . (6)

The main drawback of this approach is that it cannot give a better rate than n1/4, because it is
based on the Skorokhod representation theorem for martingales.

On another hand, since the stationary Markov chainWn is a function of the starting pointW0

and of the “innovations” ε1, · · · , εn, one can also apply the approximation results by Berkes-Liu-
Wu (in fact, this is not completely immediate because it does not fit exactly into the framework
described by these authors, and some extra work is required there). Doing so, one can reach a
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rate of order n1/p for any p > 2, but only by assuming that µ has a moment of order q(p) > p.
More precisely, their functional measure of dependence in Lp, say δk,p, can be bounded by
sup‖x‖=1,‖y‖=1 ‖Xk,x −Xk,y‖p. Hence, applying Proposition 3 in [7], one can see that condition
(2.3) in [3] is satisfied provided µ has at least a moment of order (5p/2) − 1. This is somewhat
surprising: on the one hand, one can go beyond the rate of order n1/4, and on the other hand we
need stronger assumptions than in Cuny-Dedecker-Jan [7] to get the rate n1/p when p ∈ (2, 4).

This gave us a strong motivation to understand completely the proof by Berkes-Liu-Wu [3],
and to see whether it is possible to take advantage of the Markovian setting to get the rate n1/p

in (5) under a moment of order p, for any p > 2. As we shall see in this paper, the answer is
positive.

As already mentioned, in the case of the left random walk on GLd(R), one can get a control
on the quantities defined in (6). However, in many other cases of random iterates, such a control
is not possible, while one can get some upper bounds on

∫∫
E (|Xk,x −Xk,y|) ν(dx)ν(dy) , (7)

where ν is the invariant distribution of the chain (Wn)n≥1.
Consequently, we shall establish two distinct results, with different range of applicability. In

Theorem 1, we give a strong approximation result under conditions involving some quantities
similar to (6). In Theorem 2 the conditions are expressed in terms of the quantities (7). The
second Theorem applies to a large variety of examples, including some well known examples
of irreducible and aperiodic Markov Chains with countable or continuous state space. These
examples of ergodic Markov chains will allow us to prove that the conditions given in Theorem
2 are in some sense optimal.

In all the paper, we shall use the notation an ≪ bn, which means that there exists a positive
constant C not depending on n such that an ≤ Cbn, for all positive integers n.

2 Main results

Let (Ω,A,P) be a probability space, and let (εi)i≥1 be iid random variables defined on Ω, with
values in a measurable space G and with common distribution µ. Let W0 be a random variable
defined on Ω with values in a measurable space X, independent of (εi)i≥1, and let F be a
measurable function from G×X to X. For any n ≥ 1, define

Wn = F (εn,Wn−1) ,

and assume that (Wn, n ≥ 1) has a stationary distribution ν. Let now h be a measurable
function from G×X to R and define, for any n ≥ 1,

Xn = h(εn,Wn−1) . (8)

Then (Xn)n≥1 forms a stationary sequence with stationary distribution, say π. Let (Gi)i∈Z be
the non-decreasing filtration defined as follows: for any i < 0, Gi = {∅,Ω}, G0 = σ(W0) and for
any i ≥ 1, Gi = σ(εi, . . . , ε1,W0). It follows that for any n ≥ 1, Xn is Gn-measurable.

Our first result proves that the strong approximation result holds with rate n1/p when the
stationary distribution π has a moment of order p > 2 and we impose that the sequence of cou-
pling coefficients (δ∞(n))n≥1 defined in (10) decreases arithmetically to zero plus the condition
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(12). As we shall see in Section 3, these conditions are satisfied for instance for the left random
walk on GLd(R).

Let W0 and W ∗
0 be random variables with law ν, and such that W ∗

0 is independent of
(W0, (εi)i≥1). For any n ≥ 1, let

X∗
n = h(εn,W

∗
n−1) with W ∗

n = F (εn,W
∗
n−1) . (9)

Define then
δ∞(n) = ‖E(|Xn −X∗

n| |(W0,W
∗
0 ))‖∞ , n ≥ 1 , (10)

where, above and in all the rest of the paper, the infinite norm is the usual essential supremum
norm.

Theorem 1 Let (Xn, n ≥ 1) be the stationary sequence defined by (8) and assume that its
stationary distribution π has moment of order p > 2. Assume in addition that there exists a
positive constant c such that for any n ≥ 1,

δ∞(n) ≤ cn−q with q > (p− 1)/2 , (11)

where (δ∞(n))n≥1 is defined in (10), and that

sup
n≥1

‖E(X2
n|Gn−1)‖∞ ≤ c . (12)

Let Sn =
∑n

k=1Xk. Then n
−1

E
(
(Sn−nE(X1))

2
)
→ σ2 as n→ ∞ and one can redefine (Xn)n≥1

without changing its distribution on a (richer) probability space on which there exist iid random
variables (Ni)i≥1 with common distribution N (0, σ2), such that,

Sn − nE(X1)−
n∑

i=1

Ni = o(n1/p) P-a.s. (13)

In the rest of this section, we shall give conditions expressed in terms of the quantities
‖Xn − X∗

n‖1 for the strong approximation (13) to hold. Before stating the result, we need to
introduce some notations:

For any n ≥ 0, let us define the sequence (δ(n))n≥0 as follows

δ(0) = δ(1) = E(|X1|) and δ(n) = 2−1 sup
k≥n−1

‖Xk −X∗
k‖1 , n ≥ 2 .

These quantities are finite if π has a moment of order 1.

For any x ≥ 0, denote by
δ(x) = δ([x])

and, for any u ∈ [0,E(|X1|)], let

δ−1(u) = inf{q ∈ N : δ(q) ≤ u} =
∑

n≥0

1u<δ(n) .

Denote also byQ the quantile function associated with |X| whereX is a random variable with law
π: it is then the generalized inverse of the tail function t 7→ P(|X| > t) = π((−∞,−t[)+π(]t,∞)).
Let H be the function from [0, 1] to R

+ defined by H(x) =
∫ x
0 Q(u)du. We shall assume the

following condition
∑

n≥1

np−2

∫ δ(n)

0
Qp−1 ◦H−1(u)du <∞ . (14)
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Theorem 2 Let (Xn, n ≥ 1) be a stationary sequence defined by (8) and assume that its sta-
tionary distribution π has a moment of order p > 2. Assume in addition that condition (14)
holds. Let Sn =

∑n
k=1Xk. Then n−1

E
(
(Sn − nE(X1))

2
)
→ σ2 as n → ∞ and one can redefine

(Xn)n≥1 without changing its distribution on a (richer) probability space on which there exist iid
random variables (Ni)i≥1 with common distribution N (0, σ2), such that,

Sn − nE(X1)−
n∑

i=1

Ni = o(n1/p) P-a.s.

Remark 3 If we define

γ(x) = H−1(δ([x])) for any x ≥ 0 and γ−1(u) = δ−1 ◦H(u) for any u ∈ [0, 1] , (15)

then condition (14) can be rewritten as

∑

n≥1

np−2

∫ γ(k)

0
Qp(u)du <∞ , (16)

which also reads as
∫ 1

0
Rp−1(u)Q(u)du <∞ where R(u) = γ−1(u)Q(u) , (17)

Remark 4 Sufficient conditions for (14) to hold in terms of moments (or weak moments) of π
can be given by using Lemma 2 in Dedecker and Doukhan [10]. For instance, if

‖X1‖r for some r > p, and
∑

n≥1

n(pr−2r+1)/(r−p)δ(n) <∞ , (18)

then condition (14) is satisfied. Note that in the case where ‖X1‖∞ < ∞, condition (14) is
equivalent to

∑
n≥1 n

p−2δ(n) <∞.

If we define the following meeting time

T ∗ = inf{k ∈ N : Wk =W ∗
k } , (19)

it follows that, for any n ≥ 2,

δ(n) ≤
∫

Pν⊗ν(T ∗≥n)

0
Q(u)du .

Therefore the following corollary holds.

Corollary 5 Let (Xn, n ≥ 1) be the stationary sequence defined by (8) and assume that its
stationary distribution π has a moment of order p > 2. Assume in addition that

∑

n≥0

(n+ 1)p−2

∫
Pν⊗ν(T ∗≥n)

0
Qp(u)du <∞ . (20)

Then the conclusions of Theorem 2 hold.
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According to the computations given in Annex C of Rio [23], if

‖X1‖r for some r > p, and
∑

n≥1

n(pr−2r+p)/(r−p)
Pν⊗ν(T

∗ ≥ n) <∞ , (21)

then condition (20) is satisfied. In the case where ‖X1‖∞ <∞, condition (20) is equivalent to

∑

n≥1

np−2
Pν⊗ν(T

∗ ≥ n) <∞ . (22)

Propositions 15 and 18 in Section 3.3 will show that condition (22) is optimal in some sense.

3 Applications

3.1 Left random walk on GLd(R)

As in the introduction, let (εn)n≥1 be independent random matrices taking values in G =
GLd(R), d ≥ 2, with common distribution µ. let A0 = Id and for every n ≥ 1, An = εn · · · ε1.

Let ‖ · ‖ be the euclidean norm on R
d. Recall that µ has a moment of order p ≥ 1 if (1)

holds. Recall also that if µ admits a moment of order 1 then (2) holds, and the quantity λµ is
well defined.

Let X := Pd−1(R
d) be the projective space of Rd − {0} and write x̄ as the projection of

x ∈ R
d − {0} to X. We assume that µ is strongly irreducible (i.e. that no proper finite union

of subspaces of Rd are invariant by Γµ, the closed semi-group generated by the support of µ)
and proximal (i.e. that there exists a matrix in Γµ admitting a unique (with multiplicity one)
eigenvalue with maximum modulus). Under those assumptions (see e.g. Bougerol-Lacroix [4]
or Benoist-Quint [2]) it is well-known that there exists a unique invariant measure ν on B(X),
meaning that for any continuous and bounded function f from X to R,

∫

X
f(x)ν(dx) =

∫

G

∫

X
f(g · x)µ(dg)ν(dx) .

The left random walk of law µ is the process defined by W0 := ε0 and Wn = εnWn−1 for n ≥ 1
where we assume that ε0 is independent of (εn)n≥1. As explained in the introduction, our aim
is to study the partial sums associated with the random sequence (Xn)n≥1 given by

Xn := h(εn,Wn−1) , n ≥ 1 ,

where for every g ∈ G and every x̄ ∈ X,

h(g, x̄) = log
(‖g · x‖

‖x‖
)
.

As usual, we shall denote by Xn,x̄ the random variable for which W0 = x̄. We then define
Sn,x̄ =

∑n
k=1Xn,x̄ and recall that the identity (4) holds: for any x ∈ Sd−1,

Sn,x̄ =

n∑

k=1

Xk,x̄ = log ‖Anx‖ .

Applying Theorem 1, the following strong approximation with rate holds.
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Corollary 6 Let µ be a proximal and strongly irreducible probability measure on B(G). Assume
that µ has a moment of order p > 2. Then n−1

Eν

(
(Sn − nλµ)

2
)
→ σ2 as n → ∞ and for

every (fixed) x̄ ∈ X, one can redefine (Sn,x̄)n≥1 without changing its distribution on a (richer)
probability space on which there exist iid random variables (Ni)i≥1 with common distribution
N (0, σ2), such that,

Sn,x̄ − nλµ −
n∑

i=1

Ni = o(n1/p) a.s.

Remark 7 It follows from item c) of Theorem 4.11 of Benoist-Quint [2] that σ > 0 if µ is
strongly irreducible and the image of Γµ in PGLd(R) is unbounded.

Proof of Corollary 6. Using the same arguments as in Cuny-Dedecker-Jan [7] (see the proof
of their Theorem 1), we infer that it suffices to prove the result on stationary regime. More
precisely, it suffices to prove that one can redefine (Sn)n≥1 without changing its distribution
on a (richer) probability space on which there exist iid random variables (Ni)i≥1 with common
distribution N (0, σ2), such that,

Sn − nλµ −
n∑

i=1

Ni = o(n1/p) Pν-a.s. (23)

Note also that the fact that n−1
Eν

(
(Sn − nλµ)

2
)
→ σ2 as n→ ∞ comes from Theorem 2 (ii) in

[7]. Now the strong invariance principle (23) is a direct application of Theorem 1. To see this,
note first that the following estimate is valid (see Proposition 3 in [7]):

∑

k≥1

kp−2 sup
x̄,ȳ∈X

E
(∣∣Xk,x̄ −Xk,ȳ

∣∣) <∞ .

Since
(
supx̄,ȳ∈X E

(∣∣Xk,x̄ − Xk,ȳ

∣∣)
k≥1

is non increasing, supx̄,ȳ∈X E
(∣∣Xk,x̄ − Xk,ȳ

∣∣) ≪ k−(p−1).

Hence condition (11) holds with q = p− 1. To end the proof it suffices to notice that condition
(12) also holds since, for any k ≥ 1,

∥∥E(X2
k |Gk−1)

∥∥
∞

≤
∫

G
(logN(g))2µ(dg) <∞ .

�

3.2 Contracting iterated random functions

3.2.1 Uniform contraction

Assume that there is a distance d on X, and that there exist κ > 0 and ρ ∈ (0, 1) such that, for
any n ≥ 1,

‖E(d(Wn,W
∗
n) |(W0,W

∗
0 ))‖∞ ≤ κρn , (24)

whereW ∗
n is defined in (9). Note that condition (24) holds if the chain is “one step contracting”

in the following sense

‖d(W0,W
∗
0 )‖∞ <∞ and E(d(W1,x,W1,y)) ≤ ρd(x, y) for any (x, y) ∈ X ×X .
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Let us now define a class of observables from G×X to R for which one can easily compute
the coefficient δ∞(n). Let η be a measurable function from G to R

+ such that E(η(ε0)) < ∞,
and let c be a concave non-decreasing function from R

+ to R
+ such that c(0) = 0.

One says that h : G×X → R belongs to the class L(η, c) if,

|h(z, x) − h(z, y)| ≤ η(z)c(d(x, y)) for any (x, y, z) ∈ X ×X ×G .

Lemma 8 Assume that the stationary Markov chain (Wn)n≥0 satisfies the contraction condition
(24), and let (Xn)n≥1 be defined by (8) for some h ∈ L(η, c). Then, there exists a constant A > 0
such that, for any n ≥ 1,

δ∞(n) ≤ Ac(κρn−1) .

Proof. Let A = E(η(ε0)). Since h belongs to L(η, c), and since c is concave,

E(|Xn+1,x −Xn+1,y|) ≤ AE(c(d(Wn,x,Wn,y))) ≤ Ac(E(d(Wn,x,Wn,y))) .

Hence, since c is non-decreasing and (Wn)n≥0 satisfies (24),

‖E(|Xn+1 −X∗
n+1| |(W0,W

∗
0 ))‖∞ ≤ Ac(‖E(d(Wn,W

∗
n) |(W0,W

∗
0 ))‖∞) ≤ Ac(κρn) .

�

Applying Theorem 1, the following result holds:

Corollary 9 Assume that the stationary Markov chain (Wn)n≥0 satisfies the contraction con-
dition (24), and let (Xn)n≥1 be defined by (8) for some h ∈ L(η, c). Assume moreover that
E(η(ε1)

p) < ∞ for some p > 2, and that there exists x0 ∈ X such that ‖c(d(W0, x0))‖∞ < ∞
and E(|h(ε1, x0)|p) < ∞. If c(κρn) = O(n−q) for some q > (p − 1)/2, then the conclusion of
Theorem 1 holds.

Remark 10 Note that Corollary 9 applies to a large class of continuous observales (as functions
of x), including all Hölder observables (case where c(x) = xα for some α ∈ (0, 1)). More precisely
it applies to any concave non-decreasing function c such that c(x) ≤ C| ln(x)|−γ in a neighborhood
of 0, for some γ > (p − 1)/2.

Proof of Corollary 9. Applying Lemma 8, we infer that δ∞(n) = O(n−q) for some q >
(p− 1)/2. Hence, if one can prove that

sup
n≥1

‖E(|Xn|p|Gn−1)‖∞ ≤M , (25)

for some finite constant M , the result will follow directly from Theorem 1. To prove (25), we
note that

E(|h(εn,Wn−1)|p|Gn−1) ≤ 2p−1
E(|h(εn,Wn−1)− h(εn, x0)|p|Gn−1) + 2p−1

E(|h(ε1, x0)|p) . (26)

For the first term on the right-hand side of (26), we use the fact that h ∈ L(η, c), which gives

E(|h(εn,Wn−1)− h(εn, x0)|p|Gn−1) ≤ E(η(ε1)
p)‖c(d(W0, x0))‖p∞ . (27)

Under the assumptions of Corollary 9, it follows from (26) and (27) that the upper bound (25)
holds. �
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3.2.2 L
1-contraction

Assume that there is a distance d on X, and that there exist κ > 0 and ρ ∈ (0, 1) such that, for
any n ≥ 1,

‖d(Wn,W
∗
n)‖1 ≤ κρn , (28)

whereW ∗
n is defined in (9). Note that condition (28) holds if the chain is “one step contracting”

in the following sense:
E(d(x0, F (ε1, x0)) <∞ for some x0 ∈ X

and
E(d(W1,x,W1,y)) ≤ ρd(x, y) for any (x, y) ∈ X ×X .

Note also that, under the two conditions above, there exists an unique stationary distribution ν
(see Theorem 2 of [25]).

Let us now define a class of observables from G×X to R for which one can easily compute
the coefficients δ(n). Let c be a concave non-decreasing function from R

+ to R
+ such that

c(0) = 0.
One says that h : G×X → R belongs to the class L(c) if,

E(|h(ε1, x)− h(ε1, y)|) ≤ c(d(x, y)) for any (x, y) ∈ X ×X .

Lemma 11 Assume that the stationary Markov chain (Wn)n≥0 satisfies the contraction condi-
tion (28), and let (Xn)n≥1 be defined by (8) for some h ∈ L(c). Then, for n ≥ 2,

δ(n) ≤ 2−1c(κρn−2) .

Proof. Let k ≥ n ≥ 2. Since h belongs to L(c), and since c is concave,

‖Xk −X∗
k‖1 ≤ ‖c(d(Wk−1,W

∗
k−1))‖1 ≤ c

(
‖d(Wk−1,W

∗
k−1)‖1

)
.

Hence, since c is non-decreasing and (Wn)n≥0 satisfies (28),

‖Xk −X∗
k‖1 ≤ c

(
κρk−1

)
.

The result follows from the definition of δ(n) and the fact that c is non-decreasing. �

Recall that the function Q and H related to the tail function t 7→ P(|X1| > t) have been
defined in Section 2. Combining Theorem 2 and Lemma 11, the following result holds:

Corollary 12 Assume that the stationary Markov chain (Wn)n≥0 satisfies the contraction con-
dition (28), and let (Xn)n≥1 be defined by (8) for some h ∈ L(c). Assume moreover that

∑

n≥1

np−2

∫ c(κρn)

0
Qp−1 ◦H−1(u)du <∞ . (29)

Then the conclusion of Theorem 2 holds.

Remark 13 From Remark 4, it follows that (29) holds as soon as

‖X1‖r for some r > p, and
∑

n≥1

n(pr−2r+1)/(r−p)c (κρn) <∞ . (30)

The condition (30) is equivalent to the following integral condition on the function c
∫ 1/2

0

1

t
c(t)| ln(t)|(pr−2r+1)/(r−p) dt <∞ .
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3.3 Ergodic Markov chains

3.3.1 A discrete ergodic Markov chain example

Let (εi)i∈Z be a sequence of iid real-valued random variables distributed as ε with

P(ε = k) = pk , k ∈ N
∗ ,

Let W0 be a random variable with values in N independent of (εi)i∈Z, and define for any k ≥ 1,

Wk = (Wk−1 − 1)1Wk−1 6=0 + (εk − 1)1Wk−1=0 . (31)

Hence (Wk, k ∈ N) is a Markov chain with state space N, initial distribution L(W0) and transition
probabilities satisfying

Pi,i−1 = 1 and P0,i−1 = pi , i ≥ 1 .

Assume that p1 > 0 and pnj > 0 along nj → ∞. Then the chain {Wk; k ≥ 0} is irreducible and
aperiodic. Moreover, the stationary distribution exists if and only if E(ε) <∞ and is given by

ν0 = 1/E(ε) and νj = ν0

∞∑

i=j+1

pi , j ∈ N
∗ .

Corollary 14 Let p > 2 and f be a function from N to R such that ν(|f |r) < ∞ with r > p.
Assume that ∑

n≥1

n
p(r−1)
r−p pn <∞ . (32)

Then condition (21) is satisfied and the conclusions of Theorem 2 hold for Xn = f(Wn) where
(Wn)n≥0 is the Markov chain defined by (31) with L(W0) = ν.

For bounded observables (case r = ∞), condition (32) reads as
∑

n≥1 n
ppn < ∞. As we

shall see in the proof of the next proposition (see (39)),
∑

n≥1 n
ppn < ∞ is equivalent to∑

n≥1 n
p−2

Pν⊗ν(T
∗ ≥ n) < ∞, where T ∗ is the meeting time defined in (19). The next propo-

sition shows that this latter condition is in some sense optimal.

Proposition 15 Let p > 2 and (Wk)k≥0 be the Markov chain described above with pk :=
1/(ζ(p + 1)kp+1), k ∈ N

∗, where ζ(p+ 1) =
∑

k≥1 k
−(p+1). Then

∑

n≥1

np−2
Pν⊗ν(T

∗ ≥ n) = ∞, and for any ε > 0,
∑

n≥2

np−2(log n)−(1+ε)
Pν⊗ν(T

∗ ≥ n) <∞ .

(33)
Moreover, for any stationary and Gaussian centered sequence (gk)k∈Z with convergent series of
covariances,

lim sup
n→∞

(n log n)−1/p
∣∣∣

n∑

k=1

(1{Wk=0} − ν0)−
n∑

k=1

gk

∣∣∣ > 0 almost surely. (34)

Proof of Corollary 14. Define

T ∗
0 = inf{k ∈ N : Wk =W ∗

k = 0} .

10



By definition, T ∗ ≤ T ∗
0 . Hence for any n ∈ N,

Pν⊗ν(T
∗ ≥ n) ≤ Pν⊗ν(T

∗
0 ≥ n) . (35)

Next, it is easy to see that for any n ∈ N,

Pν⊗ν(T
∗
0 = n) = Pν⊗ν(T

′
0 = n) (36)

with
T ′
0 = inf{k ≥ 0 : Wk =W ′

k = 0} ,
where (W ′

k, k ∈ N) is the Markov chain defined as follows: Let (ε′k)k∈Z be an independent copy
of (εk)k∈Z and independent of W0. Let W

′
0 be independent of (W0, (εk)k∈Z, (ε

′
k)k∈Z) and, for any

k ≥ 1, set
W ′

k = (W ′
k−1 − 1)1W ′

k−1 6=0 + ε′k1W ′
k−1=0 .

According to Lindvall [16], if Eν(ψ(τ)) < ∞ where τ = inf{k ≥ 1 : Wk = 0} and ψ is a non-
decreasing function from N to [2,∞[ such that ((log(ψ(n))/n)n is non-increasing and converges
to 0, then Eν⊗ν(ψ(T

′
0)) <∞. Note now that

Pν(τ ≥ n) =

n−1∑

ℓ=0

νℓ
∑

j≥n−ℓ

pj +
∑

ℓ≥n

νℓ ≤ 2
∑

ℓ≥[n/2]

νℓ +
∑

j≥[n/2]+1

pj . (37)

Hence under (32), Eν(ψr,p(τ)) < ∞ with ψr,p(x) = xr(p−1)/(r−p). It follows that Eν(ψr,p(T
′
0)) <

∞ which in turn implies that Eν(ψr,p(T
∗)) <∞ by taking into account (35) and (36). Therefore

condition (21) is satisfied and Corollary 5 applies. �

Proof of Proposition 15. Note first that the following coupling inequality holds: for any
n ≥ 1,

β(n) :=
1

2

∫
‖δxPn − ν‖vν(dx) ≤ Pν⊗ν(T

∗ ≥ n) , (38)

where ‖µ‖v denotes the total variation norm of a signed measure µ and P is the transition
function of the Markov chain (Wk)k∈N. But for any n ≥ 1, β(n) ≥ 2α(n) where (α(n))n≥1 is the
sequence of strong mixing coefficients of the chain which starts from the stationary distribution.
As quoted in Chapter 30 of Bradley [6],

α(n) ≥
∣∣Pν(W0 ≥ n+ 1,Wn = 0)− Pν(W0 ≥ n+ 1)Pν(Wn = 0)

∣∣ = ν0
∑

k≥n+1

νk .

It follows that for any s ≥ 0,
∑

n≥1

ns
∑

k≥n+1

νk = ∞ ⇒
∑

n≥1

nsPν⊗ν(T
∗ ≥ n) = ∞ ,

which together with the arguments developed in the proof of Corollary 14 show that
∑

n≥1

ns+2pn <∞ ⇐⇒
∑

n≥1

nsPν⊗ν(T
∗ ≥ n) <∞ . (39)

This proves the first part of (33). To prove its second part, it suffices to use again the arguments
developed in the proof of Corollary 14 and to notice that, for pk := 1/(ζ(p + 1)kp+1), k ∈ N

∗,
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the upper bound (37) entails that Eν(ψp(τ)) < ∞ with ψp(x) =
xp−1

(log(1+x))1+ε where ε > 0. This

ends the proof of (33).

To prove the second part of the proposition, we shall use similar arguments as those developed
in the proof of Theorem 2.2 in Dedecker-Merlevède-Rio [11] and adopt the following notations:
the regeneration times (Tk)k≥0 of the Markov chain (Wk)k≥0 are defined by induction as follows:
R0 = inf{n > 0 : Wn = 0} and Rk = inf{n > Rk−1 : Wn = 0}. Let τk = Rk+1 − Rk for k ≥ 0.
Note that (τk)k≥0 are iid and that their common law is the law of R0 when the chain starts at
zero. Note that

P(τk > (k ln k)1/p) ∼ cp/(k log k) .

Since the regeneration times τk are independent, by the converse Borel-Cantelli lemma, it follows
that

P(τk > (k log k)1/p infinitely often ) = 1 .

Now we take
f(x) := 1x=0 and g(x) := f(x)− ν0 .

f is obviously a bounded function and ν(g) = 0. Note that, for any ℓ ≥ 0,

Rℓ+m∑

k=Rℓ+1

(ν0/2− f(Wk)) = mν0/2 for any 1 ≤ m < τℓ .

Since Rn/n converges to E(τ0) almost surely, it follows that, for some positive constant c de-
pending on E(τ0),

lim sup
n

n+[c(n logn)1/p]∑

i=n+1

(ν0/2− f(Wi)) ≥ 0 almost surely. (40)

Consider now a stationary and Gaussian centered sequence (gk)k∈Z with convergent series of
covariances. If follows from both the Borel-Cantelli lemma and the usual tail inequality for
Gaussian random variables that, for any positive θ,

lim inf
n

n+[c(n logn)1/p]∑

i=n+1

(gi + θ) ≥ 0 almost surely.

Taking θ = ν0/4 in the above inequality and using (40), we then infer that

lim sup
n→∞

1

[c(n log n)1/p]

n+[c(n logn)1/p]∑

i=n+1

(
gi + ν0 − f(Wi)

)
≥ ν0/4 almost surely,

which implies (34). �

12



3.3.2 An example of ergodic Markov chain with continuous state space

In this section, we consider an homogenous Markov chain with state space [0, 1] and transition
probability kernel P (x, ·) given by

P (x,A) = (1− x)δx(A) + xπ(A) , (41)

where δx denotes the Dirac measure at point x and

π(dx) = (a+ 1)xadx with a > 1.

Note that the chain is irreducible and aperiodic and admits a unique invariant probability
measure ν given by

ν(dx) = axa−1dx .

As in Section 9.3 in Rio [23], we now construct a stationary Markov chain (Wn)n∈N with initial
law ν and transition probability measure P (x, ·). Let ξ0 be a random variable with law ν. We
assume that the underlying probability space is rich enough to contain a sequence (εi)i∈Z :=
(Ui, Vi)i∈Z of independent random variables with uniform law over [0, 1]2, and that this random
sequence is independent of ξ0. The stationary Markov chain (Wn)n∈N is then constructed via
the following recursive equation: W0 = ξ0 and, for any k ≥ 1,

Wk =Wk−11Uk≥Wk−1
+ F−1

π (Vk)1Uk<Wk−1
, (42)

where F−1
π is the inverse of the cumulative function of π. It is easy to see that (Wn)n∈N is a

Markov chain with initial distribution ν and transition probability kernel given by (41).

Corollary 16 Let p > 2 and (Wk)k∈N be the stationary Markov chain defined by (42) with a >
p− 1. Then condition (22) is satisfied and the conclusions of Theorem 2 hold for Xn = f(Wn),
for any bounded function f defined on [0, 1].

The proof of this corollary is a direct application of Corollary 5 by taking into account the
following lemma whose proof is postponed to the Appendix (see Section 5.2).

Lemma 17 For any a > 1 there exist positive constants c(a) and C(a) depending only on a
such that for any n ≥ 1,

c(a)

na
≤ Pν⊗ν(T

∗ > n) ≤ C(a)

na
, (43)

where T ∗ is the meeting time defined in (19).

In addition, this lemma together with Theorem 2.2 in Dedecker-Merlevède-Rio [11] proves the
sharpness of condition (22) also in case of Markov chains with continuous state space. This is
summarized in the next proposition.

Proposition 18 Let p > 2 and (Wk)k∈N be the stationary Markov chain defined by (42) with
a = p−1. Then condition (22) fails. In addition, for any map f from [0, 1] to R with continuous
and strictly positive derivative f ′ on [0, 1], and any stationary and Gaussian centered sequence
(gk)k∈Z with convergent series of covariances,

lim sup
n→∞

(n log n)−1/p
∣∣∣

n∑

k=1

f(W a
k )− n

∫ 1

0
f(t)dt−

n∑

k=1

gk

∣∣∣ > 0 almost surely. (44)
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3.4 Lipschitz autoregressive models

We consider the autoregressive Lipschitz model as in Dedecker-Rio [13]. Let τ ∈ [0, 1), C ∈ (0, 1]
and f : R → R a 1-Lipschitz function such that

f(0) = 0 and |f ′(t)| ≤ 1− C

(1 + |t|)τ for almost every t .

Let (εi)i≥1 be iid real-valued random valued with common law µ and define for any n ≥ 1

Wn = f(Wn−1) + εn , with W0 independent of (εi)i≥1. (45)

Let Sn(h) =
∑n

k=1 h(Wi) for any measurable function h.

The model above corresponds to the previously considered situation with G = R and F :
R× R → R given by F (x, y) = x+ f(y), for every x, y ∈ R.

Let S ≥ 1 and assume that µ admits a moment of order S. It follows from Dedecker-Rio
[13] that there exists a unique invariant probability ν on R, such that

∫

R

|x|S−τν(dx) <∞ . (46)

The following strong approximation with rates holds.

Corollary 19 Let τ ∈ (0, 1) and assume that µ admits a moment of order S = p+ τp for some
p > 2. Let (Wn)n≥0 be defined by (45) with L(W0) = ν. Then, for any Lipschitz function h
such that ν(h) = 0, n−1Var(Sn(h)) → σ2(h) as n → ∞ and one can redefine (Wn)n≥0 without
changing its distribution on a (richer) probability space on which there exist iid random variables
(Ni)i≥1 with common distribution N (0, σ2(h)), such that,

Sn(h)−
n∑

i=1

Ni = o(n1/p) P-a.s.

Proof. The result comes from an application of Theorem 2 by taking into account Remark 4.
As already mentionned, ν admits a moment of order S− τ = p+(p− 1)τ . Hence, one can prove
that condition (18) holds with r = p + τ(p − 1), by using the last statement of the following
lemma (taking γ = (pr − 2r + 1)/(r − p) = −2 + (S − 1)/τ).

Lemma 20 Let γ > −1 and t > 0. Assume that S ≥ t+ (γ + 2)τ . Then

∑

n≥1

nγ
∫∫

E|Wn−1,x −Wn−1,y|tν(dx)ν(dy) <∞ .

In particular, for any Lipschitz function h, if S ≥ 1 + (γ + 2)τ then
∑

n≥1 n
γδ(n) <∞.

The proof of the lemma above is postponed to the Appendix (see Section 5.3).
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4 Proofs of Theorems 1 and 2

The proofs of Theorems 1 and 2 follow the scheme of proof of Theorem 2.1 in Berkes-Liu-Wu
[3] by applying the following general Proposition 21, which comes from a careful analysis of the
proof of their strong approximation result. To state this general proposition several preliminary
notations are needed.

A Preliminary result. For Proposition 21 below, we consider (Xk)k≥1 a strictly stationary
sequence of real-valued random variables in L

p (p > 2) and (εi)i≥0 a sequence of iid random
variables. Let (Mk)k≥1 be a sequence of positive real numbers and define

ϕk(x) = (x ∧Mk) ∨ (−Mk) and gk(x) = x− ϕk(x) . (47)

Then, define

Xk,j = ϕk(Xj)− Eϕk(Xj) and Wk,ℓ =
ℓ+3k−1∑

i=1+3k−1

Xk,i . (48)

Let now (mk)k≥1 be a non-decreasing sequence of positive integers such that mk = o(3k), as
k → ∞, and define

X̃k,j = E
(
ϕk(Xj)|εj , εj−1, . . . , εj−mk

)
− Eϕk(Xj) for any j ≥ mk and W̃k,ℓ =

ℓ+3k−1∑

i=1+3k−1

X̃k,i .

(49)
Finally set k0 := inf{k ≥ 1 : mk ≤ 2−13k−2} and define

νk = m−1
k

{
E(W̃ 2

k,mk
) + 2E(W̃k,mk

(W̃k,2mk
− W̃k,mk

))
}
. (50)

The general proposition coming from a careful analysis of the proof of Theorem 2.1 in Berkes-Liu-
Wu [3] reads as follows

Proposition 21 (Berkes-Liu-Wu [3]) Let p > 2. Assume that we can find a sequence of
positive real numbers (Mk)k≥1 a non-decreasing sequence of positive integers (mk)k≥1 such that
mk = o(32k/pk−1), as k → ∞, in such a way that the following conditions are satisfied:

∑

k≥1

3k(p−1)/p
E(|gk(X1)|) <∞ , (51)

there exists α ≥ 1 such that

∑

k≥k0

3−αk/p
∥∥∥ max
1≤ℓ≤3k−3k−1

∣∣Wk,ℓ − W̃k,ℓ

∣∣
∥∥∥
α

α
<∞ , (52)

and there exists r ∈]2,∞[ such that

∑

k≥k0

3k

3kr/pmk
E

(
max

1≤ℓ≤3mk

∣∣W̃k,ℓ

∣∣r
)
<∞ . (53)

Assume in addition that

the series σ2 = Var(X1) + 2
∑

i≥1

Cov(X1,Xi+1) converge, (54)
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and
3k(ν

1/2
k − σ)2 = o(32k/p(log k)−1) , as k → ∞ . (55)

Then, one can redefine (Xn)n≥1 without changing its distribution on a (richer) probability space
on which there exist iid random variables (Ni)i≥1 with common distribution N (0, σ2), such that,

Sn − nE(X1)−
n∑

i=1

Ni = o(n1/p) P-a.s. (56)

Note that (54) implies that n−1Var(Sn) converges to σ2 (which is therefore non-negative). Let
us now briefly explain how the proposition follows from the work of Berkes-Liu-Wu [3].

Condition (51) together with condition (52) prove that it is enough to show (56) with

S̃n =

hn−1∑

k=1

W̃k,3k−3k−1 + W̃hn,n−3hn−1

instead of Sn − nE(X1), where, for n ≥ 2, hn := ⌈(log n)/(log 3)⌉ (so that hn is the unique
integer such that 3hn−1 < n ≤ 3hn). Next, condition (53) allows first to show that the proof of
the proposition is reduced to prove (56) with S⋄

n replacing Sn − nE(X1) where

S⋄
n =

hn−1∑

k=K0

qk∑

j=1

Bk,j +

τn∑

j=1

Bhn,j , where τn =
[n− 3hn−1

3mhn

]
− 2 ,

with Bk,j = 0 if k < k0 and for k ≥ k0,

Bk,j =

3(j+1)mk+3k−1∑

i=1+3jmk+3k−1

X̃k,i , j = 1, 2, . . . , qk = [2× 3k−2/mk]− 2 .

A careful analysis of the steps 3.2 and 3.3 of the proof of Theorem 2.1 in Berkes-Liu-Wu [3]
reveals that condition (53) is also sufficient to apply Theorem 1 in Sakhanenko [24] (at different
steps of their proof) and this leads to the following strong approximation result: one can redefine
(Xn)n≥1 without changing its distribution on a (richer) probability space on which there exists
a standard Brownian motion B = {B(t), t ∈ R

+} such that,

max
i≤n

∣∣S⋄
i −B(σ2i )

∣∣ = o(n1/p) P-a.s.

where

σ2n =

hn−1∑

k=k0

3mkqkνk + 3mτnτnνhn .

The last step 3.4 of their proof then consists in showing that one can construct another standard
Brownian motion W = {W (t), t ∈ R

+} (depending on B) such that

B(σ2n)− σW (n) = o(n1/p) P-a.s.

This step is achieved provided that we can prove that νk → σ2, mk = o(32k/pk−1), as k → ∞,
and condition (55) holds.
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Some preliminary considerations. The following considerations allowing to extend the stationary
sequence (Xn)n≥1 defined by (8) to a stationary sequence on Z will be useful.

For any n ≥ 1, let Vn = (εn,Wn−1). Hence (Xn)n≥1 is a functional of the Markov chain
(Vn)n≥1 with state space G×X and stationary distribution µ⊗ ν. The Markov chain (Vn)n≥1

being stationary, by Kolmogorov’s theorem, there exists a probability P̂ on the measurable space
(Ω̂, F̂) = ((G × X)Z, (B(G) × B(X))Z) invariant by the shift η̂ on Ω̂ and such that the law of
the coordinate process (V̂n = (ε̂n, Ŵn−1))n∈Z (with values in G × X) under P̂ is the same as
the one of (Vn)n≥1 under Pν . Hence, if we define for any integer n, X̂n := h(V̂0) ◦ η̂n, it follows
that (X̂n)n∈Z forms a stationary sequence with stationary distribution π, whose law under P̂

is the same as the one of (Xn)n≥1 under Pν . To prove the theorem, it suffices then to prove
that it holds for the extended sequence (X̂n)n∈Z which is a stationary sequence adapted to the
stationary filtration (F̂n)n∈Z where F̂n = σ(V̂k, k ≤ n) To avoid additional notations, in the rest
of the proof we write (Xn)n∈Z for (X̂n)n∈Z, (Vn)n∈Z for (V̂n)n∈Z and (Fn)n∈Z for (F̂n)n∈Z.

4.1 Proof of Theorem 1

By the reverse martingale convergence theorem and stationarity, ‖E(Xn|F0) − E(Xn)‖2 is de-
creasing to ‖E(X0|F−∞)−E(X0)‖2, as n→ ∞. Hence, by condition (11), E(X0|F−∞) = E(X0)
a.s. Applying Lemma 22 of the Appendix and taking into account condition (11), we get (since
q > 1/2),

∑

k≥1

|Cov(X1,Xk+1)| ≪
(∑

k≥0

(k + 1)−1/2‖E(Xk|V0)− E(Xk)‖2
)2

<∞ .

This proves that the series σ2 = Var(X1) + 2
∑

i≥1Cov(X1,Xi+1) converge absolutely and
condition (54) of Proposition 21 holds.

Assume first that σ2 = 0. To prove that Sn − nE(X1) = o(n1/p) a.s., we shall use Theorem
4.7 in Cuny-Merlevède [8]. Hence, it suffices to prove that

∑

n≥1

‖Sn − nE(X1)‖p
n1+1/p

<∞ . (57)

With this aim, we start by noticing that by condition (11),

∑

k≥1

k−1/p‖E(Xk|V0)− E(Xk)‖p <∞ and therefore
∑

k≥1

‖E(Sk|V0)− kE(X1)‖p
k1+1/p

<∞ .

Theorem 2.3 in [8] then asserts that there exists a stationary sequence (Dk)k∈Z of martingale
differences in L

p, adapted to (Fk)k∈Z and such that n−1/2‖Sn − nE(X1)−
∑n

k=1Dk‖p → 0, as
n → ∞. Together with the fact that limn→∞ n−1Var(Sn) = σ2 = 0, it follows that Dk = 0 a.s,
for any k. Therefore, the upper bound (4) in [8] and condition (11) entail that

∑

n≥1

‖Sn − nE(X1)‖p
n1+1/p

≪
∑

n≥1

n1/2

n1+1/p

∑

k≥[np/2]

‖E(Sk|V0)− kE(X1)‖p
k1+1/p

≪
∑

k≥1

1

k1+2/p2
‖E(Sk|V0)− kE(X1)‖p ≪

∑

k≥1

1

k2/p
2 ‖E(Xk|V0)− E(X1)‖p ≪

∑

k≥1

1

kq+2/p2
,
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which proves (57) since q + 2/p2 − 1 > (2p2)−1(p3 − 3p2 + 4) = (2p2)−1(p− 2)2(p+ 1) > 0. The
theorem is then proved in the case where σ2 = 0.

Assume from now that σ2 > 0. We choose

Mk = 3k/p and mk = [32(1−ε)k/p] with 0 < ε < min
(
1− p− 1

2q
,
1

2

)
,

Note that the sequence (mk)k≥0 satisfies mk = o(32k/pk−1), as k → ∞. We prove below that
conditions (51), (52), (53) and (55) of Proposition 21 are satisfied with the above choices of
(Mk)k≥0 and (mk)k≥0.

Since the Xi’s are in L
p, it is easy to see that with the choice ofMk, condition (51) is satisfied

(it suffices to write that E(|gk(X1)|) ≤ E(|X1|1|X1|>Mk
) and to use Fubini’s Theorem). Next,

for k ≥ k0, Lemma 24 of the Appendix combined with condition (11) implies that

∥∥∥ max
1≤ℓ≤3k−3k−1

∣∣Wk,ℓ − W̃k,ℓ

∣∣
∥∥∥
1
≤

3k∑

i=1+3k−1

‖Xk,i − X̃k,i‖1 ≤
C3k

mq
k

.

Therefore,
∑

k≥k0

3−k/p
∥∥∥ max
1≤ℓ≤3k−3k−1

∣∣∣Wk,ℓ − W̃k,ℓ

∣∣∥∥
1
≪

∑

k≥1

3k(p−1)/p

32q(1−ε)k/p
<∞ ,

since 2q(1− ε) > p− 1. Condition (52) is then satisfied with α = 1. We prove now that we can
find a real number r ∈]2,∞[ such that (53) holds. Let r ≥ 2,

Yk,i = X̃k,i+3k−1 , Gk,i := Gi+3k−1 = σ(εi+3k−1 , . . . , ε1,W0) ,

and
dk,i = Yk,i − E(Yk,i|Gk,i−1) .

With these notations, we have

∥∥∥ max
1≤ℓ≤3mk

∣∣W̃k,ℓ

∣∣
∥∥∥
r
≤

∥∥∥ max
1≤ℓ≤3mk

∣∣∣
ℓ∑

i=1

dk,i

∣∣∣
∥∥∥
r
+

∥∥∥ max
1≤ℓ≤3mk

∣∣∣
ℓ∑

i=1

E(Yk,i|Gk,i−1)
∣∣∣
∥∥∥
r
. (58)

By Rosenthal’s inequality for martingales,

∥∥∥ max
1≤ℓ≤3mk

∣∣∣
ℓ∑

i=1

dk,i

∣∣∣
∥∥∥
r

r
≪

( 3mk∑

i=1

‖E(d2k,i|Gk,i−1)‖r/2
)r/2

+

3mk∑

i=1

‖dk,i‖rr .

Note that

E(d2k,i|Gk,i−1) ≤ E(E2(ϕk(Xi+3k−1)|Hk,i)|Gk,i−1) ≤ E(E(X2
i+3k−1 |Hk,i)|Gk,i−1) ,

where Hk,i = σ(εi+3k−1 , . . . , εi+3k−1−mk
). Here, recall the following well known fact: if Y is an

integrable random variable, and G1 and G2 are two σ-algebras such that σ(Y )∨G1 is independent
of G2, then

E(Y |G1 ∨ G2) = E(Y |G1) a.s. (59)
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Applying (59) with G1 = σ(εi+3k−1−1, . . . , εi+3k−1−mk
), G2 = Gk,i−mk−1 and Y = E(X2

i+3k−1 |Hk,i),
we get

E(d2k,i|Gk,i−1) ≤ E(X2
i+3k−1 |σ(εi+3k−1−1, . . . , εi+3k−1−mk

)) .

Hence, by assumption (12),

‖E(d2k,i|Gk,i−1)‖r/2 ≤ ‖E(X2
i+3k−1 |Gk,i−1)‖r/2 ≤ ‖E(X2

i+3k−1 |Gk,i−1)‖∞ ≤ c .

On another hand, by stationarity,

‖dk,i‖rr ≪ ‖ϕk(X0)‖rr ≪ ‖X01|X0|≤Mk
‖rr +M r

kP(|X0| > Mk) .

So, overall,

∥∥∥ max
1≤ℓ≤3mk

∣∣∣
ℓ∑

i=1

dk,i

∣∣∣
∥∥∥
r

r
≪ m

r/2
k +mk

(
‖X01|X0|≤Mk

‖rr +M r
kP(|X0| > Mk)

)
. (60)

We handle now the second term in the right-hand side of (58). We apply Proposition 23 of the
Appendix with α = r, r = rk where rk is the unique positive integer such that 2rk−1 ≤ 3mk < 2rk ,

Zi = 0 for i ≤ 0 , Zi := Zk,i = E(Yk,i|Gk,i−1) for i ≥ 1

and
Fi = {∅,Ω} for i ≤ 0 , Fi = σ(εi−1+3k−1 , . . . , ε1,W0) = Gk,i−1 for i ≥ 1 .

We then get

∥∥∥ max
1≤ℓ≤3mk

∣∣∣
ℓ∑

i=1

E(Yk,i|Gk,i−1)
∣∣∣
∥∥∥
r

≪
( 3mk∑

j=1

‖E(Yk,j|Gk,j−1)‖2r
)1/2

+

rk−1∑

ℓ=0

( 2rk−ℓ∑

m=1

‖E(Tm2ℓ − T(m−1)2ℓ |F(m−2)2ℓ+1)‖2r
)1/2

, (61)

where Tℓ =
∑ℓ

i=1 E(Yk,i|Gk,i−1). By fact (59), we note that, for any i ≥ 1,

‖E(Yk,i|Gk,i−1)‖∞ = ‖E(Xk,i+3k−1 |σ(εi+3k−1−1, . . . , εi+3k−1−mk
))‖∞

≤ 2‖E(ϕk(Xi+3k−1)|Gk,i−1)‖∞ ≤ 2‖E(ϕ2
k(Xi+3k−1)|Gk,i−1)‖1/2∞ .

Therefore, by condition (12),
‖E(Yk,i|Gk,i−1)‖∞ ≤ 2

√
c . (62)

Next, since Fi = {∅,Ω} for i ≤ 0 and the Zi’s are centered , for any ℓ ≥ 0,

‖E(T2ℓ |F−2ℓ+1)‖r = 0 .

Moreover, for any m ≥ 2 and any ℓ ≥ 0,

‖E(Tm2ℓ − T(m−1)2ℓ |F(m−2)2ℓ+1)‖r ≤
m2ℓ∑

i=(m−1)2ℓ+1

‖E(X̃k,i+3k−1 |Gk,(m−2)2ℓ)‖r .
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But, for any m ≥ 2, any ℓ ≥ 0 and any i ≥ (m− 1)2ℓ + 1,

‖E(X̃k,i+3k−1 |Gk,(m−2)2ℓ)‖r
= ‖E(E(ϕk(Xi+3k−1)|εi+3k−1 , . . . , εi+3k−1−mk

)|Gk,(m−2)2ℓ)− E(ϕk(Xi+3k−1))‖r .

Hence, if 2ℓ ≥ mk,
‖E(X̃k,i+3k−1 |Gk,(m−2)2ℓ)‖r = 0 ,

and if 2ℓ ≤ mk − 1, by using (59),

‖E(X̃k,i+3k−1 |Gk,(m−2)2ℓ)‖r ≤ ‖E(Xk,i+3k−1 |Gk,(m−2)2ℓ)‖∞ .

But, by using stationarity, the Markov property and the fact that ϕk is 1-Lipschitz,

‖E(Xk,i+3k−1 |Gk,(m−2)2ℓ)‖∞ ≤ sup
x∈X

∣∣∣E(ϕk(Xi−((m−2)2ℓ ,x))−
∫

E(ϕk(Xi−((m−2)2ℓ ,y))dν(y)
∣∣∣

≤ sup
x∈X

∫ ∣∣E(ϕk(Xi−((m−2)2ℓ ,x))− E(ϕk(Xi−((m−2)2ℓ ,y))
∣∣dν(y) .

Hence, for any m ≥ 2, any ℓ ≥ 0 and any i ≥ (m− 1)2ℓ + 1,

‖E(X̃k,i+3k−1 |Gk,(m−2)2ℓ)‖r ≤ ‖E(Xk,i+3k−1 |Gk,(m−2)2ℓ)‖∞ ≪ 1

(i− (m− 2)2ℓ)q
. (63)

Since q > 1/2, the above considerations imply that

rk−1∑

ℓ=0

( 2rk−ℓ∑

m=1

‖E(Tm2ℓ − T(m−1)2ℓ |F(m−2)2ℓ+1)‖2r
)1/2

≪ 2rk/2
rk−1∑

ℓ=0

2ℓ/22−ℓq ≪ m
1/2
k .

Combined with (61) and (62), the upper bound above implies that

∥∥∥ max
1≤ℓ≤3mk

∣∣∣
ℓ∑

i=1

E(Yk,i|Gk,i−1)
∣∣∣
∥∥∥
r

r
≪ m

r/2
k . (64)

Hence, starting from (58) and taking into account (60) and (64), we get that for any r ≥ 2,

∥∥∥ max
1≤ℓ≤3mk

∣∣∣W̃k,ℓ

∣∣∥∥r
r
≪ m

r/2
k +mk

(
‖X01|X0|≤Mk

‖rr +M r
kP(|X0| > Mk)

)
.

This implies that (53) holds with r > max
{
2, ε−1

(
p− 2(1 − ε)

)}
.

To end the proof it remains to prove condition (55). Note first that since σ2 is assumed to
be strictly positive, we have

|ν1/2k − σ| = σ−1σ|ν1/2k − σ| ≤ σ−1(ν
1/2
k + σ)|ν1/2k − σ| = σ−1|νk − σ2| ,

and therefore condition (55) reads as

3k(νk − σ2)2 = o(32k/p(log k)−1) , as k → ∞ . (65)
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To verify condition (65), let us define, for i ≥ 0,

c̃k,i = cov(X̃k,mk+1, X̃k,i+mk+1) and ĉk,i = cov(Xk,0,Xk,i) .

Using stationarity, we have

E(W̃ 2
k,mk

) = mkc̃k,0 + 2

mk−1∑

ℓ=1

(mk − ℓ)c̃k,ℓ and E(W̃k,mk
(W̃k,2mk

− W̃k,mk
)) =

mk∑

ℓ=1

ℓc̃k,ℓ .

Therefore

νk = c̃k,0 + 2

mk∑

ℓ=1

c̃k,ℓ . (66)

We first prove that
∣∣∣νk −

(
ĉk,0 + 2

∑

ℓ≥1

ĉk,ℓ
)∣∣∣ ≪ 3k/(2p)m

−q/2
k +

(
m

−1/2
k (logmk)1q=1 +m

−q+1/2
k 1q<1

)
. (67)

With this aim we use the arguments developed in [3] to get their inequality (3.56). Hence, we
start by noting that since ϕk is 1-Lipschitz,

(
‖E(ϕk(Xn)|F0)−E(ϕk(Xn)‖2)

)
n≥0

is a decreasing

sequence such that ‖E(ϕk(Xn)|F0) − E(ϕk(Xn)‖2 ≤ δ∞(n). Hence, by the same arguments as
those developed in the first lines of the proof of Theorem 1, we infer that, under condition
(11), there exists a constant C not depending on k such that

∑
ℓ∈Z |ĉk,ℓ| ≤ C. Therefore,

limj→∞ j−1
E(W 2

k,j) = ĉk,0 + 2
∑

ℓ≥1 ĉk,ℓ. On another hand, the following convergence clearly

holds: limj→∞ j−1
E(W̃ 2

k,j) = νk. In addition, for all j ≥ 1,

|E(W̃ 2
k,j)− E(W 2

k,j)| ≤ ‖W̃k,j −Wk,j‖2‖W̃k,j +Wk,j‖2 .

The above considerations imply

∣∣∣νk −
(
ĉk,0 + 2

∑

ℓ≥1

ĉk,ℓ
)∣∣∣ ≤ lim sup

j→∞
j−1‖W̃k,j −Wk,j‖22 + 2

√
C lim sup

j→∞
j−1/2‖W̃k,j −Wk,j‖2 . (68)

To take care of ‖W̃k,j−Wk,j‖2, we apply Proposition 23 of the Appendix with, this time, α = 2,
r = rj where rj is the unique positive integer such that 2rj−1 ≤ j < 2rj ,

Zi = 0 for i ≤ 0 , Zi := Zi,k = Xk,i+3k−1 − X̃k,i+3k−1 for i ≥ 1 ,

and
Fi = {∅,Ω} for i ≤ 0 , Fi = σ(εi+3k−1 , . . . , ε1,W0) = Gk,i for i ≥ 1 .

Hence

‖W̃k,j −Wk,j‖2 ≪
( j∑

i=1

‖Xk,i+3k−1 − X̃k,i+3k−1‖22
)1/2

+

rk−1∑

ℓ=0

( 2rk−ℓ∑

m=1

‖E(Tm2ℓ − T(m−1)2ℓ |F(m−2)2ℓ+1)‖22
)1/2

, (69)
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where Tℓ =
∑ℓ

i=1(Xk,i+3k−1 − X̃k,i+3k−1). Lemma 24 of the Appendix combined with condition
(11) implies that

j∑

i=1

‖Xk,i+3k−1 − X̃k,i+3k−1‖22 ≤ 2× 3k/p
j+3k−1∑

i=1+3k−1

‖Xk,i − X̃k,i‖1 ≤
Cj3k/p

mq
k

. (70)

Next, since Fi = {∅,Ω} for i ≤ 0, for any ℓ ≥ 0,

‖E(T2ℓ |F−2ℓ+1)‖2 = |E(T2ℓ)| = 0 .

Moreover, by (63), we infer that for any m ≥ 2, any ℓ ≥ 0 and any i ≥ (m− 1)2ℓ + 1,

‖E(Xk,i+3k−1 − X̃k,i+3k−1 |Gk,(m−2)2ℓ+1)‖2

≤ ‖E(Xk,i+3k−1 − X̃k,i+3k−1 |Gk,(m−2)2ℓ+1)‖∞ ≪ 1

(i− (m− 2)2ℓ)q
≪ 2−ℓq .

On another hand, Lemma 24 of the Appendix combined with condition (11) implies that

‖E(Xk,i+3k−1 − X̃k,i+3k−1 |Gk,(m−2)2ℓ+1)‖1 ≤ ‖Xk,i+3k−1 − X̃k,i+3k−1‖1 ≪ m−q
k .

Hence, for any m ≥ 2, any ℓ ≥ 0 and any i ≥ (m− 1)2ℓ + 1, we also have

‖E(Xk,i+3k−1 − X̃k,i+3k−1 |Gk,(m−2)2ℓ+1)‖22 ≤ 2−ℓqm−q
k .

The considerations above imply that, for any m ≥ 2, any ℓ ≥ 0 and any i ≥ (m− 1)2ℓ + 1,

‖E(Xk,i+3k−1 − X̃k,i+3k−1 |Gk,(m−2)2ℓ+1)‖2 ≤ 2−ℓq/2 min(2−ℓq/2,m
−q/2
k ) .

Hence, since q > 1/2,

rj−1∑

ℓ=0

( 2rj−ℓ∑

m=1

‖E(Tm2ℓ − T(m−1)2ℓ |F(m−2)2ℓ+1)‖22
)1/2

≪ 2rj/2
rj−1∑

ℓ=0

2ℓ/22−ℓq/2min(2−ℓq/2,m
−q/2
k )

≪ j1/2
(
m

−q/2
k 1q>1 +m

−1/2
k (logmk)1q=1 +m

−q+1/2
k 1q<1

)
. (71)

Starting from (69) and considering the upper bounds (70) and (71), we get

j−1/2‖W̃k,j −Wk,j‖2 ≪ 3k/(2p)m
−q/2
k +

(
m

−1/2
k (logmk)1q=1 +m

−q+1/2
k 1q<1

)
. (72)

Hence starting from (68) and taking into account (72) together with the fact that 3k/(2p)m
−q/2
k ≤

2q/2, the upper bound (67) follows.
Let now ci = Cov(X0,Xi) and note that (see Relation (3.54) in [3], where the same truncation

level is used)
sup
i≥0

|ĉk,i − ci| = o(3−k(p−2)/p) .

Let
ℓk = [3k(p−2)/(2p)(log k)−1/2] .
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Since σ2 = c0 + 2
∑

i≥1 ci, it follows that

∣∣∣σ2 − (ĉk,0 + 2
∑

i≥1

ĉk,i)
∣∣∣ ≤ o(ℓk3

−k(p−2)/p) + 2
∑

i>ℓk

|ci − ĉk,i| . (73)

But
|ci − ĉk,i| = |Cov(X0 − ϕk(X0),Xi) + Cov(ϕk(X0),Xi − ϕk(Xi))| .

Set gk(x) = x − ϕk(x) and note that, by the reverse martingale convergence theorem and
condition (11), E(gk(X0)|F−∞) = E(gk(X0)) a.s. and E(X0|F−∞) = E(X0) a.s. Hence, applying
Lemma 22 of the Appendix and taking into account condition (11), we get

∑

i>ℓk

|Cov(X0 − ϕk(X0),Xi)| ≪
∞∑

j=0

‖P0(gk(Xj))‖2
∑

i≥[2−1(ℓk+j)]+1

i−1/2‖E(Xi|V0)‖2

≪
∞∑

j=0

‖P0(gk(Xj))‖2(ℓk + j)1/2−q ,

where P0(·) = E(·|F0)− E(·|F−1). But, by Lemma 22 of the Appendix,

∞∑

j=0

‖P0(gk(Xj))‖2(ℓk + j)1/2−q ≪ ℓ
1/2−q
k

ℓk∑

j=0

‖P0(gk(Xj))‖2 +
∑

j≥ℓk

j1/2−q‖P0(gk(Xj))‖2

≪ ℓ
1/2−q
k

ℓk∑

j=0

(j + 1)−1/2‖E(gk(Xj)|V0)− E(gk(Xj))‖2 +
∑

j≥ℓk

j1/2−q‖P0(gk(Xj))‖2 .

Note now that, since q > 1/2,

∑

j≥ℓk

j1/2−q‖P0(gk(Xj))‖2 =
∑

j≥ℓk

j1/2−q‖P0(gk(Xj))‖2
(
j−1

j∑

m=1

1
)

=
∑

m≥1

∑

j≥max(m,ℓk)

j−(1/2+q)‖P0(gk(Xj))‖2

≪ ℓ1−q
k

( ∑

j≥ℓk

‖P0(gk(Xj))‖22
)1/2

+
∑

m>ℓk

m−q
( ∑

j≥m

‖P0(gk(Xj))‖22
)1/2

≪ ℓ1−q
k ‖E(gk(Xℓk)|V0)− E(gk(Xℓk))‖2 +

∑

m>ℓk

m−q‖E(gk(Xm)|V0)− E(gk(Xm))‖2 . (74)

So, overall,

∑

i>ℓk

|Cov(X0 − ϕk(X0),Xi)| ≪ ℓ
1/2−q
k

ℓk∑

j=0

(j + 1)−1/2‖E(gk(Xj)|V0)− E(gk(Xj))‖2

+ ℓ1−q
k ‖E(gk(Xℓk)|V0)− E(gk(Xℓk))‖2 +

∑

m>ℓk

m−q‖E(gk(Xm)|V0)− E(gk(Xm))‖2 .
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Next, we note that

‖E(gk(X0)|V0)− E(gk(X0))‖2 ≪ o(3−k(p−2)/(2p)) ,

and that, for j ≥ 1, by condition (11),

‖E(gk(Xj)|V0)− E(gk(Xj))‖2 ≪ min
(
j−q, j−q/23−k(p−1)/(2p)

)
. (75)

Hence, since q > 1/2, we infer that

∑

i>ℓk

|Cov(X0 − ϕk(X0),Xi)| ≪ ℓ
1/2−q
k 3−k(p−2)/(2p) + ℓ1−2q

k 1q>1 + k ℓ
−1/2
k 3−k(p−1)/(2p)1q=1

+
(
k 3−k(p−1)/(2p) + ℓ

1−3q/2
k 3−k(p−1)/(2p) + 3k(1−2q)(p−1)/(pq)

)
1q<1 . (76)

We handle now the series ∑

i>ℓk

|Cov(ϕk(X0),Xi − ϕk(Xi))| .

Applying again Lemma 22 of the Appendix, we first write that

∑

i>ℓk

|Cov(ϕk(X0),Xi − ϕk(Xi))|

≪
∞∑

ℓ=0

‖P0(ϕk(Xℓ))‖2
∑

i≥[2−1ℓk]+1

i−1/2‖E(gk(Xi)|F0)− E(gk(Xi))‖2 .

By condition (11) and since q > 1/2,

∑

ℓ≥0

‖P0(ϕk(Xℓ))‖2 ≪
∑

ℓ≥0

(ℓ+ 1)−1/2‖E(ϕk(Xj)|V0)− E(ϕk(Xj))‖2 ≤ C .

So, taking into account (75) and the fact that q > 1/2,

∑

i>ℓk

|Cov(ϕk(X0),Xi − ϕk(Xi))|

≪ 3−k(p−1)/(2p)ℓ
(1−q)/2
k 1q>1 + 3−k(p−1)(2q−1)/(2pq)1q<1 + k 3−k(p−1)/(2p)1q=1 . (77)

Considering the upper bounds (73), (76) and (77), we then derive

∣∣∣σ2−(ĉk,0+2
∑

i≥1

ĉk,i)
∣∣∣ ≤ o(ℓk3

−k(p−2)/p)+ℓ
1/2−q
k 3−k(p−2)/(2p)+

(
ℓ1−2q
k +3−k(p−1)/(2p)ℓ

(1−q)/2
k

)
1q>1

+ k3−k(p−1)/(2p)1q=1 +
(
k 3−k(p−1)/(2p) + ℓ

1−3q/2
k 3−k(p−1)/(2p) + 3−k(p−1)(2q−1)/(2pq)

)
1q<1 ,

which combined with (67) gives

∣∣νk − σ2
∣∣ ≪ o(ℓk3

−k(p−2)/p) + ℓ
1/2−q
k 3−k(p−2)/(2p) +

(
ℓ1−2q
k + 3−k(p−1)/(2p)ℓ

(1−q)/2
k

)
1q>1

+ k3−k(p−1)/(2p)1q=1 +
(
k 3−k(p−1)/(2p) + ℓ

1−3q/2
k 3−k(p−1)/(2p) + 3−k(p−1)(2q−1)/(2pq)

)
1q<1

+ 3k/(2p)m
−q/2
k +

(
m

−1/2
k (logmk)1q=1 +m

−q+1/2
k 1q<1

)
. (78)
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Let us verify that (65) holds, namely:

3k(p−2)/(2p)(νk − σ2) = o((log k)−1/2) .

The choice of ℓk implies that ℓk3
−k(p−2)/p = 3−k(p−2)/(2p)(log k)−1/2 and ℓ

1/2−q
k = o((log k)−1/2)

(since q > 1/2). Moreover, when q > 1, we clearly have 3k(p−2)/(2p)ℓ1−2q
k = o((log k)−1/2) and

3k(p−2)/(2p)3−k(p−1)/(2p)ℓ
(1−q)/2
k = o((log k)−1/2). It is also clear that 3k(p−2)/(2p)k3−k(p−1)/(2p) =

o((log k)−1/2). Next, since q > (p− 1)/2,

3k(p−2)/(2p)3−k(p−1)(2q−1)/(2pq)1q<1 ≤ 3k(p−2)/(2p)3−k(p−1)(p−2)/(2p) ,

proving (since p > 2) that 3k(p−2)/(2p)3−k(p−1)(2q−1)/(2pq)1q<1 = o((log k)−1/2). Also, since p > 2,

3k(p−2)/(2p)ℓ
1−3q/2
k 3−k(p−1)/(2p)1(p−1)/2<q<1 ≪ 3k(p−2)/(2p)ℓ

1/4
k 3−k(p−1)/(2p)12<p<3 ,

which proves that 3k(p−2)/(2p)ℓ
1−3q/2
k 3−k(p−1)/(2p)1(p−1)/2<q<1 = o((log k)−1/2). Next, we note

that

3k(p−2)/(2p) 3
k/(2p)

m
q/2
k

= 3k(p−1)/(2p)3−qk(1−ε)/p = o((log k)−1/2) ,

since ε < 1− p−1
2q .

Now, if q = 1 then p < 3 (since q > (p − 1)/2). Hence since ε < 1/2, we get that

3k(p−2)/(2p)m
−1/2
k (logmk)1q=1 = o((log k)−1/2). Finally, using again that q > (p − 1)/2 and

that ε < 1/2, we derive that 3k(p−2)/(2p)m
−q+1/2
k 1q<1 = o((log k)−1/2). This ends the proof of

(65) and then of the theorem. �

4.2 Proof of Theorem 2

By Remark 3, we know that condition (14) is equivalent to (17), namely:

∫ 1

0
Rp−1(u)Q(u)du <∞ ,

where, for any u ∈ [0, 1], γ−1(u) = δ−1 ◦H(u) and R(u) = γ−1(u)Q(u).
Notice first that, by Proposition 1 in Dedecker-Doukhan [10],

∑

i≥1

|Cov(X0,Xi)| ≤ 2
∑

i≥1

∫ 2−1‖E(Xi|V0)−E(Xi)‖1

0
Q ◦H−1(u)du ≤

∫ 1

0
R(u)Q(u)du <∞ ,

by condition (17). Hence the series σ2 = Var(X1) + 2
∑

i≥1Cov(X1,Xi+1) converge absolutely
and condition (54) of Proposition 21 holds.

Assume first that σ2 > 0. To prove the theorem, we shall verify that the other conditions
of Proposition 21 are satisfied and with this aim we need to define suitable sequences (mk) and
(Mk). Since we have Var(Sn)/n → σ2 > 0, it follows that Var(Sn) → ∞. Hence P(|X1| > 0) > 0
since otherwise we would have X1 = 0 a.s. and then Sn = 0 a.s. for all n ≥ 1, contradicting the
fact that Var(Sn) → ∞. Let u1 = (1/2)P(|X1| > 0) (hence u1 > 0) and define

K0 = inf{k ∈ N : R(u1) ≤ 3k/p} .
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Obviously K0 < ∞ since u1 > 0 which implies that Q(u1) < ∞ and γ−1(u1) < ∞. Next, for
any k ≥ K0, let

vk = inf{u ∈ [0, u1] : R(u) ≤ 3k/p} := R−1(3k/p) , Mk = Q(vk) ,

and Mk = 1 for 0 ≤ k < K0. Since u1 < P(|X1| > 0), it follows that Q(u1) > 0 and therefore
since Q is non-increasing and vk ≤ u1, Mk ≥ Q(u1) > 0, for k ≥ K0. Let now, for any k ≥ K0,

mk = inf{n ≥ 0 : γ(n) ≤ vk} ,

and mk = 1 for any 1 ≤ k < K0. Since vk is assumed to be strictly less than 1 (since vk ≤ u1 ≤
1/2), mk ≥ 1 (indeed γ(0) = H−1(E(|X1|)) = 1). In addition, since R is right continuous and
non-increasing, u < R−1(x) ⇐⇒ R(u) > x. Hence, R(R−1(u)) ≤ u for all u ∈ [0, 1], implying
that

mkMk ≤ R(vk) ≤ 3k/p .

Therefore, for any k ≥ K0, since Mk ≥ Q(u1) > 0,

mk ≤ (Q(u1))
−1mkMk ≤ 3k/p ,

which proves that mk = o(32k/pk−1), as k → ∞.
To prove now that the conditions (51), (52), (53) and (55) of Proposition 21 are satisfied,

we first notice the following useful facts:

Q|ϕk(Xj)|(x) := Q̄k(u) = Q(x ∨ vk) and Q|gk(Xj)|(u) := Q̃k(u) = Q(x)1x≤vk . (79)

Let us start by proving that condition (51) holds. By using (79), we get

∑

k≥1

3k(p−1)/p
E(|gk(X1)|) =

∑

k≥1

3k(p−1)/p

∫ 1

0
Q|gk(X1)|(u)du =

∑

k≥1

3k(p−1)/p

∫ 1

0
Q(u)1u<vkdu .

But

∑

k≥1

3k(p−1)/p

∫ 1

0
Q(u)1u<vkdu =

∫ 1

0
Q(u)

∑

k≥1

3k(p−1)/p1R(u)>3k/p ≪
∫ 1

0
Rp−1(u)Q(u)du <∞ ,

(80)
by condition (17) (which is equivalent to condition (14)). Hence condition (51) is satisfied. Next
we note that by Lemma 24 of the Appendix,

∥∥∥ max
1≤ℓ≤3k−3k−1

∣∣Wk,ℓ − W̃k,ℓ

∣∣
∥∥∥
1
≤

3k∑

i=1+3k−1

‖Xk,i − X̃k,i‖1 ≤ 2× 3kδ(mk) .

Therefore, by using (80),

∑

k≥1

3−k/p
∥∥∥ max
1≤ℓ≤3k−3k−1

∣∣Wk,ℓ − W̃k,ℓ

∣∣
∥∥∥
1
≤ 2

∑

k≥1

3k(p−1)/pδ(mk)

≤ 2
∑

k≥1

3k(p−1)/pH(γ(mk)) ≤ 2
∑

k≥1

3k(p−1)/p

∫ vk

0
Q(u)du <∞ . (81)
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Hence, condition (52) is satisfied with α = 1. We prove now that we can find a real number
r ∈]2,∞[ such that (53) holds. With this aim we start by noticing that, for any r ≥ 1, by
Lemma 24 of the Appendix,

∥∥∥ max
1≤ℓ≤3mk

∣∣W̃k,ℓ −Wk,ℓ

∣∣
∥∥∥
r
≤

3mk+3k−1∑

i=3k−1+1

‖Xk,i − X̃k,i‖r

≤ (2Mk)
(r−1)/r

3mk+3k−1∑

i=3k−1+1

‖Xk,i − X̃k,i‖1/r1 ≪ mkM
(r−1)/r
k (δ(mk))

1/r .

Hence, since mkMk ≤ 3k/p, for any r ≥ 1,

∑

k≥ℓ0

3k

3kr/pmk
E

(
max

1≤ℓ≤3mk

∣∣W̃k,ℓ −Wk,ℓ

∣∣r
)
≪

∑

k≥ℓ0

(mkMk)
r−1

3k(r−p)/p
δ(mk) ≪

∑

k≥ℓ0

3k(p−1)/pδ(mk) ,

which is finite by taking into account (81). Hence to prove that condition (53) holds, it suffices
to prove that we can find a real number r ∈]2,∞[ such that

∑

k≥ℓ0

3k

3kr/pmk
E

(
max

1≤ℓ≤3mk

∣∣Wk,ℓ

∣∣r
)
<∞ . (82)

To prove (82), we apply the Rosenthal inequality for τ -dependent sequences as given in Corol-
lary 1 in Dedecker-Prieur [12]. Let us first recall the definition of the τ -dependence coefficients:
for any random variable Y with values in R

ℓ and any σ-algebra F ,

τ
(
F , Y ) = sup

f∈Λ1(Rℓ)

∥∥∥ sup
h∈Λ1(R)

∣∣∣
∫
h(x)Pf(Y )|F (dx)−

∫
h(x)Pf(Y )(dx)

∣∣∣
∥∥∥
1
,

where, for any integer ℓ ≥ 1, Λ1(R
ℓ) is the set of 1-Lipschitz function from R

ℓ to R with respect
to the norm |x − y|1 ≤ ∑ℓ

k=1 |xi − yi|. Taking Fp = σ(Xi, i ≤ p), the coefficients τ(i) of the
sequence (ϕk(Xi))i∈Z are then defined by: for any i ≥ 0,

τ(i) = sup
u>0

max
1≤ℓ≤u

1

ℓ
sup

{
τ
(
Fp, (ϕk(Xj1), . . . , ϕk(Xjℓ))

)
, p+ i ≤ j1 < . . . < jℓ

}
.

In the stationary case, Corollary 1 in Dedecker-Prieur [12] implies that, for any r > 2,

E

(
max

1≤ℓ≤3mk

∣∣Wk,ℓ

∣∣r
)
≪

(
mk

∫ ‖ϕk(X1)‖1

0
((τ/2)−1(u) ∧mk)Q|ϕk(X1)| ◦H−1

|ϕk(X1)|
(u)du

)r/2

+mk

∫ ‖ϕk(X1)‖1

0
((τ/2)−1(u) ∧mk)

r−1Qr−1
|ϕk(X1)|

◦H−1
|ϕk(X1)|

(u)du ,

where τ−1 is the generalized inverse of the function τ defined by τ(x) = τ([x]).
To compare the coefficients τ(i) with the coefficients δ(i), we consider (W ′

0, (ε
′
j)j≥1) an in-

dependent copy of (W0, (εj)j≥1) and define W ′
1 = F (ε′1,W

′
0) and W ′

m = F (εm,W
′
m−1) for any

m ≥ 2. Note that for any j ≥ 2, by using the relation (97) of the Appendix, we have

Xj = h(εj ,Wj−1) := h(εj , Fj−2(εj−1, . . . , ε2,W1)) := gj−2(εj , εj−1, . . . , ε2,W1) . (83)
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Define now, for any j ≥ 2,

X ′
j = h(εj ,W

′
j−1) = h(εj , Fj−2(εj−1, . . . , ε2,W

′
1)) := gj−2(εj , εj−1, . . . , ε2,W

′
1) . (84)

Clearly for any 2 ≤ j1 < . . . < jℓ, (ϕk(X
′
j1
), . . . , ϕk(X

′
jℓ
)) is distributed as (ϕk(Xj1), . . . , ϕk(Xjℓ))

and is independent of (ε0,W−1). Hence, by stationarity and Lemma 3 in Dedecker-Prieur [12],

τ
(
F0, (ϕk(Xj1), . . . , ϕk(Xjℓ))

)

≤ sup
f∈Λ1(Rℓ)

‖f(ϕk(Xj1), . . . , ϕk(Xjℓ))− f(ϕk(X
′
j1), . . . , ϕk(X

′
jℓ
))‖1

≤
ℓ∑

v=1

‖Xjv −X ′
jv‖1 =

ℓ∑

v=1

∫∫
E|Xjv−1,x −Xjv−1,y|dν(x)dν(y) ≤ 2

ℓ∑

v=1

δ(jv) ,

where the second inequality comes from the fact that f ∈ Λ1(R
ℓ) and ϕk is 1-Lipschitz. There-

fore, since δ is non-increasing, for any i ≥ 2,

τ(i) ≤ 2δ(i) .

Moreover, for any i ∈ {0, 1}, we obviously get that τ(i) ≤ 2E(|X1|) = 2δ(0). It follows that for
any x ≥ 0,

τ(x) := τ([x]) ≤ 2δ(x) .

Therefore, since both τ and δ are non-increasing,

(τ/2)−1(u) ≤ δ−1(u) .

In addition, since ϕk is 1-Lipschitz and such that ϕk(0) = 0,

H|ϕk(X1)|(x) ≤ H(x) and then H−1(u) ≤ H−1
|ϕk(X)|(u) , (85)

since H is non-decreasing. Therefore, using additionally the fact that u < v ⇐⇒ Q|ϕk(X1)|(v) <
Q|ϕk(X1)|(u), we get

E

(
max

1≤ℓ≤3mk

∣∣Wk,ℓ

∣∣r
)
≪

(
mk

∫ ‖X1‖1

0
(δ−1(u) ∧mk)Q|ϕk(X1)| ◦H−1(u)du

)r/2

+mk

∫ ‖X1‖1

0
(δ−1(u) ∧mk)

r−1Qr−1
|ϕk(X1)|

◦H−1(u)du ,

and then, since γ−1(u) = δ−1 ◦H(u),

E

(
max

1≤ℓ≤3mk

∣∣Wk,ℓ

∣∣r
)
≪

(
mk

∫ 1

0
(γ−1(u) ∧mk)Q|ϕk(X1)|(u)Q(u)du

)r/2

+mk

∫ 1

0
(γ−1(u) ∧mk)

r−1Qr−1
|ϕk(X1)|

(u)Q(u)du .

Recall now that mk = γ−1(vk), therefore since γ−1 is non-increasing,

γ−1(u) ∧mk = mk1u<vk + γ−1(u)1u≥vk .

28



Using also the fact that Q|ϕk(X1)|(x) = Q(x ∨ vk), we get

E

(
max

1≤ℓ≤3mk

∣∣Wk,ℓ

∣∣r
)
≪

(
mkQ

1−2/r(vk)

∫ 1

0
γ−1(u)Q1+2/r(u)du

)r/2

+mk(mkQ(vk))
r−1

∫ 1

0
Q(u)1u<vkdu+mk

∫ 1

0
Rr−1(u)Q(u)1u≥vkdu

:= I
(1)
k + I

(2)
k + I

(3)
k .

Using the fact that mkQ(vk) ≤ 3k/p and (80), we get that, for any r > 2,

∑

k≥ℓ0

3k(p−r)/pm−1
k I

(2)
k ≤

∑

k≥ℓ0

3k(p−1)/p

∫ 1

0
Q(u)1u<vkdu <∞ .

On another hand, for any r > p,

∑

k≥ℓ0

3k(p−r)/pm−1
k I

(3)
k ≤

∑

k≥ℓ0

3k(p−r)/p

∫ 1

0
Rr−1(u)Q(u)1u≥vkdu

=

∫ 1

0

∑

k≥ℓ0

3k(p−r)/pRr−1(u)13k/p≥R(u)Q(u)du ≪
∫ 1

0
Rp−1Q(u)du <∞ ,

by condition (17) (which is equivalent to condition (14)). Finally using again that mkQ(vk) ≤
3k/p, we derive that, for any r > 2(p − 1),

∑

k≥ℓ0

3k(p−r)/pm−1
k I

(1)
k ≤

∑

k≥ℓ0

3k(p−r)/p
((
mkQ(vk)

)1−2/r
∫ 1

0
γ−1(u)Q1+2/r(u)du

)r/2

≤
∑

k≥ℓ0

3k(p−r)/p3k(r−2)/(2p)
( ∫ 1

0
γ−1(u)Q1+2/r(u)du

)r/2
,

since condition (17) obviously implies that
∫ 1
0 γ

−1(u)Q1+2/r(u)du < ∞. So, overall, (82) holds
provided we select r > 2(p − 1).

To end the proof it remains to show that condition (55) holds. With this aim, we start by
recalling the equation (66), namely:

νk = c̃k,0 + 2

mk∑

ℓ=1

c̃k,ℓ ,

where, for i ≥ 0,

c̃k,i = cov(X̃k,mk+1, X̃k,i+mk+1) and ĉk,i = cov(Xk,0,Xk,i) .

But, by using Lemma 24 of the Appendix, we have, for any i ≥ 0,

∣∣c̃k,i − ĉk,i
∣∣ =

∣∣cov(X̃k,mk+1 −Xk,mk+1, X̃k,i+mk+1) + cov(Xk,mk+1, X̃k,i+mk+1 −Xk,i+mk+1)
∣∣

≤ Q(vk)‖X̃k,mk+1 −Xk,mk+1‖1 +Q(vk)‖X̃k,i+mk+1 −Xk,i+mk+1‖1

≤ 4×Q(vk)δ(mk) ≤ 4×Q(vk)

∫ γ(mk)

0
Q(u)du ≤ 4×Q(vk)

∫ vk

0
Q(u)du .
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Hence, since mkQ(vk) ≤ 3k/p,

∣∣∣νk − ĉk,0 − 2

mk∑

ℓ=1

ĉk,ℓ

∣∣∣ ≤ 8×mkQ(vk)

∫ 1

0
Q(u)1u<vkdu ≤ 8× 3k/p

∫ 1

0
Q(u)1R(u)>3k/pdu

≤ 8× 3k/p3−k(p−1)/p

∫ 1

0
Rp−1Q(u)du≪ 3−k(p−2)/p , (86)

by condition (17) (which is equivalent to condition (14)). Taking into account (86) together
with the fact that σ2 =

∑
k∈Z cov(X0,Xk), we get

|νk − σ2| ≪ 2

mk∑

i=0

|ĉk,i − cov(X0,Xi)|+ 2
∑

i≥mk+1

|cov(X0,Xi)|+ 3−k(p−2)/p . (87)

Next, by using Proposition 1 in Dedecker-Doukhan [10], we derive

∑

i≥mk

|cov(X0,Xi)| ≤ 2
∑

i≥mk

∫ δ(i)

0
Q ◦H−1(u)du = 2

∑

i≥mk

∫ γ(i)

0
Q2(u)du .

But, since mk = γ−1(vk), note that

∫ 1

0
R(u)Q(u)1u<vkdu =

∫ 1

0
γ−1(u)Q2(u)1u<vkdu =

∑

i≥0

∫ 1

0
Q2(u)1u<vk1u<γ(i)du

= mk

∫ 1

0
Q2(u)1u<vkdu+

∑

i≥mk

∫ 1

0
Q2(u)1u<γ(i)du . (88)

Hence

∑

i≥mk

|cov(X0,Xi)| ≤ 2

∫ 1

0
R(u)Q(u)1u<vkdu = 2

∫ 1

0
R(u)Q(u)1R(u)>3k/pdu

≤ 2× 3−k(p−2)/p

∫ 1

0
Rp−1(u)Q(u)1R(u)>3k/pdu≪ 3−k(p−2)/p , (89)

by condition (17). On another hand, by using inequality (1.11a) in [23] and (79), we derive that,
for any i ≥ 0,

|ĉk,i − cov(X0,Xi)| =
∣∣cov(Xk,0 −X0,Xk,i) + cov(X0,Xk,i −Xi)

∣∣

≤ 2

∫ 1/2

0
Q|ϕk(X)|(u)Q|gk(X)|(u)du+ 2

∫ 1/2

0
Q|X1|(u)Q|gk(X)|(u)du ≤ 4

∫ 1

0
Q2(u)1u<vkdu .

Hence, by taking into account (88),

mk∑

i=0

|ĉk,i − cov(X0,Xi)| ≤ 4(mk + 1)

∫ 1

0
Q2(u)1u<vkdu ≤ 8

∫ 1

0
R(u)Q(u)1u<vkdu .
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So, by the computations in (89),

mk∑

i=0

|ĉk,i − cov(X0,Xi)| ≪ 3−k(p−2)/p . (90)

Hence, starting from (87) and taking into account (89) and (90), it follows that

|νk − σ2| ≪ 3−k(p−2)/p ,

implying, since p > 2, that

3k(νk − σ2)2 ≪ 3k(4−p)/p = o(32k/p(log k)−1) , as k → ∞ .

This proves that (65) holds and then that (55) is satisfied since σ2 > 0. The proof is complete
for the case σ2 > 0.

Assume now that σ2 = 0. Let M be a positive real number. According to inequality (5.42)
in Merlevède-Rio [21], for any positive integer n, any real number λ, and any positive integer
q ≤ n and such that qM ≤ λ, we have

P

(
max
1≤k≤n

|Sk − kE(X1)| ≥ 5λ
)
≤ Var(Sn)

λ2
+ 2λ−1

n∑

i=1

E|gM (Xi)|

+ λ−1
n∑

i=1

‖E(ϕM (Xi)|Vi−q)− E(ϕM (Xi))‖1 . (91)

Choose now u = R−1(λ), q = γ−1(u) ∧ n and M = Q(u). Since R is right continuous, we have
R(u) ≤ λ, hence qM ≤ R(u) ≤ λ. Note also that

n∑

k=1

E|gM (Xk)| ≤ n

∫ u

0
Q(x)dx ≤ n

∫ 1

0
Q(x)1R(x)>λdx . (92)

In addition,

‖E(ϕM (Xi)|Vi−q)− E(ϕM (Xi))‖1 ≤ 2δ(q) = 2

∫ γ(q)

0
Q(x)dx .

Since γ(q) ≤ u, it follows that

n∑

i=1

‖E(ϕM (Xi)|Vi−q)− E(ϕM (Xi))‖1 ≤ 2n

∫ 1

0
Q(x)1R(x)>λdx .

Starting from (91) and taking into account the considerations above, we get that, for any λ > 0,

P

(
max
1≤k≤n

|Sk − kE(X1)| ≥ 5λ
)
≤ Var(Sn)

λ2
+

4n

λ

∫ 1

0
Q(x)1R(x)>λdx .

Hence, for any ε > 0, selecting λ = εn1/p, we derive

∑

n≥1

n−1
P

(
max
1≤k≤n

|Sk − kE(X1)| ≥ 5εn1/p
)

≤ ε−2
∑

n≥1

Var(Sn)

n1+2/p
+ 4ε−1

∑

n≥1

n−1/p

∫ 1

0
Q(x)1R(x)>εn1/pdx .
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The second series in the right-hand side is finite under condition condition (17) (which is equiv-
alent to condition (14)). Hence, if we can prove that

∑

n≥1

Var(Sn)

n1+2/p
<∞ , (93)

then we will get that, for any ε > 0,

∑

n≥1

n−1
P

(
max
1≤k≤n

|Sk − kE(X1)| ≥ εn1/p
)
<∞

which will imply Sn − nE(X1) = o(n1/p) a.s. and therefore the proof of the theorem will be
complete. In the case where p ≥ 3, (93) is almost immediate. To see this, we first note that
condition (17) implies

∑
i≥1 i|Cov(X0,Xi)| <∞. Indeed, by Proposition 1 in Dedecker-Doukhan

[10],

∑

i≥1

i|Cov(X0,Xi)| ≤ 2
∑

i≥1

i

∫ 2−1‖E(Xi|V0)−E(Xi)‖1

0
Q ◦H−1(u)du ≤

∫ 1

0
R2(u)Q(u)du ,

which is finite under condition (17). Therefore, by Lemma 1 in Bradley [5], Var(Sn) is bounded
which obviously entails (93). To handle the case where p ∈]2, 3[, we first note that, by inequality
(4.84) in [19],

‖E(Xk|V0)− E(Xk)‖22 ≤ E
∣∣Xk(E(Xk|V0)− E(Xk))

∣∣ ≤ 3

∫ ‖E(Xk |V0)−E(Xk)‖1

0
Q ◦H−1(u)du .

But, ‖E(Xk|V0)− E(Xk)‖1 ≤ 2δ(k). Hence

‖E(Xk|V0)− E(Xk)‖22 ≤ 6

∫ δ(k)

0
Q ◦H−1(u)du .

Hence condition (14) entails

‖E(Xk|V0)− E(Xk)‖2 ≪ k−(p−1)/2 ,

which implies (since p > 2) that

∑

k≥1

k−1/2‖E(Xk|V0)− E(Xk)‖2 <∞ and therefore
∑

k≥1

‖E(Sk|V0)− kE(X1)‖2
k3/2

<∞ . (94)

We use now the same arguments as developed at the beginning of the proof of Theorem 1. The
fact that the series in (94) converge implies that there exists a stationary sequence (Dk)k∈Z of
martingale differences in L

2, adapted to (Fk)k∈Z and such that

lim
n→∞

n−1/2
∥∥∥Sn − nE(X1)−

n∑

k=1

Dk

∥∥∥
2
= 0 .
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Together with the fact that limn→∞ n−1Var(Sn) = σ2 = 0, it follows that Dk = 0 a.s, for any
k. Hence, using the upper bound (4) in Cuny-Merlevède [8] (see also Proposition 1 in [18]), it
follows that, for any p ∈]2, 3[,

Var(Sn) ≪ n
(∑

k≥n

‖E(Sk|V0)− kE(X1)‖2
k3/2

)2

≪ n
( 1√

n

n∑

k=1

‖E(Xk|V0)− E(Xk)‖2 +
∑

k≥n

‖E(Xk|V0)− E(X1)‖2
k1/2

)2
≪ n3−p .

Therefore, for any p ∈]2, 3[,
∑

n≥1

Var(Sn)

n1+2/p
≪

∑

n≥1

1

np+2/p−2
,

which is finite since p+2/p− 3 = p−1(p− 1)(p− 2) > 0. This ends the proof of the theorem. �

5 Appendix

5.1 Some technical results

In this section, we collect some technical results that are useful for the proofs of Theorems 1
and 2.

Lemma 22 Let (Yk)k∈Z be a stationary sequence of real-valued random variables adapted to an
increasing and stationary filtration (Fk)k∈Z. Let f and g be two functions in L

2(R, PY0) such
that E(f(Y0)|F−∞) = E(f(Y0)) a.s. and E(g(Y0)|F−∞) = E(g(Y0)) a.s. Then, for any positive
integer L,

∑

i≥L

|cov(f(Y0), g(Yi))| ≤ 3
√
2

∞∑

ℓ=0

‖P0(f(Yℓ))‖2
( ∑

k≥[(L+ℓ)/2]+1

k−1/2‖E(g(Yk)|F0)− E(g(Yk))‖2
)

and
L∑

i=0

‖P0(g(Yi))‖2 ≤
√
2

L∑

k=0

(k + 1)−1/2‖E(g(Yk)|F0)− E(g(Yk))‖2 ,

where Pj(·) = E(·|Fj)− E(·|Fj−1).

Proof. Since E(f(Y0)|F−∞) = E(f(Y0)) a.s. and E(g(Y0)|F−∞) = E(g(Y0)) a.s., we first write

f(Y0)− E(f(Y0)) =

∞∑

ℓ=0

P−ℓ(f(Y0)) and g(Yi)− E(g(Yi)) =

∞∑

ℓ=−i

P−ℓ(g(Yi)) a.s.

Hence, by orthogonality, for any i ≥ 0,

|cov(f(Y0), g(Yi))| ≤
∞∑

ℓ=0

|E(P−ℓ(f(Y0))P−ℓ(g(Yi)))| ,
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and then, by Cauchy-Schwarz’s inequality and stationarity,

∑

i≥L

|cov(f(Y0), g(Yi))| ≤
∞∑

ℓ=0

‖P0(f(Yℓ))‖2
∑

i≥L+ℓ

‖P0(g(Yi))‖2 . (95)

But, for any m ≥ 1, by Cauchy-Schwarz’s inequality,

∑

i≥m

‖P0(g(Yi))‖2 =
∑

i≥m

i−1‖P0(g(Yi))‖2
i∑

k=1

=
∑

k≥1

∑

i≥max(m,k)

i−1‖P0(g(Yi))‖2

=

m∑

k=1

∑

i≥m

i−1‖P0(g(Yi))‖2 +
∑

k>m

∑

i≥k

i−1‖P0(g(Yi))‖2

≤
√
2m

(∑

i≥m

‖P0(g(Yi))‖22
)1/2

+
√
2
∑

k>m

k−1/2
(∑

i≥k

‖P0(g(Yi))‖22
)1/2

, (96)

giving
∑

i≥m

‖P0(g(Yi))‖2 ≤
√
2m‖E(g(Ym)|F0)−E(g(Ym))‖2 +

√
2
∑

k>m

k−1/2‖E(g(Yk)|F0)−E(g(Yk))‖2 .

Since (‖E(g(Yk)|F0)− E(g(Yk))‖2)k≥0 is non-increasing, we get that for any m ≥ 1,
∑

i≥m

‖P0(g(Yi))‖2 ≤ 3
√
2

∑

k≥[m/2]+1

k−1/2‖E(g(Yk)|F0)− E(g(Yk))‖2 ,

which combined with (95) gives the first inequality of the lemma. To prove the second one,
it suffices to write that

∑L
i=0 ‖P0(g(Yi))‖2 =

∑L
i=0(i + 1)−1‖P0(g(Yi))‖2

(∑i+1
k=1 1

)
and to use

Cauchy-Schwarz’s inequality as in (96). �

The following proposition is a non stationary version of the Peligrad-Utev-Wu [22] inequality.
As in [22], the proof can be done by induction (a complete proof appears in Section 3.2.1 of
[20]).

Proposition 23 Let α ≥ 2 and (Zk)k∈Z be a sequence of real-valued random variables in L
α

and adapted to a non-decreasing filtration (Fk)k∈Z. Then, for any n ≥ 1,

∥∥∥ max
1≤k≤n

∣∣∣
k∑

i=1

Zi

∣∣∣
∥∥∥
α
≤ (2cα + 1)

( n∑

j=1

‖Zj‖2α
)1/2

+
√
2(2cα + 1)

r−1∑

ℓ=0

( 2r−ℓ∑

m=1

‖E(Sm2ℓ − S(m−1)2ℓ |F(m−2)2ℓ+1)‖2α
)1/2

,

where Sk =
∑k

i=1 Zi, cα = α
(α−1)1/2

if α > 2, c2 = 1 and r is the unique positive integer such

that 2r−1 ≤ n < 2r.

Lemma 24 For any q ∈ [1, p), for any k ≥ 1 and any j ≥ mk + 1,

‖Xk,j − X̃k,j‖qq ≤
∫∫

E(|Xmk+1,x −Xmk+1,y|q)ν(dx)ν(dy) ,

where Xk,j and X̃k,j are defined in (48) and (49) respectively.
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Proof. Let (W ′
0, (ε

′
j)j≥1) be an independent copy of (W0, (εj)j≥1) and defineW ′

j = F (ε′j ,W
′
j−1),

j ≥ 1. For ℓ ≥ 1, let Fℓ be the function from Gℓ ×X to X defined in an iterative way as follows

F1 = F and Fℓ(x1, x2, . . . , xℓ+1) = Fℓ−1(x1, x2, . . . , xℓ−1, F (xℓ, xℓ+1)) , ℓ ≥ 2 .

Note that for any integer ℓ such that 1 ≤ ℓ ≤ j − 1,

Wj−1 = Fℓ(εj−1, εj−2, . . . , εj−ℓ,Wj−ℓ−1) . (97)

Hence, for any j ≥ mk + 1,

E
(
ϕk(Xj)|εj , εj−1, . . . , εj−mk

)

= E
(
ϕk(h(εj , Fmk

(εj−1, . . . , εj−mk
,Wj−mk−1)))|εj , εj−1, . . . , εj−mk

)

= E
(
ϕk(h(εj , Fmk

(εj−1, . . . , εj−mk
,W ′

j−mk−1)))|εj , εj−1, . . . , ε1,W0

)
.

On another hand, for any j ≥ 1,

ϕk(Xj) = E
(
ϕk(Xj)|εj , εj−1, . . . , ε1,W0

)

= E
(
ϕk(h(εj , Fmk

(εj−1, . . . , εj−mk
,Wj−mk−1)))|εj , εj−1, . . . , ε1,W0

)
.

Hence, for any j ≥ mk + 1,

‖Xk,j − X̃k,j‖q
≤ ‖ϕk(h(εj , Fmk

(εj−1, . . . , εj−mk
,Wj−mk−1)))−ϕk(h(εj , Fmk

(εj , εj−1, . . . , εj−mk
,W ′

j−mk−1)))‖q
≤ ‖h(εj , Fmk

(εj−1, . . . , εj−mk
,Wj−mk−1))− h(εj , Fmk

(εj−1, . . . , εj−mk
,W ′

j−mk−1))‖q ,

where the second inequality comes from the fact that ϕk is 1-Lipschitz. By stationarity, it follows
that

‖Xk,j − X̃k,j‖q ≤ ‖h(εmk+1, Fmk
(εmk

, . . . , ε1,W0))− h(εmk+1, Fmk
(εmk

, . . . , ε1,W
′
0))‖q .

Hence, if we define (X∗
n)n≥1 by

X∗
n = h(εn,W

∗
n−1) where W ∗

n = F (εn,W
∗
n−1) ,

withW ∗
0 independent of (W0, (εk)k≥1) and such thatW ∗

0 =L W0, we get that for any j ≥ mk+1,

‖Xk,j − X̃k,j‖q ≤ ‖Xmk+1 −X∗
mk+1‖q . (98)

But,

‖Xmk+1 −X∗
mk+1‖qq =

∫∫
E(|Xmk+1 −X∗

mk+1|q|W0 = x,W ∗
0 = y)ν(dx)ν(dy)

=

∫∫
E(|Xmk+1,x −Xmk+1,y|q)ν(dx)ν(dy) ,

which combined with (98) gives the lemma. �
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5.2 Proof of Lemma 17

The first inequality in (43) comes from the coupling inequality (38) and the fact that lim infn→∞ naβ(n) >
0 (see Theorem 9.4 in Rio [23]). We prove now the second inequality in (43).

Let Wn,x be the chain starting at x. Note first that for any any x, y ∈ [0, 1],

Px,y(T
∗ > n) = Px,y

(
T ∗ > n, {Wn,x = x ∪Wn,y = y}

)
+ Px,y

(
T ∗ > n, {Wn,x 6= x,Wn,y 6= y}

)

≤ (1− x)n + (1− y)n + Px,y

(
T ∗ > n, {Wn,x 6= x,Wn,y 6= y}

)
.

But

Px,y

(
T ∗ > n, {Wn,x 6= x,Wn,y 6= y}

)

=
n∑

i=1

n∑

j=1,j 6=i

Px,y

(
T ∗ > n,Wn,x = F−1

π (Vi),Wn,y = F−1
π (Vj)

)
.

For j > i, define Wi,j :=
⋂j

k=i{Wk,x 6=Wk,y}, Ei,j(x) :=
⋂j

k=i{Wk,x = F−1
π (Vi)}, and note that

Px,y

(
T ∗ > n,Wn,x = F−1

π (Vi),Wn,y = F−1
π (Vj)

)

= (a+ 1)2
∫∫

[0,1]2
Px,y

(
W1,i−1, Ei,n(x),Wi,j−1, Ej,n(y)

∣∣F−1
π (Vi) = u, F−1

π (Vj) = v
)
uavadudv

≤ (a+ 1)2
∫∫

[0,1]2
Px,y

(
W1,i, {Ui < Wi−1,x},

j⋂

k=i+1

{Uk ≥ u},
n⋂

k=j+1

{Uk ≥ u ∨ v}
)
uavadudv

≤ (a+1)2
∫∫

[0,1]2
Px,y(T

∗ > i, Wi,x = F−1
π (Vi))P

( j⋂

k=i+1

{Uk ≥ u},
n⋂

k=j+1

{Uk ≥ u∨v}
)
uavadudv .

So, overall, setting wi(x, y) := Px,y(T
∗ > i, Wi,x = F−1

π (Vi)),

Pν⊗ν(T
∗ > n) ≤ 2a

∫ 1

0
(1− x)nxa−1dx

+ 2(a+ 1)2
n−1∑

i=1

n∑

j=i+1

ν ⊗ ν(wi)

∫∫

[0,1]2
P

( j⋂

k=i+1

{Uk ≥ u},
n⋂

k=j+1

{Uk ≥ u ∨ v}
)
uavadudv .

Using the fact that for any b > −1,

∫ 1

0
(1− x)kxbdx ≤ k−(b+1)

∫ k

0
e−xxbdx ≤ k−(b+1)Γ(b+ 1) , (99)

we get that

Pν⊗ν(T
∗ > n) ≤ 2aΓ(a)n−a+2(a+1)2

n−1∑

i=1

ν⊗ν(wi)
n∑

j=i+1

∫∫

[0,1]2
(1−u)j−i(1−u∨v)n−juavadudv .

(100)
By easy computations (that are left to the reader), we infer that Lemma 17 will hold provided
one can prove that:
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Lemma 25 For any a > 1, there exists a positive constant κ(a) depending only on a such that
for any n ≥ 1,

ν ⊗ ν(wn) ≤
κ(a)

na
. (101)

Obviously, inequality (101) holds for any positive integer n ≤ κ(a). It is then enough to prove
it for n > κ(a). Let us do it by recurrence. Hence we assume that for any k ≤ n − 1,
ν ⊗ ν(wk) ≤ κ(a)k−a and we want to prove it at step n. With this aim, we argue as above and
infer that

wn(x, y) ≤ (1− y)n + (a+ 1)

n−1∑

i=1

wi(y, x)

∫

[0,1]
(1− u)n−iuadu .

Hence,

ν ⊗ ν(wn) ≤ aΓ(a)n−a + (a+ 1)

n−1∑

i=1

ν ⊗ ν(wi)

∫

[0,1]
(1− u)n−iuadu .

Using the recurrence assumption, it follows that

n−1∑

i=1

ν ⊗ ν(wi)

∫

[0,1]
(1− u)n−iuadu ≤

[n/2]∑

i=1

∫

[0,1]
(1− u)n−iuadu

+
κ(a)

([n/2] + 1)a

n−[logn]∑

i=[n/2]+1

∫

[0,1]
(1− u)n−iuadu

+
κ(a)

(n − [log n] + 1)a

n−1∑

i=n−[logn]+1

∫

[0,1]
(1− u)n−iuadu .

Then, taking into account (99), we infer that

(a+ 1)

n−1∑

i=1

ν ⊗ ν(wi)

∫

[0,1]
(1− u)n−iuadu

≤ 2a(a+ 1)
Γ(a)

na
++2a(a+ 1)

κ(a)

na[log n]a
+ a−1 κ(a)

(n− [log n] + 1)a
.

So, overall, since n ≥ κ(a), we get

ν ⊗ ν(wn) ≤ κ(a)ρ(a)n−a ,

where

ρ(a) :=
(
a+ 2a(a+ 1)

)aΓ(a)
κ(a)

+
2a(a+ 1)

[log κ(a)]a
+ a−1

(
1− log κ(a)

κ(a)

)−a
.

So choosing κ(a) large enough so that ρ(a) ≤ 1 (which is always possible since a−1 < 1),
inequality (101) is proved at step n which ends the recurrence. �
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5.3 Proof of Lemma 20

We start by recalling the inequality line 5 page 27 of Dedecker-Rio [13], which holds for every
x, y ∈ R, every n ≥ 1 and any t > 0:

|Wn,x −Wn,y|t ≤ αnt(|x|+ |y|+Σn−1) |x− y|t , (102)

where α(u) = 1− C
(1+u)τ , for every u ≥ 0, Σ0 = 0 and Σn = |ε1|+ · · · |εn|, for every n ≥ 1.

Denote υ := E(|ε1|) and let 0 < η ≤ 1/τ − 1. Notice that α is non-decreasing and bounded
by 1. Hence, for any n ≥ 1, using that n ≤ n1/τ−η, we get

αnt(|x|+ |y|+Σn−1) ≤ 1{Σn−1>nυ+n1/τ−η} + αnt(2(1 + υ)n1/τ−η)1{(1+υ)n1/τ−η≥|x|+|y|}

+ αnt(2(|x| + |y|))1{(1+v)n1/τ−η<|x|+|y|} .

By Theorems 3 and 4 in Baum and Katz [1], since µ has a moment of order S,

∑

n≥1

nγP(Σn−1 > nυ + n1/τ−η) <∞ , (103)

provided that γ ≤ S(1/τ−η)−2. Since S/τ−2 ≥ t/τ+γ, the latter holds as soon as η ≤ t/(Sτ).
Hence, we choose η = min(t/(Sτ), 1/τ − 1). On another hand,

∑

n≥1

nγαnt(2(1 + υ)n1/τ−η) =
∑

n≥1

nγ
(
1− C

(1 + 2(1 + υ)n1/τ−η)τ

)nt
<∞ . (104)

Finally,

∑

n≥1

nγαnt(2(|x|+ |y|))1{|x|+|y|>1} =
∑

n≥1

nγ
(
1− C

(1 + 2(|x|+ |y|))τ
)nt

1{|x|+|y|>1}

≤
∑

n≥1

nγe−Cnt/(3(|x|+|y|))τ ≤ D(|x|τ(γ+1) + |y|τ(γ+1)) , (105)

where D is a constant depending on γ, t and C. Starting from (102) and taking into account
(103), (104) and (105) together with the fact that, by (46), ν has a moment of order S − τ and
that S − τ ≥ τ(γ + 1) + t, we get the first part of the lemma.

To prove the last statement, it suffices to notice that for any Lipschitz function h with
Lipschitz coefficient equal to C, we have, for any n ≥ 2,

δ(n) ≤ 2−1C sup
k≥n−1

∫∫
E|Wk,x −Wk,y|ν(dx)ν(dy) .

Next simple arguments entail that, for any n ≥ 2,

δ(n) ≤ C

∫∫
E|Wn−1,x −Wn−1,y|ν(dx)ν(dy) .

�
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