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ON MORI CONE OF BOTT TOWERS

B. NARASIMHA CHARY

Abstract. A Bott tower of height r is a sequence of projective bundles

Xr
πr−→ Xr−1

πr−1−→ · · · π2−→ X1 = P1 π1−→ X0 = {pt},
where Xi = P(OXi−1 ⊕ Li−1) for a line bundle Li−1 over Xi−1 for all 1 ≤ i ≤ r and
P(−) denotes the projectivization. These are smooth projective toric varieties and we
refer to the top object Xr also as a Bott tower. In this article, we study the Mori cone
and numerically effective (nef) cone of Bott towers, and we classify Fano, weak Fano and
log Fano Bott towers. We prove some vanishing theorems for the cohomology of tangent
bundle of Bott towers. We give some applications to Bott-Samelson-Demazure-Hansen
(BSDH) varieties, by using the degeneration of a BSDH variety to a Bott tower. We also
recover the results in [PK16], by toric methods.

Keywords: Bott towers, Bott-Samelson-Demazure-Hansen varieties, Mori cone, prim-
itive relations and toric varieties.

1. Introduction

In [BS58], R. Bott and H. Samelson introduced a family of (smooth differentiable)
manifolds which may be viewed as the total spaces of iterated P1-bundles over a point
{pt}, where each P1-bundle is the projectivization of a rank 2 decomposable vector bundle.
In [GK94], M. Grossberg and Y. Karshon proved (in complex geometry setting) that these
manifolds have a natural action of a compact torus and also obtained some applications
to representation theory and symplectic geometry. In [Civ05], Y. Civan proved that these
are smooth projective toric varieties. These are called Bott towers, we denote them by
{(Xi, πi) : 1 ≤ i ≤ r}, where

Xr
πr−→ Xr−1

πr−1−→ · · · π2−→ X1 = P1 π1−→ {pt},

Xi = P(OXi−1
⊕ Li−1) for a line bundle Li−1 over Xi−1 for all 1 ≤ i ≤ r and r is

the dimension of Xr. In [CS11], [CMS10] and [Ish12], the authors studied “cohomological
rigidity”properties of Bott towers. These also play an important role in algebraic topology
and K-theory (see [CR05], [DJ91] and references therein). In this article we refer to Xr

also as a Bott tower (it is also called Bott manifold).

On the other hand, Bott-Samelson-Demazure-Hansen (for short, BSDH) varieties are
also iterated projective line bundles, but where each projective bundle is the projec-
tivization of certain rank 2 vector bundle (not necessarily decomposable). The BSDH
varieties were algebraically constructed by M. Demazure and H.C. Hansen independently
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by adapting a differential geometric approach from the paper of R. Bott and H. Samel-
son (see [BS58], [Dem74] and [Han73]). These are natural desingularizations of Schubert
varieties by factoring the Schubert variety using Bruhat decomposition, and these are de-
pendent on the given expression of the Weyl group element corresponding to the Schubert
variety (see for instance [CKP15, Page 32]). We also see in this paper some properties of
these varieties which depend on the given expression.

In [GK94], M. Grossberg and Y. Karshon constructed degenerations of BSDH varieties
to Bott towers, by complex geometric methods. In [Pas10] B. Pasquier and in [PK16] A.J.
Parameswaran and P. Karuppuchamy constructed these toric degenerations algebraically.
B. Pasquier used these degenerations to study the cohomology of line bundles on BSDH
varieties (see [Pas10]). In [PK16], the authors studied the limiting toric variety for a
simple simply connected algebraic group by geometric methods.

In this paper we study the geometry of Bott towers in more detail by methods of toric
geometry and we prove some applications to BSDH varieties. We also recover the results
in [PK16] and extend them to the Kac-Moody setting.

We work over the field C of complex numbers. We study the Mori cone of Xr and
prove that the class of curves corresponding to ‘primitive relations r(Pi)’ forms a basis
of the real vector space of numerical classes of one-cycles in Xr (see Theorem 5.7 and
Corollary 5.8). An extremal ray R in the Mori cone is called Mori ray if R ·KXr < 0,
where KXr is the canonical divisor in Xr. We describe extremal rays and Mori rays of
the Mori cone of Xr (see Theorem 9.1). We characterize the ampleness and numerically
effectiveness of line bundles on Xr (see Lemma 6.1) and describe the generators of the nef
cone of Xr (see Theorem 6.7).

Recall that a smooth projective variety X is called Fano (respectively, weak Fano)
if its anti-canonical divisor −KX is ample (respectively, nef and big). Following [AS14],
we say that a pair (X,D) of a normal projective variety X and an effective Q-divisor D
is log Fano if it is Kawamata log terminal and −(KX + D) is ample (see Section 8 for
more details). We study the Fano, weak Fano and the log Fano (of the pair (Xr, D) for a
suitably chosen divisor D in Xr) properties of the Bott tower Xr.

To describe these results we need some notation. It is known that a Bott tower
{(Xi, πi) : 1 ≤ i ≤ r} is uniquely determined by an upper triangular matrix Mr with
integer entries, defined via the first Chern class of the line bundles Li−1 on Xi−1, where
Xi = P(OXi−1

⊕Li−1) for 1 ≤ i ≤ r (see [GK94, Section 2.3], [Civ05] and [VT15, Section
7.8]). For more details see Section 2. Let

Mr :=


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

,

where βij’s are integers. Define for 1 ≤ i ≤ r,

η+
i := {r ≥ j > i : βij > 0}

and
η−i := {r ≥ j > i : βij < 0}.
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If |η+
i | = 1 (respectively, |η+

i | = 2), then let η+
i = {m} (respectively, η+

i = {m1,m2}). If
|η−i | = 1 (respectively, |η−i | = 2), then set η−i = {l} (respectively, η−i = {l1, l2}).

The following can be viewed as a condition on ith row of the matrix Mr:

• N1
i is the condition that |η+

i | = 0 and |η−i | = 0.
• N2

i is the condition that
(i) |η+

i | = 0, |η−i | ≤ 1, and if |η−i | = 1 then βil = −1; or
(ii) |η−i | = 0, |η+

i | ≤ 1, and if |η+
i | = 1 then βim = 1 and βmk = 0 for all k > m.

• N3
i is the condition that
Case 1: Assume that |η+

i | = 0. Then |η−i | ≤ 2, and if |η−i | = 1(respectively, 2)
then βli = −1 or −2 (respectively, βil1 = −1 = βil2).

Case 2: If |η−i | = 1 = |η+
i | and l < m, then βil = −1, βim = 1 and βmk = 0 for

all k > m.
Case 3: Assume that |η+

i | = 1. Then βim = 1 and either it satisfies
(i) Case 2; or
(ii) |η−i | = 0 and βmk = 0 for all k > m; or
(iii) there exists unique r ≥ s > m such that
βms − βis = 1 and βmk − βik = 0 for all k > s, or
βms − βis = −1 and βis − βms − βsk = 0 for all k > s.

Definition 1.1. We say Xr satisfies condition I, condition II or condition III if N1
i ,

N2
i or N3

i holds for all 1 ≤ i ≤ r respectively.

Remark 1.2.

• Let 1 ≤ i ≤ r. We have N1
i =⇒ N2

i =⇒ N3
i .

• If Xr satisfies condition I, then it also satisfies conditions II and III.
• If Xr satisfies condition II, then it also satisfies condition III.

1.1. Results for Bott towers. We prove,

Theorem (See Theorem 7.2).

(1) Xr is Fano if and only if it satisfies II.
(2) Xr is weak Fano if and only if it satisfies III.

As a consequence we get some vanishing results for the cohomology of tangent bundle
of Bott towers and hence local rigidity results. Let TXr denote the tangent bundle of Xr.

Corollary (see Corollary 7.3 and Corollary 7.4). If Xr satisfies II, then H i(Xr, TXr) = 0
for all i ≥ 1. In particular, Xr is locally rigid.

For 1 ≤ i ≤ r, we define some constants ki which again depend on the given matrix Mr

corresponding to the Bott tower Xr (for more details see Section 8). We prove,

Theorem (see Theorem 8.1). The pair (Xr, D) is log Fano if and only if ki < 0 for all
1 ≤ i ≤ r.

1.2. Results for BSDH varieties. Let G be a Kac-Moody group (for the definition see
[Kum12]). Let B be a Borel subgroup containing a fixed maximal torus T . Let W be the
Weyl group corresponding to the pair (G,B, T ) and let w ∈ W . Let w̃ := sβ1 · · · sβn be an
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expression (possibly non-reduced) of w in simple reflections and let Z(w̃) be the BSDH
variety corresponding to w̃ (see Section 2). Let Xw̃ be the toric limit of Z(w̃) constructed
as in [Pas10] and [PK16] (see Section 3, do not confuse with the notation, Xw̃ does NOT
denote a Schubert variety). Note that Xw̃ is a Bott tower (see Corollary 3.5). We prove
that the ample cone Amp(Xw̃) of Xw̃ can be identified with a subcone of the ample cone
Amp(Z(w̃)) of Z(w̃) (see Corollary 10.1).

When G is a simple algebraic group and the expression w̃ is reduced, Fanoness and
weak Fanoness of the BSDH variety Z(w̃) are considered in [Cha17]. Here we have the
following results: Let w̃ = sβ1 · · · sβi · · · sβj · · · sβr be an expression (remember that βk’s

are simple roots). Let βij := 〈βj, β̌i〉 , where β̌i is the co-root of βi. We use the same
terminology for BSDH varieties as in Bott tower case above.

Corollary (See Corollary 10.2).

(1) If Z(w̃) satisfies II, then Z(w̃) is Fano.
(2) If Z(w̃) satisfies III, then Z(w̃) is weak Fano.

In [AS14], D. Anderson and A. Stapledon studied the log Fanoness of Schubert varieties,
and in [And14], log Fanoness of BSDH varieties is studied for chosen divisors. Let D′ be
a divisor in Z(w̃) with support in the boundary. For 1 ≤ i ≤ r, we define some constants
fi which depend on the given expression w̃ (for more details see Section 10).

Theorem (see Theorem 10.5). The pair (Z(w̃), D′) is log Fano if fi > 0 for all 1 ≤ i ≤ r.

When G is a simple algebraic group in [CKP15] and [CK17], we obtained some vanishing
results of the cohomology of tangent bundle of Z(w̃) when w̃ is reduced, and in [CKP]
the case w̃ is non-reduced was considered. Here we get some vanishing results for Z(w̃)
in our case and hence some rigidity results, by using its toric limit as a Bott tower. Let
TZ(w̃) denote the tangent bundle of Z(w̃).

Corollary (see Corollary 10.6). If Z(w̃) satisfies II, then H i(Z(w̃), TZ(w̃)) = 0 for all
i ≥ 1. In particular, Z(w̃) is locally rigid.

The paper is organized as follows:

In Section 2, we discuss preliminaries on Bott towers, BSDH varieties and toric varieties.
In Section 3, we recall the algebraic construction of toric degeneration of BSDH variety.
We describe the limiting toric variety as an iterated P1-bundle, a Bott tower. In Section
4, we discuss the Picard group of the Bott tower and compute the relative tangent bundle.

Section 5 contains detailed study of primitive collections and primitive relations of the
Bott tower and we also describe the Mori cone. In Section 6 we describe ample and nef
line bundles on the Bott tower, and we also find the generators of the nef cone.

In Section 7 and 8, we study Fano, weak Fano and log Fan properties for Bott towers.
We observe that these properties depend on the given matrix corresponding to the Bott
tower and we also see some vanishing results. In Section 9, we describe extremal rays
and Mori rays for the Bott tower and we see some applications. Section 10 contains some
applications to the BSDH-varieties and their toric limits. In Section 11, we give another
proof of the results in [PK16] by toric methods.
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2. Preliminaries

In this section we recall toric varieties (see [CLS11]), Bott towers (see [Civ05] and
[VT15]) and Bott-Samelson-Demazure-Hansen varieties (see [Kum12]). We work through-
out the article over the field C of complex numbers. We expect that the proofs work for
algebraically closed fields of arbitrary characteristic, but did not find appropriate refer-
ences in that generality.

2.1. Toric varieties. We briefly recall the structure of toric varieties from [CLS11] (see
also [Ful93] and [Oda88]).

Definition 2.1. A normal variety X is called a toric variety (of dimension n) if it
contains an n-dimensional torus T (i.e. T = (C∗)n) as a Zariski open subset such that
the action of the torus on itself by multiplication extends to an action of the torus on X.

Toric varieties are completely described by the combinatorics of the corresponding fans.
We briefly recall here, let N be the lattice of one-parameter subgroups of T and let M
be the lattice of characters of T . Let MR := M ⊗ R and NR := N ⊗ R. Then we have a
natural bilinear pairing

〈−,−〉 : MR ×NR → R.
A fan Σ in NR is a collection of convex polyhedral cones that is closed under intersections
and cone faces. Let σ̌ be the dual cone of σ ∈ Σ in MR. For σ ∈ Σ, the semigroup
algebra C[σ̌ ∩M ] is a normal domain and finitely generated C-algebra. Then the scheme
Spec(C[σ̌ ∩M ]) is called the affine toric variety corresponding to σ. For a given fan Σ,
we can define a toric variety XΣ by gluing the affine toric varieties Spec(C[σ̌ ∩M ]) as σ
varies in Σ. For all 1 ≤ s ≤ n,

Σ(s) := {σ ∈ Σ : dim(σ) = s}.

For each ρ ∈ Σ(1), we denote uρ, the generator of ρ ∩N. For σ ∈ Σ,

σ(1) := Σ(1) ∩ σ.

There is a bijective correspondence between the cones in Σ and the T -orbits in XΣ.
For each σ ∈ Σ, the dimension dim(O(σ)) of the T -orbit O(σ) corresponding to σ is

n − dim(σ). Let τ, σ ∈ Σ, then τ is a face of σ if and only if O(σ) ⊂ O(τ), where O(σ)

is the closure of T -orbit O(σ). We denote V (σ) = O(σ) and it is a toric variety with the
corresponding fan being Star(σ), the star of σ which is the set of cones in Σ which have

σ as a face. Let Dρ = O(ρ) be the torus-invariant prime divisor in XΣ corresponding to
ρ ∈ Σ(1). The group TDiv(XΣ) of T -invariant divisors in XΣ is given by

TDiv(XΣ) =
⊕
ρ∈Σ(1)

ZDρ.

For each m ∈M , the character χm of T is a rational function on XΣ and the corresponding
divisor is given by

div(χm) =
∑
ρ∈Σ(1)

〈m,uρ〉Dρ.
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2.2. Bott towers. In this section we recall some basic definitions and results on Bott
towers. Let L0 be a trivial line bundle over a single point X0 := {pt}, and let X1 :=
P(OX0 ⊕ L0), where P(−) denotes the projectivization. Let L1 be a line bundle on X1,
then define X2 := P(OX1⊕L1), which is a P1-bundle over X1. Repeat this process r-times,
so that each Xi is a P1-bundle over Xi−1 for 1 ≤ i ≤ r. We get the following:

Xr = P(OXr−1 ⊕ Lr−1)

Xr−1 = P(OXr−2 ⊕ Lr−2)

...

X1 = P(OX0 ⊕ L0)

X0 = {pt}

πr

πr−1

π2

π1

For each 1 ≤ i ≤ r, Xi is a smooth projective toric variety (see [Civ05, Theorem 22]).
Consider the points [1 : 0] and [0 : 1] in P1, we call them the south pole and the north pole
respectively. The zero section of Li−1 gives a section s0

i : Xi−1 −→ Xi , the south pole
section; similarly, the north pole section s1

i : Xi−1 −→ Xi by letting the first coordinate
in P(OXi−1

⊕ Li−1) to vanish.

Let 1 ≤ i ≤ r. Since πi : Xi −→ Xi−1 is a projective bundle, by a standard result on
the cohomology ring of projective bundles we have the following (see [Har77, Page 429]
for instance):

Theorem 2.2. The cohomology ring H∗(Xi,Z) of Xi is a free module over H∗(Xi−1,Z)
on generators 1 and ui, which have degree 0 and 2 respectively, that is

H∗(Xi,Z) = H∗(Xi−1,Z)1⊕H∗(Xi−1,Z)ui.

The ring structure is determined by the single relation

u2
i = c1(Li−1)ui,

where c1(−) denotes the first Chern class and the restriction of ui to the fibre P1 ⊂ Xi is
the first Chern class of the canonical line bundle over P1. Hence we have

H∗(Xi,Z) = H∗(Xi−1,Z)[ui]/Ji,

where Ji is the ideal generated by u2
i − c1(Li−1)ui.

Consider the exponential sequence (see [Har77, Page 446]):

0 −→ Z −→ OXi−1
−→ O∗Xi−1

−→ 0.

Then we get the following exact sequence:
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0 −→ H1(Xi−1,Z) −→ H1(Xi−1,OXi−1
) −→ H1(Xi−1,O∗Xi−1

)
c1(−)−→ H2(Xi−1,Z) −→

H2(Xi−1,OXi−1
) −→ · · ·

Since Xi−1 is toric, we have Hj(Xi−1,OXi−1
) = 0 for all j > 0 (see [Oda88, Corollary

2.8]). As H1(Xi−1,O∗Xi−1
) = Pic(Xi−1), we get c1(−) : Pic(Xi−1)

∼−→ H2(Xi−1,Z). Then
we have the following:

Theorem 2.3. Each line bundle Li−1 on Xi−1 is determined (up to algebraic isomorphis-
m) by its first Chern class, which can be written as a linear combination

c1(Li−1) = −
i−1∑
k=1

βkiuk ∈ H2(Xi−1,Z),

where βik’s are integers for 1 ≤ k ≤ i− 1.

Then by Theorem 2.2 and 2.3, by iteration, we get the following:

Corollary 2.4. We have

H∗(Xr,Z) = Z[u1, . . . , ur]/J,

where J is the ideal generated by {u2
j +

∑
i<j βijuiuj : 1 ≤ j ≤ r} and the integers βij’s

are as in Theorem 2.3.

Write {βij : 1 ≤ i < j ≤ r}, the collection of r(r− 1)/2 integers, as an upper triangular
r × r matrix

Mr :=


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

(2.1)

Then we get the following result (see for instance [GK94, Lemma 2.15] and also [Civ05,
Section 3]).

Corollary 2.5. There is a bijective correspondence between {Bott towers of height r} and
{r × r upper triangular matrices with integer entries as in (2.1)}.

Two Bott towers {(Xi, πi) : 1 ≤ i ≤ r} and {(X ′i, π′i) : 1 ≤ i ≤ r} are isomorphic
if there exists a collection of isomorphisms {φi : Xi → X ′i : 1 ≤ i ≤ r} such that the
following diagram is commutative:

Xr
πr //

φr
��

Xr−1

πr−1 //

φr−1

��

· · · π2 // X1
π1 //

φ1

��

X0

φ0

��
X ′r

π′r // X ′r−1

π′r−1 // · · ·
π′2 // X ′1

π′1 // X ′0
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2.2.1. Toric structure on Bott tower. Let {e+
1 , . . . , e

+
r } be the standard basis of the lattice

Zr. Define, for all i ∈ {1, . . . , r},

e−i := −e+
i −

∑
j>i

βije
+
j , (2.2)

where βij’s are integers as above. Then we have the following theorem (see [Civ05, Section
3 and Theorem 22] and for algebraic topology setting see [VT15, Theorem 7.8.7]):

Theorem 2.6. The Bott tower {(Xi, πi) : 1 ≤ i ≤ r} corresponding to a matrix Mr as in
(2.1) is isomorphic to {(XΣi , πΣi) : 1 ≤ i ≤ r}, the collection of smooth projective toric
varieties corresponding to the fan Σi with the 2i maximal cones generated by the set of
vectors

{eεj : 1 ≤ j ≤ i and ε ∈ {+,−}},
and where πΣi : XΣi → XΣi−1

is the toric morphism induced by the projection πΣi : Zi →
Zi−1 for all 1 ≤ i ≤ r.

Note that by Theorem 2.6, Σi has 2i one-dimensional cones generated by the vectors

{e+
j , e

−
j : 1 ≤ j ≤ i},

and by (2.2), we can see that the divisors Dρ+
j

corresponding to e+
j for 1 ≤ j ≤ i form a

basis of the Picard group of Xi (see Section 4 for more details).

2.3. BSDH varieties. Let A = (aij)1≤i,j≤n be a generalized Cartan matrix. Let G be
the Kac-Moody group associated to A (see [Kum12, Chapter IV]). Fix a maximal torus
T and a Borel subgroup B containing T . Let S := {α1, . . . , αn} be the set of all simple
roots of (G,B, T ). We denote sαi the simple reflection corresponding to αi. Note that
the Weyl group W of G is generated by

{sαi : 1 ≤ i ≤ n}.

Let w ∈ W , an expression w̃ of w is a sequence (sβ1 , . . . , sβr) of simple reflections
sβ1 , . . . , sβr such that w = sβ1 · · · sβr . An expression w̃ of w is said to be reduced if the
number r of simple reflections is minimal. In such case we call r the length of w. By
abuse of notation, we also denote the expression w̃ by w̃ = sβ1 · · · sβr . For α ∈ S, we
denote Pα, the minimal parabolic subgroup of G generated by B and a representative of
sα.

Definition 2.7. Let w ∈ W and w̃ := sβ1 · · · sβr be an expression (not necessarily reduced)
of w. The Bott-Samelson-Demazure-Hansen (for short, BSDH) variety corresponding to
w̃ is

Z(w̃) := Pβ1 × · · · × Pβr/Br,

where the action of Br on Pβ1 × · · · × Pβr is defined by

(p1, . . . , pr) · (b1, . . . , br) = (p1b1, b
−1
1 p2b2, . . . , b

−1
r−1prbr) for all pi ∈ Pβi , bi ∈ B.

These are smooth projective varieties of dimension r. There is a natural morphism
φw̃ : Z(w̃) −→ G/B defined by

[(p1, . . . , pr)] 7→ p1 · · · prB.
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If w̃ is reduced, the BSDH variety Z(w̃) is a natural desingularization of the Schubert
variety, the B-orbit closure of wB/B in G/B (see [Dem74], [Han73] and [Kum12, Chapter
VIII]).

We can also construct the BSDH variety by iterated P1-bundles. Let w̃′ := sβ1 · · · sβr−1 .
Let f : G/B −→ G/Pβr be the map given by gB 7→ gPβr and let p : Z(w̃′) −→ G/Pβr be
the map given by [(p1, . . . , pr−1)] 7→ p1 · · · pr−1Pβr . Then we have the following cartesian
diagram (see [BK07, Page 66] and [Kum12, Chapter VII]):

Z(w̃) = Z(w̃′)×G/Pβr G/B
φw̃ //

fw̃
��

G/B

f

��
Z(w̃′) p

// G/Pβr

Note that fw̃ is a P1-fibration and the relative tangent bundle Tfw̃ of fw̃ is φ∗w̃(Lβr), where
Lβr is the homogeneous line bundle on G/B corresponding to βr. Using the cohomology of
the relative tangent bundle Tfw̃ we studied the cohomology of the tangent bundle of Z(w̃),
when G is finite dimensional and w̃ is a reduced expression (see [CKP15] and [CK17]).
In Section 3, we compute the relative tangent bundle of the corresponding toric limits, in
the more general setting of Bott towers. The fibration fw̃ comes with a natural section
σw̃ : Z(w̃′)→ Z(w̃) induced by the projection

Pβ1 × · · · × Pβr → Pβ1 × · · · × Pβr−1 .

For the toric limits we get two natural sections, as will be explained in Section 3. For all
i ∈ {1, . . . , r}, we denote Zi, the divisor in Z(w̃) defined by

{[(p1, . . . , pr)] ∈ Z(w̃) : pi ∈ B}.
In [LT04], N. Lauritzen and J.F. Thomsen proved that Z ′is forms a basis of the Picard
group of Z(w̃) and they also proved that if w̃ is a reduced expression these form a basis
of the monoid of effective divisors (see [LT04, Proposition 3.5]). Recently, the effective
divisors of Z(w̃) for w̃ non-reduced case have been considered in [And14].

3. Toric degeneration of a BSDH variety

In [GK94], toric degenerations of BSDH varieties to Bott towers, were constructed
by complex geometric methods. In [Pas10] and [PK16] they have given an algebraic
construction for toric degeneration of a BSDH variety. We recall the algebraic construction
here.

Note that the simple roots are linearly independent elements in the character group of
G. We can choose a positive integer q and a injective morphism λ : Gm −→ T (i.e. λ ∈ N
and λ is injective) such that for all 1 ≤ i ≤ n and u ∈ Gm, αi(λ(u)) = uq (see [Pas10, Page
2836]). When G is finite dimensional, for each one-parameter subgroup λ ∈ N , define

P (λ) := {g ∈ G : limu→0λ(u)gλ(u)−1 exists in G}.
The set P (λ) is a parabolic subgroup and the unipotent radical Ru(P (λ)) of P (λ) is given
by

Ru(P (λ)) = {g ∈ G : limu→0λ(u)gλ(u)−1 is identity in G}.
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Any parabolic subgroup of G is of this form (see [Spr10, Proposition 8.4.5]). Choose a
one-parameter subgroup λ ∈ N such that the corresponding parabolic subgroup is B.

Let us define an endomorphism of G for all u ∈ Gm by

Ψ̃u : G→ G, g 7→ λ(u)gλ(u)−1.

Let B be the set of all endomorphisms of B. Now define a morphism

Ψ : Gm → B by u 7→ Ψ̃u|B.

This map can be extended to 0 and for all x ∈ U , Ψu|B(x) goes to identity when u goes
to zero. Let A1 := SpecC[t] be the affine line over C. We denote for all u ∈ A1, Ψu the
image of u in B. Note that Ψu is the identity on T and Ψ0 is the projection from B to T .

Let w̃ = sβ1 · · · sβr be an expression.

Definition 3.1.

(i) Let X be the variety defined by

X := A1 × Pβ1 × · · · × Pβr/Br,

where the action of Br on A1 × Pβ1 × · · · × Pβr is given by

(u, p1, . . . , pr) · (b1, . . . , br) = (u, p1b1,Ψu(b1)−1p2b2, . . . ,Ψu(br−1)−1prbr).

(ii) For all i ∈ {1, . . . , r}, we denote Zi the divisor in X defined by

{(u, p1, . . . , pr) ∈ Z : pi ∈ B}.

Note that X and Z ′is are integral. Let π : X → A1 be the projection onto the first
factor. Then we have the following theorem (see [Pas10, Proposition 1.3 and 1.4] and
[PK16, Theorem 9] ).

Theorem 3.2.

(1) π : X → A1 is a smooth projective morphism.
(2) For all u ∈ A1 \ {0}, the fiber π−1(u) is isomorphic to the BSDH variety Z(w̃)

such that π−1(u) ∩ Zi corresponds to the divisor Zi in Z(w̃).
(3) π−1(0) is a smooth projective toric variety.

Now onwards, we denote Xu := π−1(u) for u ∈ A1 and the limiting toric variety
X0 = π−1(0) by Xw̃ (do not confuse with the Schubert variety).

Recall that {e+
1 , . . . , e

+
r } is the standard basis of the lattice Zr. Define, for all i ∈

{1, . . . , r},

e−i := −e+
i −

∑
j>i

βije
+
j , (3.1)

here we take βij := 〈βj, β̌i〉. The following proposition will give the description of the fan
of the toric variety Xw̃ (see [Pas10, Proposition 1.4]).

Proposition 3.3.
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(1) The fan Σ of the smooth toric variety Xw̃ consists of the cones generated by subsets
of

{e+
1 , . . . , e

+
r , e

−
1 , . . . , e

−
r }

and containing no subset of the form {e+
i , e

−
i }.

(2) For all i ∈ {1, . . . , r},Z0
i is the irreducible (C∗)r-stable divisor in Xw̃ corresponding

to the one-dimensional cone of Σ generated by e+
i and these form a basis of the

divisor class group of Xw̃.

Note that the maximal cones of Σ are generated by {eεi : 1 ≤ i ≤ r, ε ∈ {+,−}} .

In [Pas10], B. Pasquier used the combinatorics of the toric variety Xw̃ to obtain van-
ishing theorems for the cohomology of line bundles on BSDH variety Z(w̃).

Now we describe the toric limit Xw̃ as an iterated P1-bundle. Let w̃′ := sβ1 · · · sβr−1 .
Then we get a toric morphism

fr : Xw̃ → Xw̃′

induced by the lattice map
f r : Zr → Zr−1,

the projection onto the first r − 1 coordinates.

We prove,

Lemma 3.4.

(1) fr : Xw̃ → Xw̃′ is a toric P1-fibration with two disjoint toric sections.
(2) Xw̃ ' P(OXw̃′ ⊕L ) for some unique line bundle L on Xw̃′.

Proof. Let Σ′ be the fan corresponding to the toric variety Xw̃′ . From the above proposi-
tion, we can see that Σ has a splitting by Σ′ and {e+

r , 0, e
−
r }. Then by [CLS11, Theorem

3.3.19],
fr : Xw̃ → Xw̃′

is a locally trivial fibration with the fan ΣF of the fiber being {e+
r , 0, e

−
r }. Since ΣF is the

fan of the projective line P1, we conclude fr is a toric P1-fibration. As toric sections of the
toric fibration correspond to the maximal cones in ΣF , we get two disjoint toric sections
for fr. This proves (1).

Proof of (2): Since fr : Xw̃ → Xw̃′ is P1-fibration with a section, we see Xw̃ is a
projective bundle P(E ) over Xw̃′ corresponding to a rank 2 vector bundle E on Xw̃′ (see
for example [Har77, Chapter V, Proposition 2.2, page 370]).

Recall that the sections of projective bundle Xw̃ = P(E ) correspond to the quotient
line bundles of E (see [Har77, Proposition 7.12]). Since Xw̃ = P(E ) is projective line
bundle on Xw̃′ with two disjoint sections, we see E is decomposable as a direct sum of
line bundles on Xw̃′ .

As
P(E ) ' P(L ′ ⊗ E )

for any line bundle L ′ on Xw̃′ (see [Har77, Lemma 7.9]), we can assume without loss of
generality

E = OXw̃′ ⊕L
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for some unique line bundle L on Xw̃′ . Hence Xw̃ ' P(OXw̃′ ⊕L ) and this completes
the proof of the lemma. �

Then by definition of Bott tower we get:

Corollary 3.5. The toric limit Xw̃ is a Bott tower.

We have the following situation:

P1 P1

Z(w̃) Xw̃

Z(w̃′) Xw̃′

fw̃ fr

4. On Picard group of a Bott tower

Now we describe a basis of the Picard group Pic(Xr) of Xr.

Let ε ∈ {+,−} and for 1 ≤ i ≤ r, let ρεi be the one-dimensional cone generated
by eεi . For all 1 ≤ i ≤ r, we define Dρεi

to be the toric divisor corresponding to the
one-dimensional cone ρεi .

We prove,

Lemma 4.1. The set {Dρεi
: 1 ≤ i ≤ r and ε ∈ {+,−}} forms a basis of Pic(Xr).

Proof. By Theorem 2.6, using the description of the one-dimensional cones we have the
following decomposition of Σ(1):

Σ(1) = {ρ+
i : 1 ≤ i ≤ r} ∪ {ρ−i : 1 ≤ i ≤ r}. (4.1)

Again by Theorem 2.6, {Dρ+
i

: 1 ≤ i ≤ r} forms a basis of the Picard group Pic(Xr) of

Xr. Since

0 ∼ div(χe
+
i ) =

∑
ρ∈Σ(1)

〈uρ, e+
i 〉Dρ,

by (2.2) we can see that {Dρ−i
: 1 ≤ i ≤ r} also forms a basis of Pic(Xr).

In general, let σ ∈ Σ be the maximal cone generated by {eεi : 1 ≤ i ≤ r}. Take the
torus-fixed point xε in Xr corresponding to the maximal cone σ. Let U be the torus-
invariant open affine neighbourhood of xε in Xr. Then U is an affine space of dimension
r; in particular, Pic(U) = 0. Therefore, we get

Xr \ U = ∪ri=1Dρεi

and Pic(Xr) is generated by

{Dρεi
: 1 ≤ i ≤ r}
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(see [Har70, Chapter II, Proposition 3.1, page 66]). Since {Dρεi
: 1 ≤ i ≤ r} is linearly

independent and the rank of Pic(Xr) is r, this set {Dρεi
: 1 ≤ i ≤ r} forms a basis of

Pic(Xr). �

Remark 4.2. In Section 12, for 1 ≤ i ≤ r, we express Dρ−i
in terms of Dρ+

j
(1 ≤ j ≤ r).

Let 1 ≤ i ≤ r. We prove the following.

Lemma 4.3. The relative tangent bundle Tπi of πi : Xi → Xi−1 is given by

Tπi ' OXi(Dρ+
i

+Dρ−i
) ' OXi(

i−1∑
j=1

βijDρ−j
+ 2Dρ−i

).

Proof. By definition of Bott tower, πi is a P1-fibration. Then the relative canonical bundle
Kπi is given by

Kπi = OXi(KXi)⊗ π∗i (OXi−1
(−KXi−1

))

(see [Kle80, Corollary 24, page 56]). By [CLS11, Theorem 8.2.3] (see also [Ful93, Page
74]), we have

KXΣ
= −

∑
ρ∈Σ(1)

Dρ.

Then

Kπi = OXi(−
∑
ρ∈Σ(1)

Dρ)⊗ π∗i (OXi−1
(
∑

ρ′∈Σ′(1)

Dρ′)) ,

where Σ′ is the fan of Xi−1. Since Xi−1 smooth, any divisor of the form D =∑
ρ′∈Σ′(1) aρ′Dρ′ with aρ′ ∈ Z, in Xi−1 is Cartier. Hence the pullback π∗i (D) is defined

and given by

π∗i (D) = π∗i (
∑

ρ′∈Σ′(1)

aρ′Dρ′) =
∑
ρ∈Σ(1)

−ϕD(πi(uρ))Dρ,

where ϕD is the support function corresponding to the divisor D (see [CLS11, Theorem
4.2.12] for the correspondence between support functions and Cartier divisors).

Since the lattice map πi : Zi → Zi−1 is the projection onto the first i − 1 factors (see
page 8), by definition of uρ and e−j (see (2.2)), for ε ∈ {+,−} we have

πi(uρεj) =

{
uρ′εj

if 1 ≤ j ≤ i− 1.

0 if j = i.

Hence

−ϕD(πi(uρεj)) =

{
aρ′εj

if 1 ≤ j ≤ i− 1.

0 if j = i.

Thus we have,

π∗i (
∑

ρ′∈Σ′(1)

Dρ′) =
∑

ρ∈Σ(1)\{ρ+
i ,ρ
−
i }

Dρ.

Therefore, we see that

Kπi = OXi(−Dρ+
i
−Dρ−i

). (4.2)
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By (2.2), we note that

0 ∼ div(χe
+
i ) = Dρ+

i
−Dρ−i

−
i−1∑
j=1

βijDρ−j
. (4.3)

Since Ǩπi = det Tπi , we get Ǩπi = Tπi as πi is a P1-fibration. Therefore, the result
follows from (4.2) and (4.3). �

The following is well known and proved here for completeness.

Lemma 4.4. Let X and Y be smooth varieties. Let f : X −→ Y be a fibration with a
section σ and denote by σ(Y ) its image in X. Then the restriction of the relative tangent
bundle Tf to σ(Y ) is isomorphic to the normal bundle Nσ(Y )/X of σ(Y ) in X.

Proof. Consider the normal bundle short exact sequence

0 −→ Tσ(Y ) −→ TX |σ(Y ) −→ Nσ(Y )/X −→ 0, (4.4)

where Tσ(Y ) and TX are the tangent bundles of σ(Y ) and X respectively.

Also consider the following short exact sequence

0 −→ Tf −→ TX −→ f ∗TY −→ 0 . (4.5)

By restricting (4.5) to σ(Y ), since σ is a section of f , we get the following short exact
sequence

0 −→ Tf |σ(Y ) −→ TX |σ(Y ) −→ Tσ(Y ) −→ 0 . (4.6)

By using (4.4) and (4.6), we see Tf |σ(Y ) is isomorphic to Nσ(Y )/X . This completes the
proof. �

We prove,

Lemma 4.5. Let 1 ≤ i ≤ r. The normal bundle NXi/Xi−1
of Xi−1 in Xi is ˇLi−1, where

Li−1 is as in the definition of Bott tower and ˇLi−1 is denotes the dual of Li−1.

Proof. Fix 1 ≤ i ≤ r and let L := Li−1. Recall that P(E ) is by definition Proj(S(E )),
S(E ) is symmetric algebra of E (see [Har77, Page 162]). Let V (L ) = Spec(S(L )), the
geometric vector bundle associated to the locally free sheaf (line bundle) L (see [Har77,
Exercise 5.18, Page 128]). Then, V (L ) is an open subvariety in P(E ) and we have the
following commutative diagram

V (L ) P(E ) = Xi

Xi−1

π πr

s0i
σπ

Also note that the the section s0
i (Xi−1) of πi corresponding to the projection E → OXi

is same as the zero section σπ(Xi−1) of π.
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Now consider the following short exact sequence

0 −→ Tπ −→ TV (L ) −→ π∗TXi−1
−→ 0. (4.7)

Since the restriction Tπ|σπ (Xi−1) of Tπ to σπ(Xr−1) is Ľ , by Lemma 4.4 and by above
short exact sequence (4.7) we see that

Nσπ(Xi−1)/V (L ) ' Ľ .

Hence we conclude that
NXi−1/Xi ' Ľ

(here we are identifying Xi−1 with the section corresponding to the projection

E = OXi−1
⊕L → OXi−1

).

This completes the proof of the lemma. �

Let 1 ≤ i ≤ r. We prove,

Lemma 4.6.

(1) The toric sections of πi are given by Dρεi
, ε ∈ {+,−}.

(2) The normal bundle NXi−1/Xi of Xi−1 in Xi is given by

NXi−1/Xi = ˇLi−1 = OXi(Dρ+
i

),

where the line bundle Li−1 is as in the definition of the Bott tower Xi.

Proof. Proof of (1): Recall that πi is a P1-fibration induced by the projection πi : Zi →
Zi−1. For each cone σ ∈ ΣF of dimension 1 (which is a maximal cone in ΣF ), the subvariety
V (σ) is an invariant section of πi, which is an invariant divisor in Xi. Hence we get two
invariant divisors V (ρ+

i ) = Dρ+
i

and V (ρ−i ) = Dρ−i
.

Proof of (2): By Lemma 4.5, we have NXi−1/Xi = ˇLi−1 and the section Xi−1 is given
by the projection E = OXi−1

⊕Li−1 → OXi−1
. Hence (2) follows from (1). �

5. Primitive relations of the Bott tower

5.1. Primitive collections and primitive relations. First recall the notion of primi-
tive collections and primitive relations of a fan Σ, which are basic tools for the classification
of Fano toric varieties due to Batyrev (see [Bat91]).

Definition 5.1. We say P ⊂ Σ(1) is a primitive collection if P is not contained in
σ(1) for some σ ∈ Σ but any proper subset is. Note that if Σ is simplicial, primitive
collection means that P does not generate a cone in Σ but every proper subset does.

Definition 5.2. Let P = {ρ1, . . . , ρk} be a primitive collection in a complete simplicial

fan Σ. Recall uρ be the primitive vector of the ray ρ ∈ Σ. Then
∑k

i=1 uρi is in the relative
interior of a cone γP in Σ with a unique expression

k∑
i=1

uρi =
∑

ρ∈γP (1)

cρuρ, cρ ∈ Q>0.
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Hence
k∑
i=1

uρi − (
∑

ρ∈γP (1)

cρuρ) = 0. (5.1)

Then we call (5.1) the primitive relation of XΣ corresponding to P.

Recall that TDiv(XΣ) denote the group of torus-invariant divisors in XΣ (see Page 8).
Since the fan Σ of Xr is full dimensional, we have the following short exact sequence

0 −→M
ϕ1−→ TDiv(Xr) =

⊕
ρ∈Σ(1)

ZDρ
ϕ2−→ Pic(Xr)→ 0, (5.2)

where the maps are given by ϕ1 : m 7→ div(χm) and ϕ2 : D 7→ OXr(D) (see [CLS11,
Theorem 4.2.1]).

Now we recall some standard notations: Let X be a smooth projective variety, we define

N1(X)Z := {
∑

finite

aiCi : ai ∈ Z, Ci irreducible curve in X}/ ≡

where ≡ is the numerical equivalence, i.e. Z ≡ Z ′ if and only if D · Z = D · Z ′ for all
divisors D in X. We denote by [C] the class of C in N1(X)Z. Let N1(X) := N1(X)Z⊗R.
It is a well known fact that N1(X) is a finite dimensional real vector space (see [Kle66,
Proposition 4, §1, Chapter IV]). In the case where X is a (smooth projective) toric variety,
N1(X)Z is dual to Pic(X) via the natural pairing (see [CLS11, Proposition 6.3.15]).

In our case X = Xr, there are dual exact sequences:

0 −→M
ϕ1−→ ZΣ(1) ϕ2−→ Pic(Xr) −→ 0

and

0 −→ N1(Xr)Z
ϕ∗2−→ ZΣ(1) ϕ∗1−→ N −→ 0, (5.3)

where

ϕ∗2([C]) = (Dρ · C)ρ∈Σ(1), C is an irreducible complete curve in Xr

and
ϕ∗1(eρ) = uρ, eρ is a standard basis vector of RΣ(1)

(see [CLS11, Proposition 6.4.1]).

Let P be a primitive collection in Σ. Note that since Xr is smooth projective,

P ∩ γP (1) = ∅
and

cρ ∈ Z>0 for all ρ ∈ γP (1) (5.4)

(see [CLS11, Proposition 7.3.6]).

As an element in Z
∑

(1), we write r(P ) = (rρ)ρ∈Σ(1), where

rρ =


1 if ρ ∈ P
−cρ if ρ ∈ γP (1)

0 otherwise

(5.5)
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Then by (5.1) we see that ∑
ρ∈

∑
(1)

rρuρ = 0.

Hence by the exact sequence (5.3) and by (5.4), we observe that r(P ) gives an element in
N1(Xr)Z (see [CLS11, Page 305]).

We prove,

Lemma 5.3. Let Pi := {ρ+
i , ρ

−
i }, 1 ≤ i ≤ r. Then

{Pi : 1 ≤ i ≤ r}
is the set of all primitive collections of the fan Σ of Xr.

Proof. By Theorem 2.6, the cones in the fan Σ of Xr are generated by subsets of

{e+
1 , . . . , e

+
r , e

−
1 , . . . , e

−
r }

and containing no subset of the form {e+
i , e

−
i }. Then by Definition 5.1, it is clear that

Pi = {ρ+
i , ρ

−
i } is a primitive collection for all i. Also note that again by description of the

cones in Σ, any primitive collection must contain a Pi for some 1 ≤ i ≤ r.

Fix 1 ≤ i ≤ r. Let Q be a collection of one-dimensional cones such that it properly
contains Pi, i.e. there exists 1 ≤ j ≤ r and j 6= i such that ρεj ∈ Q ⊃ Pi, ε ∈ {+,−}.
Assume that Q is a primitive collection. Then by Definition 5.1, {ρ+

i , ρ
−
i } ⊂ Q generates

a cone in Σ. This is a contradiction to the description of the cones in Σ. Therefore, we
conclude that

{Pi : 1 ≤ i ≤ r}
is the set of all primitive collections. �

Now we define the Contractible classes from [Cas03]: Let X be a smooth projective
toric variety. We define NE(X)Z in N1(X) by

NE(X)Z := {
∑
finite

aiCi : ai ∈ Z≥0 and Ci irreducible curve in X }.

Let γ ∈ NE(X)Z be primitive (i.e. the generator of Z≥0γ) and such that there exists
some irreducible curve in X having numerical class in Q≥0γ. Then

Definition 5.4. (see [Cas03, Definition 2.3]) The above class γ is called contractible if
there exists a toric variety Xγ and an equivariant morphism φγ : X → Xγ, surjective with
connected fibers, such that for every irreducible curve C in X,

φγ(C) = {pt} if and only if [C] ∈ Q≥0γ.

Remark 5.5. Note that any contractible class is always a class of some invariant curve
and also a primitive relation (see [Cas03, Theorem 2.2] and [Sca09, Page 74]).

Recall the following result from [Cas03, Proposition 3.4].

Proposition 5.6. Let P = {ρ1, . . . , ρk} be a primitive collection in Σ, with the primitive
relation r(P ):

k∑
i=1

uρi −
∑

ρ∈γP (1)

cρuρ = 0.
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Then r(P ) is contractible if and only if for every primitive collection Q of Σ such that
P ∩Q 6= ∅ and P 6= Q, the set (Q \ P ) ∪ γP (1) contains a primitive collection.

5.2. Mori cone. We use the notation as above. Let X be a smooth projective variety. We
define NE(X) the real convex cone in N1(X) generated by classes of irreducible curves.
The Mori cone NE(X) is the closure of NE(X) in N1(X) and it is a strongly convex
cone of maximal dimension.

If X is a (smooth projective) toric variety, it is known that NE(X)Z is generated by
the finitely many torus-invariant irreducible curves in X and hence NE(X)Z is a finitely
generated monoid. Hence the cone NE(X) = NE(X) is a rational polyhedral cone and
we have

NE(X) =
∑

τ∈Σ(r−1)

R≥0[V (τ)],

where r = dim(X) and [V (τ)] ∈ N1(X)Z is the class of the toric curve V (τ). This is called
the Toric Cone Theorem (see [CLS11, Theorem 6.3.20]). Let τ ∈ Σ(r−1) be a wall, that is
τ = σ∩σ′ for some σ, σ′ ∈ Σ(r). Let σ (respectively, σ′) is generated by {uρ1 , uρ2 , . . . , uρr}
(respectively, by {uρ2 , . . . , uρr+1}) and let τ be generated by {uρ2 , . . . , uρr}. Then we get
a linear relation,

uρ1 +
r∑
i=2

biuρi + uρr+1 = 0 (5.6)

The relation (5.6) called wall relation and we have

Dρ · V (τ) =


bi if ρ = ρi and i ∈ {2, 3, . . . , r}
1 if ρ = ρi and i ∈ {1, r + 1}
0 otherwise

(see [CLS11, Proposition 6.4.4 and eq. (6.4.6) page 303]).

Now we describe the Mori cone NE(Xr) of Xr in terms of the primitive relations of
Xr.

Theorem 5.7. NE(Xr)Z =
∑r

i=1 Z≥0r(Pi).

Proof. We have

NE(Xr) =
∑
P∈P

R≥0r(P ) ,

where P is the set of all primitive collections in Xr (see [CLS11, Theorem 6.4.11]). By
Lemma 5.3, {Pi : 1 ≤ i ≤ r} is the set of all primitive collections of Xr. Therefore, we get

NE(Xr) =
r∑
i=1

R≥0r(Pi) .

By [Cas03, Theorem 4.1], we have

NE(Xr)Z =
∑
γ∈C

Z≥0γ,

where C is the set of all contractible classes in Xr.
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By Proposition 5.6, we can see that the primitive relations r(Pi) are contractible classes
for 1 ≤ i ≤ r. Since any contractible class is a primitive relation, we get

C = {r(Pi) : 1 ≤ i ≤ r}.
Hence we conclude that

NE(Xr)Z =
r∑
i=1

Z≥0r(Pi).

This completes the proof of the theorem. �

We have

Corollary 5.8. The set {r(Pi) : 1 ≤ i ≤ r} forms a basis of N1(Xr)Z.

Proof. By Theorem 5.7, {r(Pi) : 1 ≤ i ≤ r} generates the monoid NE(Xr)Z and the cone
NE(Xr) is of dimension r. So r(Pi) for 1 ≤ i ≤ r are linearly independent. Also the
group N1(Xr)Z is generated by NE(Xr)Z, hence by r(Pi) for 1 ≤ i ≤ r. Hence these form
a basis of N1(Xr)Z. �

Next we describe the primitive relation r(Pi) explicitly by finding the cone γPi in (5.1)
for 1 ≤ i ≤ r. We also observe that these cones depend on the given matrix corresponding
to the Bott tower. We need some notation to state the result.

Recall the matrix Mr corresponding to the Bott tower Xr is

Mr =


1 β12 β13 . . . β1r

0 1 β23 . . . β2r

0 0 1 . . . β3r
...

...
. . .

...
0 . . . . . . 1


r×r

(see Section 2).

Fix 1 ≤ i ≤ r. Define:

(1) Let r ≥ j > j1 = i ≥ 1 and define a1,j := βj1j.
(2) Let r ≥ j2 > j1 be the least integer such that a1,j > 0, then define for j > j2

a2,j := βij2βj2j − βij.
(3) Let k > 2 and let r ≥ jk > jk−1 be the least integer such that ak−1,j < 0, then

inductively, define for j > jk

ak,j := −ak−1,jkβjkj + ak−1,j.

(4) For j ≤ i, bj := 0, and for j > i define

bj := al,j if jl+1 ≥ j > jl, l ≥ 1. (5.7)

Note that we have

bj =


0 for j ≤ i

< 0 for j ∈ {j3, . . . , jm}
≥ 0 otherwise .

(5) Let Ii := {j1, . . . , jm}.
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Example 5.9. Let

M7 =



1 −1 −1 −1 2 −1 2
0 1 0 2 −1 2 −1
0 0 1 0 −1 −1 −1
0 0 0 1 −1 2 −1
0 0 0 0 1 −1 2
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


7×7

Let G = SL(5,C) and let

w̃ = sβ1 · · · sβ7 = sα2sα1sα3sα1sα2sα1sα2 .

Note that the matrix corresponding to the toric limit Xw̃ is M7.

Let i = 1 then j1 = 1 and

(1) a1,2 = β12 = 〈β2, β̌1〉 = 〈α1, α̌2〉 = −1 ;

(2) a1,3 = β13 = 〈β3, β̌1〉 = 〈α3, α̌2〉 = −1 ;

(3) a1,4 = β14 = 〈β4, β̌1〉 = 〈α1, α̌2〉 = −1 ;

(4) a1,5 = β15 = 〈β5, β̌1〉 = 〈α2, α̌2〉 = 2 ;

(5) a1,6 = β16 = 〈β6, β̌1〉 = 〈α1, α̌2〉 = −1 ;

(6) a1,7 = β17 = 〈β7, β̌1〉 = 〈α2, α̌2〉 = 2 .

Then j2 = 5 and

(1) a2,6 = β15β56 − β16 = 〈β5, β̌1〉〈β6, β̌5〉 − 〈β6, β̌1〉 = 〈α1, α̌2〉 = −1 ;

(2) a2,7 = β15β57 − β17 = 〈α2, α̌2〉 = 2 .

Then j3 = 6 and

(1) a3,7 = −a2,6β67 + a2,7

= −(〈β6, β̌5〉)(〈β7, β̌6〉) + (〈β7, β̌5〉)

= −(−1)(−1) + (2)

= 1.

Therefore, I1 = {1, 5, 6} .

Let 1 ≤ i ≤ r. Let Ai := {eεjj : 1 ≤ j ≤ r, bj 6= 0 and

εj =

{
+ for j /∈ Ii
− for j ∈ Ii

}.
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Remark 5.10. Note that as bj = 0 for j ≤ i, we can take i < j ≤ r in the definition of
Ai.

Now we prove,

Proposition 5.11. Let 1 ≤ i ≤ r. The cone γPi in the primitive relation of Xr corre-
sponding to Pi is generated by Ai.

Before going to the proof we see an example.

Example 5.12. We use same setting as in Example 5.9. By Lemma 5.3, we have Pi =
{ρ+

i , ρ
−
i } for all 1 ≤ i ≤ 7.

By definition of e−i (see (2.2)), we have

(i) e−1 + e+
1 = e+

2 + e+
3 + e+

4 − 2e+
5 + e+

6 − 2e+
7 .

(ii) e−2 + e+
2 = −2e+

4 + e+
5 − 2e+

6 + e+
7 .

(iii) e−3 + e+
3 = e+

5 + e+
7 .

(iv) e−4 + e+
4 = e+

5 − 2e+
6 + e+

7

(v) e−5 + e+
5 = e+

6 − 2e+
7

(vi) e−6 + e+
6 = e+

7 .

(vii) e−7 + e+
7 = 0.

Now we describe the cone γP1.

Observe that in (i) coefficient of e+
5 is negative. By (v), we can see

e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2(e−5 − e+
6 + 2e+

7 ) + e+
6 − 2e+

7 .

Then

e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2e−5 − e+
6 + 2e+

7 .

By (vi),

e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2e−5 + e−6 + e+
7 . (5.8)

In this case, I1 = {1, 5, 6} (see Example 5.9) and the cone γP1 is generated by

{e+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

Now we prove Proposition 5.11:

Proof. By (2.2), for all 1 ≤ i ≤ r, we have

e−i + e+
i = −

∑
j>i

βije
+
j . (5.9)
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If for all j > i, βij ≤ 0, then the cone γPi is generated by

{e+
j : j > i, βij < 0}.

If not, choose the least integer j2 > i such that βij2 > 0. Now write

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2(−e+

j2
)− (

∑
j>j2

βije
+
j ).

Again by using (5.9), we have

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2(e−j2 +

∑
j>j2

βj2je
+
j )− (

∑
j>j2

βije
+
j ).

Then

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2e

−
j2

+
∑
j>j2

(βij2βj2j − βij)e+
j ).

By definition a2,j = βij2βj2j − βij, then we have

e−i + e+
i = −(

∑
j2>j>i

βije
+
j ) + βij2e

−
j2

+ (
∑
j>j2

a2,je
+
j ).

If a2,j ≥ 0 for all j > j2, then γPi is generated by

{eεjj : j > i, εj = +∀j 6= j2, and εj = − for j = j2}.

Otherwise, choose the least integer j3 > j2 such that a2,j3 < 0. By substituting −e+
j3

from (5.9), we get

e−i + e+
i = −(

∑
j2>j>i

a1,je
+
j ) +βij2e

−
j2

+ (
∑

j3>j>j2

a2,je
+
j )−a2,j3(e−j3 +

∑
j>j3

βj3je
+
j ) + (

∑
j>j3

a2,je
+
j ).

Then,

e−i + e+
i = −(

∑
j2>j>i

a1,je
+
j ) + βij2e

−
j2

+ (
∑

j3>j>j2

a2,je
+
j )− a2,j3e

−
j3

+
∑
j>j3

(−a2,j3βj3j + a2,j)e
+
j ).

By definition of a3,j = −a2,j3βjj3 + a2,j, then we have

e−i + e+
i = −(

∑
j2>j>i

a1,je
+
j ) + 2e−j2 + (

∑
j3>j>j2

a2,je
+
j )− a2,j3e

−
j3

+ (
∑
j>j3

a3,je
+
j ).

By repeating this process, we get the cone γPi as we required. �

Let 1 ≤ i ≤ r. Recall Ii = {i = j1, . . . , jm} as in page 19. Define for 1 ≤ j ≤ r ,

cj :=

{
−bj if j ∈ Ii \ {j1, j2}
bj otherwise

Set γPi(1) := {γ1, . . . , γl}. Then we have
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Corollary 5.13. For 1 ≤ i ≤ r, the primitive relation r(Pi)(= (rρ)ρ∈Σ(1)) of Xr given by

rρ =


1 for ρ = ρ+

i or ρ−i
−cj for ρ = γj ∈ γPi(1)

0 otherwise

Example 5.14. We use Example 5.12. The following can be seen easily from (5.8).

(1) γP1(1) = {ρ+
2 , ρ

+
3 , ρ

+
4 , ρ

−
5 , ρ

−
6 , ρ

+
7 } .

(2) The primitive relation r(P1) = (rρ)ρ∈Σ(1) is given by

rρ =


1 for ρ = ρ+

1 or ρ−1
−1 for ρ = ρ+

k , k ∈ {2, 3, 4, 7} and ρ = ρ−6
−2 for ρ = ρ−5
0 otherwise

Now we describe the primitive relations r(Pi) in terms of intersection of two maximal
cones in the fan of Xr. Let 1 ≤ i ≤ r. Let C ′i := {eεjj : 1 ≤ j ≤ r and

εj =

{
+ if j /∈ Ii \ {j1}
− if j ∈ Ii

}.

Let C ′′i := {eεjj : 1 ≤ j ≤ r and

εj =

{
+ if j /∈ Ii
− if j ∈ Ii

}.

Example 5.15. We use Example 5.12, for i = 1, we have I1 = {1, 5, 6}. Then

C ′1 = {e+
1 , e

+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 } and C ′′1 = {e−1 , e+

2 , e
+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

We prove the following by using wall relation (see page 16).

Proposition 5.16. Fix 1 ≤ i ≤ r. The class of curve r(Pi) is given by

r(Pi) = [V (τi)] ,

where τi = σ ∩ σ′ and σ (respectively, σ′) is the cone generated by C ′i (respectively, by
C ′′i ).

Proof. From Corollary 5.13, we have the following.

e+
i + e−i −

∑
j>i

cje
εj
j = 0, (5.10)

where εj is as in the statement.

First we show that the set Q := {ρ ∈ Σ(1) : Dρ ·V (τi) > 0} is not contained in σ(1) for
any σ ∈ Σ (we adapt the arguments of [CLS11, Proof of Theorem 6.4.11, page 306], here
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we are not assuming the curve V (τi) is extremal). Indeed, suppose Q ⊆ σ(1) for some
σ ∈ Σ. Let D be an ample divisor in Xr. Then, we can assume that D is of the form

D =
∑
ρ∈Σ(1)

aρDρ , aρ = 0 for all ρ ∈ σ(1) and aρ ≥ 0 for all ρ /∈ σ(1)

(see [CLS11, (6.4.10), page 306]). Then we can see

D · V (τi) =
∑
ρ/∈σ(1)

aρDρ · V (τi).

As Q ⊆ σ(1), by definition of Q, Dρ ·V (τi) ≤ 0 for ρ /∈ σ(1). Since aρ ≥ 0 for ρ /∈ σ(1), we
get D · V (τi) ≤ 0, which is a contradiction as D is ample. Therefore, Q is not contained
in σ(1) for any σ ∈ Σ.

Hence to prove the proposition it is enough to prove

Pi = Q(:= {ρ ∈ Σ(1) : Dρ · V (τi) > 0})

(see again [CLS11, Proof of Theorem 6.4.11, page 306]).

From (5.10) and by using wall relation, we can see that

Dρ · V (τi) =


1 if ρ = ρ+

i or ρ−i .

−cj if ρ = ρ
εj
j and j ∈ Ii \ {j1}.

0 otherwise.

Since cj’s are all positive integers (see (5.4)), by Lemma 5.3 we conclude that

Pi = {ρ ∈ Σ(1) : Dρ · V (τi) > 0}

and hence r(Pi) = [V (τi)]. This completes the proof of the proposition. �

Example 5.17. In Example 5.12, the curve r(P1) = [V (τ1)] with τ1 = σ ∩ σ′ where σ is
the cone generated by

C ′1 = {e+
1 , e

+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }

and σ′ is the cone generated by

C ′′1 = {e−1 , e+
2 , e

+
3 , e

+
4 , e

−
5 , e

−
6 , e

+
7 }.

6. Ample and nef line bundles on the Bott tower

Let X be a smooth projective variety. Recall N1(X) is the real finite dimensional vector
space of numerical classes of real divisors in X (see [Kle66, §1, Chapter IV]). In N1(X),
we define the nef cone Nef(X) to be the cone generated by classes of numerically effective
divisors and it is a strongly convex closed cone in N1(X). The ample cone Amp(X) of X
is the cone in N1(X) generated by classes of ample divisors. Note that the ample cone
Amp(X) is interior of the nef cone Nef(X) (see [Kle66, Theorem 1, §2, Chapter IV]).
Recall that the nef cone Nef(X) and the Mori cone NE(X) are closed convex cones and
are dual to each other (see [Kle66, §2, Chapter IV] ) .

In our case, we have Pic(Xr)R = N1(Xr), as the numerical equivalence and linear
equivalence coincide (see [CLS11, Proposition 6.3.15]).
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In this section, we characterize the ampleness and numerically effectiveness of line
bundles on Xr and we study the generators of the nef cone of Xr. We use the notation
as in Section 5. Let D =

∑
aρDρ be a toric divisor in Xr and for 1 ≤ i ≤ r, define

di := (aρ+
i

+ aρ−i −
∑

γj∈γPi (1)

cjaγj).

Then we prove,

Lemma 6.1.

(1) The divisor D is ample if and only if di > 0 for all 1 ≤ i ≤ r.
(2) The divisor D is numerically effective (nef) if and only if di ≥ 0 for all 1 ≤ i ≤ r.

Proof. Proof of (2): Recall that the primitive relation r(Pi) is given by

r(Pi) = (rρ)ρ∈Σ(1)

(see page 15). First observe that we have the following

D · r(Pi) =
∑
ρ∈Σ(1)

aρ(Dρ · r(Pi)) =
∑
ρ∈Σ(1)

aρrρ

(see [CLS11, Proposition 6.4.1, page 299]).

Then by (5.5), we get

D · r(Pi) =
∑
ρ∈Pi

aρ −
∑

ρ∈γPi (1)

rρaρ.

By Lemma 5.3, we have Pi = {ρ+
i , ρ

−
i }. Then by Corollary 5.13, we get

D · r(Pi) = (aρ+
i

+ aρ−i −
∑

γj∈γPi (1)

cjaγj) =: di. (6.1)

Since the nef cone Nef(Xr) and the Mori cone NE(Xr) are dual to each other, the
divisor D is nef if and only if D ·C ≥ 0 for all torus-invariant irreducible curves C in Xr.
By Theorem 5.7, we have

NE(Xr) =
r∑
i=1

R≥0r(Pi).

Hence D is nef if and only if D · r(Pi) ≥ 0 for all 1 ≤ i ≤ r. Therefore, by (6.1), we
conclude that the divisor D is nef if and only if di ≥ 0 for all 1 ≤ i ≤ r. This completes
the proof of (2).

Proof of (1): Recall that the divisor D is ample if and only if its class in Pic(Xr)R lies
in the interior of the nef cone Nef(Xr). Hence by using similar arguments as in the proof
of (2) and the toric Kleiman criterion for ampleness [CLS11, Theorem 6.3.13], we can see
that D is ample if and only if di > 0 for all 1 ≤ i ≤ r. �

Next we describe the generators of the nef cone Nef(Xr) of Xr.
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Example 6.2. Let G = SL(3,C) and w̃ = sα1sα2. Note that the corresponding matrix
for the Bott tower Xw̃ is

A2 =

[
1 −1
0 1

]
2×2

Then Xw̃ = P(OP1⊕OP1(1)), the Hirzebruch surface H1 and the rays (ρ+
1 , ρ

−
1 , ρ

+
2 and ρ−2 )

of the fan (shown below) of Xw̃ are generated by

e+
1 , e

−
1 = −e+

1 + e+
2 , e

+
2 and − e+

2 .

ρ+
1

ρ+
2ρ−1

ρ−2

Figure. Fan of Hirzebruck surface H1.

The primitive relations r(P1) and r(P2) are given by

r(P1) : e+
1 + e−1 = e2 and r(P2) : e+

2 + e−2 = 0.

By wall relation, we observe that

(1) Dρ+
1
· r(P1) = 1 and Dρ+

1
· r(P2) = 0.

(2) Dρ−2
· r(P1) = 0 and Dρ−2

· r(P2) = 1.

Then the dual basis of {r(P1) , r(P2)} is {Dρ+
1
, Dρ−2

}. Hence the generators of the

nef cone Nef(H1) are Dρ+
1

and Dρ−2
. Note that by Lemma 4.1, Pic(H1) is generated by

{Dρ+
1
, Dρ−2

}. Let D = aDρ+
1

+ bDρ−2
∈ Pic(H1). Then

D is ample if and only if a > 0 and b > 0

(this gives back [CLS11, Example (6.1.16), page 273]).

Now we prove the similar results for Xr. For 1 ≤ m ≤ r, define

Jm := {1 ≤ i < m : {ρ+
m} ∩ γPi(1) 6= ∅}.
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Remark 6.3. Note that the set Jm is the collection of indices i < m for which uρ+
m

appear
in the γPi part of the expression (5.1) for the primitive relation r(Pi).

We set D1 := Dρ+
1

, and for m > 1 define inductively

Dm :=

{
Dρ+

m
if Jm = ∅

(
∑

k∈Jm c
γPk
ρ+
m
Dk) +Dρ+

m
if Jm 6= ∅,

where −cγPk
ρ+
m

is the coefficient of e+
m in the primitive relation r(Pk).

Example 6.4. In Example 6.2, D1 = Dρ+
1

, J2 = {1} and D2 = D1 + Dρ+
2

. By using

(2.2), we see that

0 ∼ div(χe
+
1 ) ∼ Dρ+

1
−Dρ−1

and
0 ∼ div(χe

+
2 ) ∼ Dρ+

2
−Dρ−2

+Dρ−1
.

Hence D2 = D1 +Dρ+
2

= Dρ−2
.

Example 6.5. In Example 5.12,

(1) Recall by (5.8), we have

e−1 + e+
1 = e+

2 + e+
3 + e+

4 + 2e−5 + e−6 + e+
7 .

Then , γP1(1) = {ρ+
2 , ρ

+
3 , ρ

+
4 , ρ

−
5 , ρ

−
6 , ρ

+
7 }.

(2) γP2(1) = {ρ−4 , ρ−5 , ρ+
6 , ρ

+
7 } (since e+

2 + e−2 = 2e−4 + e−5 + e+
6 + e+

7 ) .

(3) γP3(1) = {ρ+
5 , ρ

+
7 } (since e+

3 + e−3 = e+
5 + e+

7 ) .

(4) γP4(1) = {ρ+
5 , ρ

−
6 , ρ

−
7 } (since e+

4 + e−4 = e+
5 + 2e−6 + e−7 ).

(5) γP5(1) = {ρ+
6 , ρ

−
7 } (since e+

5 + e−5 = e+
6 + 2e−7 ).

(6) γP6(1) = {ρ+
7 } (since e+

6 + e−6 = e+
7 ).

(7) γP7(1) = ∅. (since e+
7 + e−7 = 0 ).

Then ,

(1) If m = 1, then D1 = Dρ+
1

.

(2) If m = 2, then J2 = {1} and c
γP1

ρ+
2

= 1. Hence D2 = D1 +Dρ+
2

.

(3) If m = 3, then J3 = {1} and c
γP1

ρ+
3

= 1. Hence D3 = D1 +Dρ+
3

.

(4) If m = 4, then J4 = {1} and c
γP1

ρ+
4

= 1. Hence D4 = D1 +Dρ+
4

.

(5) If m = 5, then J5 = {3, 4} and c
γP3

ρ+
5

= 1 ; c
γP4

ρ+
5

= 1. Hence

D5 = D3 +D4 +Dρ+
5
.
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(6) If m = 6, then J6 = {2, 5} and c
γP2

ρ+
6

= 1 ; c
γP5

ρ+
6

= 1. Hence

D6 = D2 +D5 +Dρ+
6
.

(7) If m = 7, then J7 = {1, 2, 3, 6} and

c
γP1

ρ+
7

= 1 ; c
γP2

ρ+
7

= 1 ; c
γP3

ρ+
7

= 1 ; and c
γP6

ρ+
7

= 1 . Hence

D7 = D1 +D2 +D3 +D6 +Dρ+
7
.

We prove,

Proposition 6.6. The set {Di : 1 ≤ i ≤ r} is dual basis of {r(Pi) : 1 ≤ i ≤ r}.

Proof. Fix 1 ≤ i ≤ r. By Proposition 5.16, the class of curve corresponding to the
primitive relation r(Pi) is given by

r(Pi) = [V (τi)]

(where τi is described as in Proposition 5.16). From Corollary 5.13, the primitive relation
r(Pi)(= [V (τi)]) is

e+
i + e−i −

∑
j>i

cje
εj
j = 0, (6.2)

where εj is as in Proposition 5.16. Note that this is the wall relation for the torus-invariant
curve V (τi). We prove

Dm · r(Pi) = Dm · V (τi) =

{
1 if i = m.

0 if i 6= m.
(6.3)

By (6.2) and by wall relation, we have

Dρ+
m
· V (τi) =


1 for m = i

0 for m < i

−cγPi
ρ+
m

for m > i and i ∈ Jm
0 for m > i and i /∈ Jm

(6.4)

Hence by definition of Dm, it is clear that

Dm · V (τi) =

{
1 for m = i

0 for m < i
(6.5)

Now we claim Dm · V (τi) = 0 for all m > i. Assume that m > i and write m = i + j,
where 1 ≤ j ≤ r − i. We prove the claim by induction on j. If j = 1, then Dm = Di+1.

Case 1: If Ji+1 = ∅, then Di+1 = Dρ+
i+1

. By (6.4), we see that

Di+1 · V (τi) = 0.

Case 2: Assume that Ji+1 6= ∅.
Subcase 1: If i /∈ Ji+1, then by (6.4) and (6.5), we can see that

Di+1 · V (τi) = 0.
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Subcase 2: If i ∈ Ji+1, then by (6.5), we have

Di+1 · V (τi) = c
γPi
ρ+
i+1

+ (Dρ+
i+1
· V (τi)).

By (6.4), Dρ+
i+1
· V (τi) = −cγPi

ρ+
i+1

and hence Di+1 · V (τi) = 0. This proves the claim for

j = 1.

Now assume that j > 1.

Case 1: If Jm = ∅, then by (6.4) and (6.5), we see that

Dm · V (τi) = 0.

Case 2: Assume that Jm 6= ∅.
Subcase 1: If i /∈ Jm, then by (6.4) and (6.5), we can see that

Dm · V (τi) = ((
∑

k∈Jm,k>i

c
γPk
ρ+
m
Dk) · V (τi)) + (Dρ+

m
· V (τi)).

By induction on j, Dk · V (τi) = 0 for all i < k < m. By (6.4), as m > i and m /∈ Jm , we
have

Dρ+
m
· V (τi) = 0 .

Hence we conclude that

Dm · V (τi) = 0.

This completes the proof of the proposition. �

We have,

Theorem 6.7.

(1) The nef cone Nef(Xr) of Xr is generated by {Di : 1 ≤ i ≤ r}.
(2) The divisor D =

∑
i aiDi is ample if and only if ai > 0 for all 1 ≤ i ≤ r.

Proof. Since the nef cone Nef(Xr) is dual of the Mori cone NE(Xr), (1) follows from
Proposition 6.6.

Proof of (2): This follows from (1) as the ample cone Amp(Xr) is interior of the nef
cone Nef(Xr). �

7. Fanoness and weak Fanoness of Bott tower

In this section we describe the matrices Mr such that the corresponding to Bott tower
Xr is Fano or weak Fano. First recall the Iitaka dimension of a Cartier divisor D in a
normal projective variety X. Let

N(D) := {m ≥ 0 : H0(X,L (mD)) 6= 0},

where L (mD) is the line bundle associated to mD. For m ∈ N(D), we have a rational
map

φm : X 99K P(H0(X,L (mD))∗).
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If N(D) is empty we define the Iitaka dimension κ(D) of D as −∞. Otherwise we define

κ(D) := max
m∈N(D)

{dim(φm(X))}.

Observe that κ(D) ∈ {−∞, 0, 1, . . . , dim(X)}. We say D is big if κ(D) = dim(X) (see
[Laz04, Section 2.2, page 139]). Note that an ample divisor is big .

Lemma 7.1. Let X be a smooth projective variety, let U be an open affine subset of X.
Let D be an effective divisor with support X \ U . Then D is big.

Proof. It suffices to show that there exists an effective divisor E with support X \U such
that E is big. Indeed, we then have mD = E + F for some m ≥ 0 and for some effective
divisor F . Then E + F is big and hence so is D.

There exists f1, . . . , fn ∈ OX(U) algebraically independent over C, where n = dim(X).
View f1, . . . , fn as rational functions on X, then f1, . . . , fn ∈ H0(X,OX(E)) for some
effective divisor E with support X \ U (since div(fi) is an effective divisor with support
in X \ U for 1 ≤ i ≤ r). Thus, the monomials in f1, . . . , fn of any degree m are linearly
independent elements of H0(X,OX(mE)). So dim(H0(X,OX(mE))) grows like mn as
m → ∞. Hence E is big (see [Laz04, Corollary 2.1.38 and Lemma 2.2.3]) and this
completes the proof. �

We get the following as a variant of Lemma 7.1.

Let X be a smooth projective variety and D be an effective divisor. Let supp(D)
denotes the support of D. If X \ supp(D) is affine, then D is big.

A smooth projective variety X is called Fano (respectively, weak Fano) if its anti-
canonical line bundle −KX is ample (respectively, nef and big). To describe our results
we use the notation and terminology from Section 1 (see page 3).

We prove,

Theorem 7.2.

(1) Xr is Fano if and only if it satisfies II.
(2) Xr is weak Fano if and only if it satisfies III.

Proof. Proof of (2): We have

KXr = −
∑
ρ∈Σ(1)

Dρ (7.1)

(see [CLS11, Theorem 8.2.3] or [Ful93, Page 74]). The anti-canonical line bundle of any
projective toric variety is big, since we have

supp(−KXr) = Xr \ (C∗)r,
(C∗)r is an affine open subset of Xr, by Lemma 7.1, −KXr is big.

By using Lemma 6.1, we prove that −KXr is nef if and only if Xr satisfies III.

Let D = −KXr . By (7.1) and by definition of di for D (see Lemma 6.1), we have

di = 2−
∑

γj∈γPi (1)

cj.
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Then by Lemma 6.1(2), −KXr is nef if and only if
∑

γj∈γPi (1) cj ≤ 2 for all 1 ≤ i ≤ r.

First assume that −KXr is nef. Fix 1 ≤ i ≤ r. By above discussion, we have∑
γj∈γPi (1)

cj ≤ 2. (7.2)

Since cj’s are positive integers (see (5.4)), we get the following situation:

|γPi(1)| = 0 or |γPi(1)| = 1, or |γPi(1)| = 2.

Case 1: If |γPi(1)| = 0, then by definition of γPi (see Proposition 5.11), we have

r(Pi) : e+
i + e−i = 0.

Hence we see Xr satisfies the condition N1
i .

Case 2: If |γPi(1)| = 1, then there exists unique r ≥ j > i, such that γj ∈ γPi(1) and
the primitive relation is either

r(Pi) : e+
i + e−i = cje

+
j (7.3)

or

r(Pi) : e+
i + e−i = cje

−
j (7.4)

By (7.2), we get cj = 1 or 2.

Subcase (i): Assume that cj = 1. If the primitive relation is (7.3), then we can see that

|η+
i | = 0 and cj = −βij = 1. Then βij = −1 and hence Xr satisfies the condition N2

i .

If the primitive relation is (7.4), then by (2.2) |η−i | = 0 and |η+
i | = 1. Hence cj = βij = 1

and βjk = 0 for all k > j.

Subcase (ii): Assume that cj = 2. If the primitive relation r(Pi) is (7.3), then |η+
i | = 0

and |η−i | = 1. So by (2.2), we have cj = −βij. If the primitive relation r(Pi) is (7.4), then
|η+
i | = 1, |η−i | = 0 and βjk = 0 for all k > j. Again by (2.2), we have cj = βij Thus,

either βij = −2 or βij = 2.

Hence Xr satisfies the condition N3
i .

Case 3: If |γPi(1)| = 2, then there exists r ≥ s1 > s2 > i with γs1 , γs2 ∈ γPi(1) such
that the primitive relation r(Pi) is

r(Pi) : e+
i + e−i = cs1e

±
s1

+ cs2e
±
s2

(7.5)

Subcase (i): If the primitive relation is r(Pi) : : e+
i + e−i = cs1e

+
s1

+ cs2e
+
s2

, by (2.2) we see

|η+
i | = 0 and |η−i | = 2 . By (7.2) and (5.4) (ci’s are positive integers), we get

cs1 = 1 , cs2 = 1 and βis1 = βis2 = −1.

Hence Xr satisfies the condition N3
i .

Subcase (ii): If the primitive relation is r(Pi) : e+
i + e−i = cs1e

+
s1

+ cs2e
−
s2

, by (2.2) we

see |η+
i | = 1 = |η−i |. Then βis1 = −1, βis2 = 1 and βs2k = 0 for all k > s2.

Subcase (iii): If the primitive relation is r(Pi) : e+
i + e−i = cs1e

−
s1

+ cs2e
+
s2

, by (2.2) we

see |η+
i | = 1 and βis1 = 1. Then βs1s2 − βis2 = 1 and βs1k − βik = 0 for all k > s2.
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Subcase (iv): If the primitive relation is r(Pi) : e+
i + e−i = cs1e

−
s1

+ cs2e
−
s2

, by (2.2) we

see |η+
i | = 1 and βis1 = 1. Then βs1s2−βis2 = −1 and βis2−βs1s2−βs2k = 0 for all k > s2.

Hence Xr satisfies the condition N3
i . Therefore, we conclude that if Xr is weak Fano

then Xr satisfies the condition III. Similarly, we can prove by using Lemma 6.1(2), if Xr

satisfies III then Xr is weak Fano. This completes the proof of (2).

Proof of (1): This follows by using similar arguments as in the proof of (2) and Lemma
6.1(1). �

7.1. Local rigidity of Bott towers. Now we prove some vanishing results for the co-
homology of tangent bundle of the Bott tower Xr and we get some local rigidity results.
Let TXr denotes the tangent bundle of Xr. Then we have

Corollary 7.3. If Xw̃ satisfies II, then H i(Xw̃, TXw̃) = 0 for all i ≥ 1.

Proof. If Xr satisfies II, then by Theorem 7.2, Xr is Fano variety. By [BB96, Proposition
4.2], since Xr is a smooth Fano toric variety, we get H i(Xr, TXr) = 0 for all i ≥ 1. �

It is well known that by Kodaira-Spencer theory, the vanishing of H1(X,TX) implies
that X is locally rigid, i.e. admits no local deformations (see [Huy06, Proposition 6.2.10,
page 272]).

Then by above result we have

Corollary 7.4. The Bott tower Xr is locally rigid if it satisfies II.

8. Log Fanoness of Bott towers

Recall that a pair (X,D) of a normal projective variety X and an effective Q-divisor D
is Kawamata log terminal (klt) if KX +D is Q-Cartier, and for all proper birational
maps f : Y −→ X, the pull back f ∗(KX + D) = KY + D′ satisfies f∗KY = KX and
bD′c ≤ 0, where b

∑
i aiDic =

∑
ibaicDi, bxc is the greatest integer ≤ x.

The pair (X,D) is called log Fano if it is klt and −(KX +D) is ample.

We recall here, a condition for the anti-canonical line bundle to be big (see [CG13]).
Let X be a Q- Gorenstein projective normal variety over C. If X admits a divisor D
with the pair (X,D) being log Fano then −KX is big (In [CG13] there is a necessary and
sufficient condition that X is log Fano (or “Fano type ”) variety, see [CG13, Theorem 1.1]
for more details on this ).

If X is smooth and D is a normal crossing divisor, the pair (X,D) is log Fano if and
only if bDc = 0 and −(KX + D) is ample (see [KM08, Lemma 2.30, Corollary 2.31
and Definition 2.34]). In case of toric variety X see also [CLS11, Definition 11.4.23 and
Proposition 11.4.24, page 558]. We use notation as in Lemma 6.1. Let D =

∑
ρ∈Σ(1) aρDρ

be a toric divisor in Xr, with a′ρs in Q≥0 and bDc = 0. For 1 ≤ i ≤ r, define

ki := di − 2 +
∑

γj∈γPi (1)

cj.

Then we prove,
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Theorem 8.1. The pair (Xr, D) is log Fano if and only if ki < 0 for all 1 ≤ i ≤ r.

Proof. From the above discussion by the condition on D, the pair (Xr, D) is log Fano if
and only if −(KXr +D) is ample. Note that as −KXr =

∑
ρ∈Σ(1)Dρ, we get

−(KXr +D) =
∑
ρ∈Σ(1)

(1− aρ)Dρ.

By Lemma 6.1, −(KXr +D) is ample if and only if

((1− aρ+
i

) + (1− aρ−i )−
∑

γj∈γPi (1)

cj(1− aγj)) > 0 for all 1 ≤ i ≤ r. (8.1)

Recall the definition of di for D,

di = aρ+
i

+ aρ−i −
∑

γj∈γPi (1)

cjaγj .

Then we have

((1− aρ+
i

) + (1− aρ−i )−
∑

γj∈γPi (1)

cj(1− aγj)) = −(di − 2 +
∑

γj∈γPi (1)

cj).

Hence in (8.1)

((1− aρ+
i

) + (1− aρ−i )−
∑

γj∈γPi (1)

cj(1− aγj)) = −ki for all 1 ≤ i ≤ r

and we conclude that −(KXr + D) is ample if and only if ki < 0 for all 1 ≤ i ≤ r. This
completes the proof of the theorem. �

9. Extremal rays and Mori rays of the Bott tower

In this section we study the extremal rays and Mori rays of Mori cone of Xr. First
we recall some definitions. Let V be a finite dimensional vector space over R and let K
be a (closed) cone in V . A subcone Q in K is called extremal if u, v ∈ K, u + v ∈ Q
then u, v ∈ Q. A face of K is an extremal subcone. A one-dimensional face is called an
extremal ray. Note that an extremal ray is contained in the boundary of K.

Let X be a smooth projective variety. An extremal ray R in NE(X) ⊂ N1(X) is called
Mori if R · KX < 0, where KX is the canonical divisor in X. Recall that NE(Xr) is a
strongly convex rational polyhedral cone of maximal dimension in N1(Xr).

We prove,

Theorem 9.1.

(1) The class of curves r(Pi) for 1 ≤ i ≤ r are all extremal rays in the Mori cone
NE(Xr) of Xr.

(2) Fix 1 ≤ i ≤ r, the class of curve r(Pi) is Mori ray if and only if either |γPi(1)| = 0,
or |γPi(1)| = 1 with cj = 1 for γj ∈ γPi(1).
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Proof. Proof of (1): This follows from Theorem 5.7 and Corollary 5.8.

Proof of (2): By (1), r(Pi) 1 ≤ i ≤ r are all extremal rays in NE(Xr). Hence for
1 ≤ i ≤ r, r(Pi) is Mori if KXr · r(Pi) < 0. Since KXr = −

∑
ρ∈Σ(1) Dρ, we can see by

Corollary 5.13 and by similar arguments as in the proof of Lemma 6.1

KXr · r(Pi) = −2 +
∑

γj∈γPi (1)

cj. (9.1)

Thus if KXr · r(Pi) < 0, then ∑
γj∈γPi (1)

cj < 2.

As cj are all positive integers ( see 5.4), we get either |γPi(1)| = 0, or |γPi(1)| = 1 and
cj = 1 for γj ∈ γPi(1).

Similarly, by using (9.1) we can prove the converse. This completes the proof of the
theorem. �

Now we prove a general result for smooth projective toric varieties,

Lemma 9.2. Let X be a smooth projective toric variety of dimension r. Then X is Fano
if and only if every extremal ray is Mori.

Proof. By [CLS11, Theorem 6.3.20](Toric Cone Theorem), we have

NE(X) =
∑

τ∈Σ(r−1)

[V (τ)]. (9.2)

If X is Fano, then by definition, −KX is ample. By toric Kleiman criterion for ampleness
[CLS11, Theorem 6.3.13], we can see that −KX · V (τ) > 0 for all τ ∈ Σ(r − 1). Then
KX · V (τ) < 0 for all τ ∈ Σ(r − 1). In particular, every extremal ray is Mori.

Conversely, let R≥0[V (τ)] be an extremal ray, by assumption it is a Mori ray. Then
by definition of a Mori ray, we have KX · V (τ) < 0. This implies −KX · V (τ) > 0.
By (9.2), NE(X) is a polyhedral cone and hence the extremal rays generate the cone
NE(X). Hence we see that −KX · C > 0 for all classes of curves [C] in NE(X). Again
by toric Kleiman criterion for ampleness, we conclude that −KX is ample and hence X
is Fano. �

Then we have the following:

Corollary 9.3. The Bott tower Xr is Fano if and only if every extremal ray in NE(Xr)
is Mori.

10. Applications to BSDH varieties and its toric limits

In this section we see some applications to BSDH-varieties, by using their toric degen-
eration as a Bott tower.
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10.1. Ample cone of the toric limit of BSDH variety. In [LT04], the ampleness of
line bundles on BSDH variety Z(w̃) is studied. Now we compare the ample cone of the
toric limit Xw̃ with that of the BSDH-variety Z(w̃) as a consequence of Theorem 3.2.

Corollary 10.1. The ample cone Amp(Xw̃) of Xw̃ can be identified with a subcone of the
ample cone Amp(Z(w̃)) of Z(w̃).

Proof. By Theorem 3.2, π : X → A1 is a smooth projective morphism with X0 = Xw̃ and
Xu = Z(w̃) for u 6= 0.

Let L = {Lu : u ∈ A1} be a line bundle on π : X → A1 with L0 is an ample line
bundle on Xw̃. Note that the ampleness of line bundle is an open condition for the proper
morphism π, i.e. there exists an open subset U in A1 containing 0 such that Lu is ample
line bundle on Xu for all u ∈ U (see [Laz04, Theorem 1.2.17]). Hence we can identity
Amp(Xw̃) with a subcone of Amp(Z(w̃)). �

10.2. Fano and weak Fano properties. In this section, we observe that Fano and weak
Fano properties for BSDH variety Z(w̃) depend on the given expression w̃.

When G is finite dimensional and the expression w̃ is reduced, the classification of the
expressions w̃ for which Z(w̃) is Fano or weak Fano is considered in [Cha17]. Here we get
similar results when G is a Kac-Moody group.

First we discuss the conditions I, II and III with some examples. We use the ordering
of simple roots as in [Hum72, Page 58].

The condition I:

This condition means that the expression w̃ is fully commutative without repeating the
simple reflections. For example if G = SL(n,C) and w̃ = sα1sα3 · · · sαr , 1 < r ≤ n − 1
and r is odd, then |η+

i | = 0 and |η−i | = 0 for all i.

• Xw̃ (or Z(w̃)) satisfies the condition I and also observe that in this case we have

Xw̃ ' Z(w̃) ' P1 × · · · × P1 (dim(Z(w̃)) times ).

The condition II:

Let G = SL(n,C) and fix 1 ≤ j < r ≤ n− 1 such that j is even and r is odd.

Let w̃ = sα1sα3 · · · sαj−3
sαj−1

sαjsαj+1
sαj+3

· · · sαr .

Note that sαj appears only once in the expression w̃ and |η+
i | = 0 for all i. Let p be the

‘position of sαj ’ in the expression w̃, then |η−i | = 0 for all i 6= p, p−1 and |η−p−1| = 1 = |η−p |
with βp−1p = −1 = βpp+1.

• Xw̃ (or Z(w̃)) satisfies condition II but not I.

The condition III:

Again, let G = SL(n,C) and fix 1 ≤ j < r ≤ n− 1 such that j is even and r is odd.

Let w̃ = sα1sα3 · · · sαj−3
sαjsαj−1

sαj+1
sαj+3

· · · sαr (observe that we interchanged sαj and
sαj−1

in the example of condition II). Then |η+
i | = 0 and |η−i | ≤ 2 for all i. Let p be
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the ‘position of sαj ’ in the expression w̃, then |η−i | = 0 for all i 6= p and |η−p | = 2 with
βpp+1 = −1 = βpp+1.

• Xw̃ (or Z(w̃)) satisfies the condition III but not I and II.

Let w̃ = sα1sα3sα1 . Then |η+
1 | = 1 with β13 = 2, and |η−1 | = |η+

2 | = η−2 | = 0 .

• Xw̃1 (or Z(w̃1)) satisfies III but not I and II.

Observe that the condition |η−i | = 1 and βil = −2, happens only in non-simply laced
cases. Let G = SO(5, k) (i.e. G is of type B2), let w̃1 = sα2sα1 and w̃2 = sα1sα2 . Recall
that we have 〈α1, α2〉 = −2 and 〈α2, α1〉 = −1. Then

• Xw̃1 (or Z(w̃1)) satisfies III but not I and II .
• Xw̃2 (or Z(w̃2)) satisfies II but not I.

Let G be of type G2 (with 〈α1, α2〉 = −1 and 〈α2, α1〉 = −3). Let w̃1 = sα2sα1 and
w̃2 = sα1sα2 . Then

• Xw̃1 (or Z(w̃1)) satisfies II but not I .
• Xw̃2 (or Z(w̃2)) does not satisfy any of the conditions I, II or III.

Recall that the canonical line bundle OZ(w̃)(KZ(w̃)) of Z(w̃) is given by

OZ(w̃)(KZ(w̃)) = OZ(w̃)(−∂Z(w̃))⊗ L(−δ),

where ∂Z(w̃) is the boundary divisor of Z(w̃) and δ ∈ N such that 〈δ, α̌〉 = 1 for all
α ∈ S, where α̌ is the co-root of α (see [Kum12, Proposition 8.1.2] and also [Ram85,
Proposition 2]). Note that if G is finite dimensional, δ is half sum of the positive roots.

Recall that by Lemma 3.5, the toric limit Xw̃ is a Bott tower. Now we have the following
result:

Corollary 10.2.

(1) If Z(w̃) satisfies II, then Z(w̃) is Fano.
(2) If Z(w̃) satisfies III, then Z(w̃) is weak Fano.

Proof. By Theorem 3.2, φ : X → A1 is a smooth projective morphism with X0 = Xw̃ and
Xu = Z(w̃) for u ∈ A1 , u 6=, 0.

Proof of (1): By [Laz04, Theorem 1.2.17], if −KX0 is ample then −KXu is ample for
u 6= 0. By Theorem 7.2, −KXw̃ is ample if and only if Xw̃ satisfies II. Hence we conclude
that if Z(w̃) satisfies II, then Z(w̃) is Fano.

Proof of (2): First we prove −KZ(w̃) is big. Let

Z0 := Z(w̃) \ ∂Z(w̃).

Note that Z0 is an open affine subset of Z(w̃). Then by Lemma 7.1, ∂Z(w̃) is big. Since

O(−KZ(w̃)) = O(∂Z(w̃))⊗ L(δ)

and L(δ) is nef, we conclude −KZ(w̃) is big, as tensor product of a big and a nef line
bundles is again a big line bundle.
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By [Laz04, Theorem 1.4.14] and Xu = Z(w̃) for u 6= 0, we can see that if −KX0 is nef
then −KXu is also nef for u 6= 0. Therefore, (2) follows from Theorem 7.2(2). �

There exists expressions w̃ such that the BSDH variety Z(w̃) Fano (respectively, weak
Fano) but the toric limit Xw̃ is not Fano (respectively, not weak Fano).

Example 10.3. Let G = SL(4,C).

(1) Let w̃ = sα1sα1. Then Z(w̃) ' P1 × P1, which is Fano. The toric limit Xw̃ '
P(OP1 ⊕ OP1(2)). Since Xw̃ does not satisfy II, then by Theorem 7.2, Xw̃ is not
Fano.

(2) Let w̃ = sα1sα2sα1. Then it can be seen Z(w̃) is Fano (see [Cha17, Example 5.3]).
By Theorem 7.2, the toric limit Xw̃ is weak Fano but not Fano.

Example 10.4. Let G = SO(5, k), i.e. G is of type B2. Let w̃ = sα1sα2sα1. By Theorem
7.2, the toric limit Xw̃ is not weak Fano. Also we can see Z(w̃) is weak Fano but not
Fano (see [Cha17, Theorem 5.2]).

10.3. Log Fano BSDH varieties and its toric limits. In [And14] and [AS14] log
Fanoness of Schubert varieties and BSDH varieties were studied respectively. Now we
characterize the (suitably chosen) Q-divisors D in Xw̃ (respectively, D′ in Z(w̃)) for
which (Xw̃, D) (respectively, (Z(w̃), D′) is log Fano.

Let γi = sβr · · · sβi+1
(βi) for 1 ≤ i ≤ r. Then,

L(δ) =
r∑
i=1

biZi , with

bi = 〈δ, γ̌i〉 = ht(γi), (10.1)

where δ is as in Section 10.2 (see page 36), L(δ) is the homogeneous line bundle on
Z(w̃) corresponding to δ and ht(β) for a root β =

∑n
i=1 niαi, is the height defined by

ht(β) =
∑n

i=1 ni (see [MR85, Proof of Proposition 10]). When w̃ is reduced, γi is a positive
root and we can see the relation (10.1) from the Chevalley formula for intersection of
Schubert variety by a divisor (see [AS14, Page 410] or [Che94]). It is known that

−KZ(w̃) =
r∑
i=1

(bi + 1)Zi (10.2)

(see [MR85, Proposition 4]). Let D′ =
∑r

i=1 aiZi be a effective Q-divisor in Z(w̃), with
bD′c = 0. Then by (10.2), we get

−(KZ(w̃) +D′) =
r∑
i=1

(bi + 1 + ai)Zi.

For 1 ≤ i ≤ r, define

fi := (bi + 1 + ai)−
∑

γj∈γPi (1)+

cj(bj + 1 + aj),

where γPi(1)+ := γPi(1) ∩ {ρ+
l : 1 ≤ l ≤ r}.

We prove,
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Theorem 10.5. The pair (Z(w̃), D′) is log Fano if fi > 0 for all 1 ≤ i ≤ r.

Proof. By definition of D′, the pair (Z(w̃), D′) is log Fano if and only if −(KZ(w̃) + D′)
is ample. Now we prove −(KZ(w̃) + D′) is ample if fi > 0 for all 1 ≤ i ≤ r. Recall that
Zi = {[(p1, . . . , pr)] ∈ Z(w̃) : pi ∈ B} is a divisor in Z(w̃), Dρ+

i
is the divisor corresponding

to ρ+
i ∈ Σ(1) and Zxi = π−1(x) ∩ Zi for x ∈ k (see Section 2 and Section 3).

By Theorem 3.2, we have

Zxi = Zi for x 6= 0 and Z0
i = Dρ+

i
. (10.3)

Assume that fi > 0 for all 1 ≤ i ≤ r. By (10.3) and by [Laz04, Theorem 1.2.7] to prove
(Z(w̃), D′) is log Fano it is enough to prove

r∑
i=1

(bi + 1 + ai)Dρ+
i

is ample .

By Lemma 6.1, we see that
∑r

i=1(bi + 1 + ai)Dρ+
i

is ample if and only if

fi = ((bi + 1 + ai)−
∑

γj∈γPi (1)+

cj(bj + 1 + aj)) > 0 for all 1 ≤ i ≤ r.

Hence we conclude that (Z(w̃), D′) is log Fano. �

10.4. Local rigidity of BSDH varieties and its toric limits. In this section we
obtain some vanishing results for the cohomology of tangent bundle of the toric limit Xw̃

and Z(w̃).

In [CKP15] and [CK17], we have obtained some vanishing results for the cohomology
of tangent bundle of Z(w̃), when G is finite dimensional and w̃ is reduced (see [CKP15,
Section 3] and [CK17, Theorem 8.1] ). The case w̃ is non-reduced is considered in [CKP].

Now we prove some vanishing results for the cohomology of tangent bundle of BSDH
variety Z(w̃) when G is Kac-Moody group and w̃ not necessarily reduced. Let TX denotes
the tangent bundle of X, where X = Xw̃ or Z(w̃). Then we have

Corollary 10.6.

(1) If Xw̃ satisfies II, then H i(Xw̃, TXw̃) = 0 for all i ≥ 1. In particular, Xw̃ is locally
rigid.

(2) If Z(w̃) satisfies II, then H i(Z(w̃), TZ(w̃)) = 0 for all i ≥ 1. In particular, Z(w̃)
is locally rigid.

Proof. Proof of (1): This follows from Corollary 7.3 as Xw̃ is a Bott tower.

Proof of (2): From Theorem 3.2, π : X → A1 is a smooth projective morphism with
X0 = Xw̃ and Xu = Z(w̃) for u ∈ A1 , u 6= 0. Hence (2) follows from (1) by semi-continuity
theorem (see [Har77, Theorem 12.8]). �
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11. AJP and PK results using toric geometry

In this section we are going to recover the results of [PK16] by using methods of toric
geometry. In [PK16], they have assumed that G is a simple algebraic group . In our
situation G is a Kac-Moody group.

Recall the following:

(1) w̃ = sβ1 · · · sβr and w̃′ = sβ1 · · · sβr−1 .
(2) The toric morphism

fr : Xw̃ → Xw̃′

induced by the lattice map

f r : Zr → Zr−1,

the projection onto the first r − 1 coordinates.

As we discussed in Section 3, there are two disjoint toric sections for the P1-fibration

fr : Xw̃ → Xw̃′

(see Lemma 3.4).

Definition 11.1.

(1) Schubert and non-Schubert sections: We call the section corresponding to
the maximal cone ρ+

r (respectively, ρ−r ) in ΣF (the fan of the fiber of fr) by
‘Schubert section σ0

r−1’ (respectively, ‘non-Schubert section σ1
r−1)’ ).

(2) Schubert point: Let σ ∈ Σ be the maximal cone generated by

{e+
1 , . . . , e

+
r }.

We call the point in Xw̃ corresponding to the maximal cone σ by ‘Schubert point’.

(3) Schubert line: We call the fiber of fr over the Schubert point by ‘Schubert line
Lr’.

Note that these definitions agree with that of in [PK16].

Now onwards we denote w̃ = (1, . . . , r) (respectively, w̃′ = (1, . . . , r − 1)) for the
expression w̃ = sβ1 · · · sβr (respectively, w̃′ = sβ1 · · · sβr−1 ).

Let Ii1 = (i1, . . . , im) be a subsequence of w̃. Inductively we define the curve LIi1
corresponding to Ii1 . Let LI′i1

be the curve in Xw̃′ corresponding to the subsequence

I ′i1 = (i1, . . . , im−1) of Ii1 . Then define

LIi1 := σ1
r−1(LI′i1

).

and
σ0
r−1(LI′i1

) = LI′i1
.

We have the following result:

Lemma 11.2. The classes of Schubert lines Lj, 1 ≤ j ≤ r form a basis of N1(Xw̃).
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Proof. Proof is by induction on r. Assume that the result is true for r− 1. Since Xw̃ is a
projective bundle over Xw̃′ (see Lemma 3.4), then by [Bar71, Lemma 1.1],

Lr and σ0
r−1(Lj) for 1 ≤ j ≤ r

(the image of Lj by the Schubert section in Xw̃) form a basis of N1(Xw̃). By definition of
LI , we have

σ0
r−1(Lj) = Lj for 1 ≤ j ≤ r − 1

and hence the result follows. �

Let 1 ≤ j ≤ r.

Let D := {eεll : 1 ≤ l ≤ r and εl = + for all l} .

Let D ′j := {eεll : 1 ≤ l ≤ r and εl = + for all l 6= l; εj = −} .

Lemma 11.3. Fix 1 ≤ j ≤ r. Then the Schubert line Lj is given by

Lj = V (τj) , with τj = σ ∩ σ′j,

intersection of the maximal cones in Σ, where σ (respectively, σ′j) is generated by D
(respectively, D ′j).

Proof. Let us consider the expression w̃j = sβ1 · · · sβj for 1 ≤ j < r. Let Σj be the fan of
the toric variety Xw̃j . By Lemma 3.4,

fj : Xw̃j → Xw̃j−1

is a P1-fibration induced by f j : Zj → Zj−1 the projection onto the first j − 1 factors.
Also note that the Schubert point in Xw̃j−1

corresponds to the maximal cone generated
by

{e+
l : 1 ≤ l ≤ j − 1}

and the fan of the fiber is given by {e+
j , 0, e

−
j }. Let σj (respectively, σ′j) be the cone

generated by

{e+
l : 1 ≤ l ≤ j}

(respectively,

{e+
l : 1 ≤ l ≤ j − 1} ∪ {e−j } ).

Then by definition of Schubert line Lj, we can see that Lj is the curve in Xw̃j given by

Lj = V (τj), where τj ∈ Σj and τj = σj ∩ σ′j.

Since the Schubert section of fk for (j ≤ k ≤ r) corresponds to e+
k , we see

σ0
r ◦ · · · ◦ σ0

j+1(Lj),

by abuse of notation we also denote it again by Lj in Xw̃, is given by

Lj = V (τj) with τ = σ ∩ σ′j,

where σ and σ′j are as described in the statement. This completes the proof of the
lemma. �
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Let D ′′i1 := {eεll : 1 ≤ l ≤ r and

εl =

{
+ if l /∈ Ii1 \ {i1}
− if l ∈ Ii1

}.

Let D ′′′i1 := {eεll : 1 ≤ l ≤ r and

εl =

{
+ if l /∈ Ii1
− if l ∈ Ii1

}.

Proposition 11.4. The curve LIi1 is given by

LIi1 = V (τi1) with τi1 = σi1 ∩ σ′i1 ,
where σi1 (respectively, σ′i1) is the cone generated by D ′′i1 (respectively, D ′′′i1 ).

Proof. As in the proof of Lemma 11.3, we start with j = i1 and Li1 is the Schubert line
in Xw̃i1

. By Lemma 11.3, we have

Li1 = V (τi1) with τi1 = σi1 ∩ σ′i1 .
By definition of LI , we have

σ0
i2−1 ◦ · · · ◦ σ0

i1+1(Li1) = Li1 in Xw̃i2−1

and
σ1
i2
◦ σ0

i2−1 ◦ · · · ◦ σ0
i1+1(Li1) = L{i1,i2} in Xw̃i2

.

By repeating the process we conclude that

LIi1 = V (τi1) with τi1 = σi1 ∩ σ′i1 ,
where σi1 and σ′i1 are as described in the statement. This completes the proof of the
proposition. �

Fix 1 ≤ i ≤ r. Let
Ii := {i = j1, j2, . . . , jm}

as in Proposition 5.11.

Theorem 11.5. The class of curve LIi is r(Pi) in N1(Xw̃)Z.

Proof. This follows from Proposition 5.16 and Proposition 11.4. �

Now we get [PK16, Theorem 22] as a corollary.

Corollary 11.6. The set {LIi : 1 ≤ i ≤ r} of classes of curves forms a basis of N1(Xw̃)
and every torus invariant curve in N1(Xw̃) lie in the cone generated by {LIi : 1 ≤ i ≤ r}.

Proof. First assertion follows from Corollary 5.8 and Theorem 11.5. Second assertion
follows from Theorem 5.7. �

We have the following result (see [PK16, Theorem 30])

Corollary 11.7. The extremal rays of the toric limit Xw̃ are precisely the curves LIi for
1 ≤ i ≤ r.
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Proof. This follows from Theorem 9.1 and Theorem 11.5. �

We prove the following:

Proposition 11.8. Let 1 ≤ j ≤ r and let Lj be the Schubert curve in Xw̃. Then,

KXw̃ · Lj = −2−
∑
k>j

βkj.

Proof. By definition of e−j , we have

e+
j + e−j +

∑
k>j

βkje
+
k = 0. (11.1)

By Lemma 11.3, we have Lj = V (τ), with τ = σ∩σ′ where σ (respectively, σ′) is generated
by

{eεll : 1 ≤ l ≤ r, εl = + for all l}

(respectively,

{eεll : εl = + for 1 ≤ l ≤ r and l 6= j, εj = −} ).

Hence (11.1) is the wall relation for the curve Lj. Then by wall relation, we see that

Dρ · Lj =


1 if ρ = ρ+

j or ρ−j .

βkj if ρ = ρ+
k and k > j.

0 otherwise.

Since KXw̃ = −
∑

ρ∈Σ(1)Dρ, we get

KXw̃ · Lj = −2−
∑
k>j

βkj.

This completes the proof of the proposition. �

Similarly, the results [PK16, Theorem 35] and [PK16, Corollary 36] follow from Theorem
9.1 and Corollary 9.3.

Remark 11.9.

(1) In Theorem 7.3, we have seen the vanishing results of the tangent bundle of Bott
tower Xr for some special cases. It is an interesting problem to study the cohomol-
ogy of tangent bundle of Xr, which gives local rigidity results for Xr, and hence
for the BSDH variety Z(w̃).

(2) It also interesting to find the automorphism group of the Bott tower Xr.
We are working in this direction.

Aknowledgements: I would like to thank Michel Brion for valuable discussions, many
critical comments and for encouragement throughout the preparation of this article.
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12. Appendix

By Lemma 4.1, the set {Dρ+
i

: 1 ≤ i ≤ r} forms a basis of Pic(Xr). Now we describe

Dρ−i
in terms of Dρ+

j
’s (1 ≤ j ≤ r).

Let 1 ≤ i ≤ r, define hi−1
i := −βi,i−1 and

hji :=


0 for j > i.

1 for j = i.

−
∑i−1

k=j βi,k(h
j
k) for j < i.

Then we prove,

Lemma 12.1. Let 1 ≤ i ≤ r. The coefficient of Dρ+
j

in Dρ−i
is hji .

Proof. Proof is by induction on i and by using

0 ∼ div(χe
+
i ) =

∑
ρ∈Σ(1)

〈uρ, e+
i 〉Dρ. (12.1)

Recall the equation (2.2),

e−i = −e+
i −

∑
j>i

βije
+
j for all i .

If i = 1 , by (12.1), we see

0 ∼ div(χe
+
1 ) = Dρ+

1
−Dρ−1

.

Then

Dρ−1
∼ Dρ+

1
. (12.2)

If i = 2, by (12.1) and (2.2), we see

0 ∼ div(χe
+
2 ) = Dρ+

2
−Dρ−2

− β21Dρ−1
.

By (12.2), we get

Dρ−2
∼ Dρ+

2
− β21Dρ+

1
= h2

2Dρ+
2

+ h1
2Dρ+

1
.

By induction assume that

Dρ−k
∼

r∑
j=1

hjkDρ+
j

for all k < i.

Again by (12.1) and (2.2), we see

0 ∼ div(χe
+
i ) = Dρ+

i
−Dρ−i

−
∑
k<i

βikDρ−k
.

Then

Dρ−i
∼ Dρ+

i
−
∑
k<i

βikDρ−k
.
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Hence

Dρ−i
∼ Dρ+

i
−
∑
k<i

βik(
r∑
j=1

hjkDρ+
j

).

Since hjk = 0 for k < j, we get

Dρ−i
∼ Dρ+

i
−
∑
k<i

βik(
i−1∑
j=1

hjkDρ+
j

).

Then

Dρ−i
∼ Dρ+

i
+

i−1∑
j=1

(−
i−1∑
k=j

βikh
j
k)Dρ+

j
.

Therefore, we conclude that Dρ−i
∼ Dρ+

i
+
∑i−1

j=1 h
j
iDρ+

j
. This completes the proof of the

lemma. �

Let ε ∈ {+,−}. Define

Σ(1)ε := {ρεi : 1 ≤ i ≤ r}.
Then

D =
∑
ρ∈Σ(1)

aρDρ =
∑

ρ∈Σ(1)+

aρDρ +
∑

ρ∈Σ(1)−

aρDρ.

For 1 ≤ i ≤ r, let

gi := aρ+
i

+
r∑
j=i

aρ−j h
i
j.

Then we have

Corollary 12.2.

D =
∑
ρ∈Σ(1)

aρDρ ∼
r∑
i=1

giDρ+
i
.

Proof. We have

D =
∑
ρ∈Σ(1)

aρDρ =
r∑
i=1

aρ+
i
Dρ+

i
+

r∑
i=1

aρ−i Dρ−i
.

By Lemma 12.1, we can see that

r∑
i=1

aρ−i Dρ−i
∼

r∑
i=1

aρ−i (
i∑

j=1

hjiDρ+
j

).

Then
r∑
i=1

aρ−i Dρ−i
∼

r∑
i=1

(
r∑
j=i

aρ−j h
i
j)Dρ+

j
.
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Hence we have

D ∼
r∑
i=1

(aρ+
i

+
r∑
j=i

aρ−j h
i
j)Dρ+

i
.

Thus, D ∼
∑r

i=1 giDρ+
i

and this completes the proof. �

In [Pas10]), B. Pasquier obtained vanishing theorems for the cohomology of certain line
bundles on BSDH varieties, by using cohomology of line bundles on the toric limit and
by semi-continuity theorem (see [Pas10, Theorem 0.1]). By Corollary 12.2, we can also
see some vanishing results for the cohomology of certain line bundles on BSDH varieties.
For example the following result:

LetD =
∑r

i=1 giZi be a divisor in BSDH variety Z(w̃), where gi is as above for 1 ≤ i ≤ r.
We use the notation as in Section 6.

Corollary 12.3. If di ≥ 0 for all 1 ≤ i ≤ r, then Hj(Z(w̃), D) = 0 for all j > 0.

Proof. Since di ≥ 0 for all 1 ≤ i ≤ r, by Lemma 6.1,
∑

ρ∈Σ(1) aρDρ is a nef divisor in Xw̃.
Then we have

Hj(Xw̃,
∑
ρ∈Σ(1)

aρDρ) = 0 for all j > 0

(see [CLS11, Theorem 9.2.3, page 410] or [Oda88, Theorem 2.7, page 77]). Recall that by
Theorem 3.2, we have

Zxi = Zi for 0 6= x ∈ k and Z0
i = Dρ+

i
.

Hence by Theorem 3.2, Corollary 12.2 and by semi-continuity theorem (see [Har77, The-
orem 12.8]), we get

Hj(Z(w̃), D) = 0 for all j > 0.

�

References

[And14] D. Anderson, Effective divisors on Bott-Samelson varieties, arXiv preprint arXiv:1501.00034
(2014).

[AS14] D. Anderson and A. Stapledon, Schubert varieties are log Fano over the integers, Proceedings of
the American Mathematical Society 142 (2014), no. 2, 409–411.

[Bar71] C.M. Barton, Tensor products of ample vector bundles in characteristic p, American Journal of
Mathematics 93 (1971), no. 2, 429–438.

[Bat91] V.V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Mathematical
Journal, Second Series 43 (1991), no. 4, 569–585.

[BB96] F. Bien and M. Brion, Automorphisms and local rigidity of regular varieties, Compositio Mathe-
matica 104 (1996), no. 1, 1–26 (eng).

[BS58] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, American
Journal of Mathematics (1958), 964–1029.

[BK07] M. Brion and S. Kumar, Frobenius splitting methods in geometry and representation theory, vol.
231, Springer Science & Business Media, 2007.

[Cas03] C. Casagrande, Contractible classes in toric varieties, Mathematische Zeitschrift 243 (2003),
no. 1, 99–126.

[CG13] P. Cascini and Y. Gongyo, On the anti-canonical ring and varieties of Fano type, Saitama Math.
J 30 (2013), 27–38.



46 B. NARASIMHA CHARY

[Cha17] B.N. Chary, On Fano and weak Fano of a Bott-Samelson-Demazure-Hansen variety, in prepa-
ration.

[CK17] B.N. Chary and S.S. Kannan, Rigidity of a Bott-Samelson-Demazure-Hansen variety for
PSp(2n,C), Journal of Lie Theory 27 (2017), 435–468.

[CKP] B.N. Chary, S.S. Kannan, and A.J. Parameswaran, Automorphism group of a Bott-Samelson-
Demazure-Hansen variety for non reduced case, in preparation.

[CKP15] , Automorphism group of a Bott-Samelson-Demazure-Hansen variety, Transformation
Groups 20 (2015), no. 3, 665–698.
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