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DETERMINATION OF SINGULAR TIME-DEPENDENT COEFFICIENTS FOR WAVE
EQUATIONS FROM FULL AND PARTIAL DATA

GUANGHUI HU AND YAVAR KIAN

ABsTrRACT. We study the problem of determining uniquely a time-dependent singular potential ¢, appearing
in the wave equation 92u — Azu+q(t,z)u=01in Q@ = (0,T) x Q with T > 0 and Q a C? bounded domain of
R™, n > 2. We start by considering the unique determination of some singular time-dependent coefficients
from observations on 9Q. Then, by weakening the singularities of the set of admissible coefficients, we
manage to reduce the set of data that still guaranties unique recovery of such a coefficient. To our best
knowledge, this paper is the first claiming unique determination of unbounded time-dependent coefficients,
which is motivated by the problem of determining general nonlinear terms appearing in nonlinear wave
equations.

Keywords: Inverse problems, wave equation, time dependent coefficient, singular coefficients, Carleman
estimate.

Mathematics subject classification 2010 : 35R30, 35L05.

1. INTRODUCTION

1.1. Statement of the problem. Let  be a C? bounded domain of R", n > 2, and fix ¥ = (0,7) x 99,
Q=1(0,T) x Q with 0 < T < oco. We consider the wave equation

O*u— Ngu+q(t,x)u=0, (t,x)€Q, (1.1)

where the potential g is assumed to be an unbounded real valued coefficient. In this paper we seek unique
determination of ¢ from observations of solutions of (1.1) on 9Q.

1.2. Obstruction to uniqueness and set of full data for our problem. Let v be the outward unit
normal vector to 9f2, 0, = v - V. the normal derivative and from now on let [1 be the differential operators
O:= 92 — A,. It has been proved by [40], that, for T' > Diam(2), the data

Ay ={(uxz,0us) : ue L*(Q), Ou+ qu =0, Ujp—o = Osujp—p = 0} (1.2)

determines uniquely a time-independent potential q. On the other hand, due to domain of dependence
arguments, there is no hope to recover even smooth time-dependent coefficients restricted to the set

D={(t,z) € Q: t € (0,Diam(Q2)/2) U (T — Diam(Q2)/2,T), dist(z,dQ) > min(¢,T —t)}

from the data A, (see [32, Subsection 1.1]). Therefore, even when T is large, for the global recovery of general
time-dependent coefficients the information on the bottom ¢ = 0 and the top ¢t = T of @ are unavoidable.
Thus, for our problem the extra information on {¢ = 0} and {t = T'}, of solutions u of (1.1), can not be
completely removed. In this context, we introduce the set of data

Cq = {(u|2,ut:0, at’u/‘t:(), 81,U|2,U‘t:T, 8t’lL‘t:T) Lu e L2<Q), Du + qu = 0}

and we recall that [25] proved that, for ¢ € L*°(Q), the data C, determines uniquely ¢. From now on we
will refer to C; as the set of full data for our problem and we mention that [31, 32, 33] proved recovery of
bounded time-dependent coefficients ¢ from partial data corresponding to partial knowledge of the set C,.
The goal of the present paper is to prove recovery of singular time-dependent coefficients ¢ from full and
partial data.
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1.3. Physical and mathematical motivations. Physically speaking, our inverse problem consists of de-
termining unstable properties such as some rough time evolving density of an inhomogeneous medium from
disturbances generated on the boundary and at initial time, and measurements of the response. The goal is
to determine the function ¢ which describes the property of the medium. Moreover, singular time-dependent
coefficients can be associated to some unstable time-evolving phenomenon that can not be modeled by
bounded time-dependent coefficients or time independent coefficients.

Let us also observe that, according to [11, 27], for parabolic equations the recovery of nonlinear terms,
appearing in some suitable nonlinear equations, can be reduced to the determination of time-dependent
coefficients. In this context, the information that allows to recover the nonlinear term is transferred, throw a
linearization process, to a time-dependent coefficient depending explicitly on some solutions of the nonlinear
problem. In contrast to parabolic equations, due to the weak regularity of solutions, it is not clear that
this process allows to transfer the recovery of nonlinear terms, appearing in a nonlinear wave equation, to a
bounded time-dependent coefficient. Thus, in order to expect an application of the strategy set by [11, 27|
to the recovery of nonlinear terms for nonlinear wave equations, it seems important to consider recovery of
singular time-dependent coeflicients.

1.4. known results. The problem of determining coefficients appearing in hyperbolic equations has at-
tracted many attention over the last decades. This problem has been stated in terms of recovery of a
time-independent potential ¢ from the set A,. For instance, [40] proved that A, determines uniquely a
time-independent potential ¢, while [16] proved that partial boundary observations are sufficient for this
problem. We recall also that [4, 5, 30, 44] studied the stability issue for this problem.

Several authors considered also the problem of determining time-dependent coeflicients appearing in
wave equations. In [43], the authors shown that the knowledge of scattering data determines uniquely a
smooth time-dependent potential. In [41], the authors studied the recovery of a time-dependent potential ¢
from data on the boundary 02 for all time given by (ujrxa0, 0, Urxaq) of forward solutions of (1.1) on the
infinite time-space cylindrical domain R; x € instead of Q). As for [39], the authors considered this problem
at finite time on ) and they proved the recovery of g restricted to some strict subset of @ from A,. Isakov
established in [25, Theorem 4.2] unique global determination of general time-dependent potentials on the
whole domain @) from the important set of full data Cy. By applying a result of unique continuation for wave
equation, which is valid only for coefficients analytic with respect to the time variable (see for instance the
counterexample of [1]), [17] proved unique recovery of time-dependent coefficients from partial knowledge of
the data A,. In [42], the author extended the result of [41]. Moreover, [46] established the stable recovery
of X-ray transforms of time-dependent potentials and [2, 6] proved log-type stability in the determination of
time-dependent coefficients with data similar to [25] and [39]. In [31, 32, 33|, the author proved uniqueness
and stability in the recovery of several time-dependent coefficients from partial knowledge of the full set of
data Cy. It seems that the results of [31, 32, 33] are stated with the weakest conditions so far that allows to
recover general bounded time-dependent coefficients. More recently, [34] proved unique determination of such
coefficients on Riemannian manifolds. We mention also the work of [45] who determined some information
about time-dependent coefficients from the Dirichlet-to-Neumann map on a cylinder-like Lorentzian manifold
related to the wave equation. We refer to the work [10, 12, 20, 21, 35] for determination of time-dependent
coeflicients for fractional diffusion, parabolic and Schrédinger equations have been considered.

In all the above mentioned results, the authors considered time-dependent coefficients that are at least
bounded. There have been several works dealing with recovery of non-smooth coefficients appearing in
elliptic equations such as [9, 15, 19, 23]. Nevertheless, to our best knowledge, except the present paper, there
is no work in the mathematical literature dealing with the recovery of singular time-dependent coefficients ¢
even from the important set of full data Cj.

1.5. Main results. The main purpose of this paper is to prove the unique global determination of time-
dependent and unbounded coefficient ¢ from partial knowledge of the observation of solutions on 0@ =
{0} x QU U ({T} x Q). More precisely, we would like to prove unique recovery of unbounded coefficient
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g € LP(0,T;LP>(QY)), p1 = 2, p2 > n, from partial knowledge of the full set of data C,. We start by
considering the recovery of some general unbounded coeflicient g from restriction of C; on the bottom ¢ =0
and top t = T of the time-space cylindrical domain Q. More precisely, for ¢ € LP*(0,T; LP2(Q)), p1 = 2,
p2 = n, we consider the recovery of ¢ from the set of data

Cq(o) = {(u|27 8tu|t:0a 6Vua Ujt=T) 8tu|t:T) tue IC(Q)7 Uu + qu = 07 Uit=0 = O}a
or the set of data
C(I(T) - {(u|27 Ut=0, aiiu|t:03 3Vu7 u|t:T) PuE K(Q)v Uu + qu = 0}5

where K(Q) = C([0,T); HY(Q)) N CL([0,T]; L*(Q)). In addition, assuming that 7" > Diam(2), we prove the
recovery of ¢ from the set of data

Cy(0,T) = {(un, Oruji—o, Oy, up—r) : v € K(Q), Du+ qu =0, uj—o = 0}.
Our first main result can be stated as follows

Theorem 1.1. Let p; € (2,400), p2 € (n,+00) and let q1, go € LP2(0,T; LP2(R2)). Then, either of the
following conditions:

Cf]l (O) = C(]2 0)7 (13)
Cn(T) = Cyu(T), (1.4)

implies that q1 = qo2. Moreover, assuming that T > Diam(Q2), the condition
Ca 0,7) = Cos (0,7 (1.5)

implies that ¢1 = q2.

We consider also the recovery of a time-dependent and unbounded coefficient ¢ from restriction of the
data C,; on the lateral boundary . Namely, for all w € S""! = {& € R" : |z| = 1} we introduce the
w-shadowed and w-illuminated faces

0Ny, ={2e€d: v(z) w>0}, IN_,={xecd: v(z) w<0}
of 99Q. Here, for all k € N*, - denotes the scalar product in R* given by
Ty=z191+ ... + TRYr, == (T1,...,Tk) eRF, y= (Y1, - -5 9k) € Rk,

We define also the parts of the lateral boundary ¥ taking the form ¥4 ,, = (0,T) x 904 . We fix wp € S*~1
and we consider V = (0,7) x V’ with V' a closed neighborhood of 9Q_ ,, in 9Q. Then, we study the
recovery of ¢ € LP(Q), p > n+ 1, from the data

Co(T, V) = {(uyz, ujt=0, Ottjt=0, Opu)v, Up=r) : © € Hl(Q), Ou + qu = 0}
and the determination of a time-dependent coefficient ¢ € L>°(0,T; LP(Q2)), p > n, from the data
Cy(0,T,V) = {(us, Oruji—q, Opujy, Ujp—p) : u € L2(0,T; HY(Q)), Du + qu = 0, ujy—o = 0}.
We refer to Section 2 for the definition of this set. Our main result can be stated as follows.
Theorem 1.2. Let p € (n+ 1,400) and let ¢1, g2 € LP(Q). Then, the condition
Cp (T, V) =Cy, (T, V) (1.6)

implies that q1 = qo.
Theorem 1.3. Let p € (n,+00) and let g1, g2 € L*(0,T; LP(Y)). Then, the condition

Cqr (0,T,V) = Cg,(0,T,V) (1.7)
implies that ¢1 = q2.
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To our best knowledge the result of Theorem 1.1, 1.2 and 1.3 are the first results claiming unique
determination of unbounded time-dependent coefficients for the wave equation. In Theorem 1.1, we prove
recovery of coefficients ¢, that can admit some singularities, by making restriction on the set of full data
C; on the bottom ¢t = 0 and the top t = T of (). While, in Theorem 1.2 and 1.3, we consider less singular
time-dependent coefficients, in order to restrict the data on the lateral boundary ¥ = (0,7") x 0.

We mention also that the uniqueness result of Thorem 1.3 is stated with data close to the one considered
by [31, 32|, where determination of bounded time-dependent potentials is proved with conditions that seems
to be one of the weakest so far. More precisely, the only difference between [31, 32| and Theorem 1.3 comes
from the restriction on the Dirichlet boundary condition ([31, 32] consider Dirichlet boundary condition
supported on a neighborhood of the wy-shadowed face, while in Theorem 1.3 we do not restrict the support
of the Dirichlet boundary).

In the present paper we consider two different approaches which depend mainly on the restriction that
we make on the set of full data C,. For Theorem 1.1, we use geometric optics solutions corresponding to
oscillating solutions of the form

N
u(t,z) = a;(t,x)e?Vi T + Ry(tx),  (tx) €Q, (1.8)
j=1
with A > 1 a large parameter, Ry a remainder term that admits a decay with respect to the parameter
Aand 9;, j = 1,..,N, real valued. For N = 1, these solutions correspond to a classical tool for proving
determination of time independent or time-dependent coefficients (e. g. [2, 3, 4, 6, 39, 41, 40]). In a similar
way to [34], we consider in Theorem 1.1 solutions of the form (1.8) with NV = 2 in order to be able to restrict
the data at t = 0 and ¢t = T while avoiding a "reflection". It seems that in the approach set so far for
the construction of solutions of the form (1.8), the decay of the remainder term R) relies in an important
way to the fact that the coefficient ¢ is bounded (or time independent). In this paper, we prove how this
construction can be extended to unbounded time-dependent coefficients.

The approach used for Theorem 1.1 allows in a quite straightforward way to restrict the data on the
bottom ¢ = 0 and on the top ¢t = T of Q). Nevertheless, it is not clear how one can extend this approach to
restriction on the lateral boundary > without requiring additional smoothness or geometrical assumptions.
For this reason, in order to consider restriction on ¥, we use a different approach where the oscillating
solutions (1.8) are replaced by exponentially growing and exponentially decaying solutions of the form

u(t,x) = eiA(Hz"")(a(t,x) +wy(t,x)), (t,z)€qQ, (1.9)

where w € S*! and wy admits a decay with respect to the parameter A. The idea of this approach, which
is inspired by [5, 31, 32, 33| (see also [8, 29| for elliptic equations), consists of combining results of density
of products of solutions with Carleman estimates with linear weight in order to be able to restrict at the
same time the data on the bottom ¢ = 0, on the top ¢ = T and on the lateral boundary ¥ of @). For the
construction of these solutions, we use Carleman estimates in negative order Sobolev space. To our best
knowledge this is the first extension of this approach to singular time-dependent coefficients.

1.6. Outline. This paper is organized as follows. In Section 2, we start with some preliminary results and
we define the set of data Cy(0), Cy(T), Cy(0,T), Cy(T,V) and C,4(0,T,V). In Section 3, we prove Theorem
1.1 by mean of geometric optics solutions of the form (1.8). Then, Section 4 and Section 5 are respectively
devoted to the proof of Theorem 1.2 and Theorem 1.3.

2. PRELIMINARY RESULTS

In the present section we define the set of data Cy(T,V), Cy(0,7,V) and we recall some properties of
the solutions of (1.1) for any ¢ € LP*(Q), with p; > n+ 1, or, for ¢ € L*°(0,T; LP2(R2)), with p, > n. For
this purpose, in a similar way to [32], we will introduce some preliminary tools. We define the space

Hp(Q) = {u € H'(Q): Ou= (9} — Au)u € L*(Q)},
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Hp.(Q) ={ue L*(0,T; H'(Q)) : Ou= (5} — A)u € L*(Q)},
with the norm )
2 2
lull2eir =l g + 107 — Ao gy -
2 2 2
lullrre, L @) = Nullze o ) + 10F = Ba)ull 2 -
We consider also the space
S={uec H (Q): (0} — A)u =0} (resp Sx = {u € L*(0,T; H*(R)) : (07 — A)u = 0})

and topologize it as a closed subset of H1(Q) (resp L*(0,T; H'(£2))). In view of [32, Proposition 4], the
maps _
Tow = (w\an\t:Oa 3tw\t:0)7 TIw = (ayw|27w\t:T7 atw\t:T)a w € C™(Q),

can be extended continuously to 7o : H.(Q) — H™3(0,T; H=2(9Q)) x H=2(Q) x H-4(Q), 71 : Ho.(Q) —
H=3(0,T; H-2(09)) x H2(Q) x H=4(). Here for all w € C*°(Q) we set
Tow = (Tp W, To,2W, To 3W), TIW = (T 1W, T1,2W, T1 3W),
where
T0,1W = W|x, T0,2W = Wit=0, T03W = OpWjt—0, T11W = OpW|x, T12W = W=, T1,3W = HW|t=7.
Therefore, we can introduce
H={ru: ue Hg(Q)} C H30,T; H (09Q)) x H 2(Q) x H*(Q),
H. = {(r01u,703u) : u€ H.(Q), To0u= 0} C H3(0,T; H () x H4(Q).

By repeating the arguments used in [32, Proposition 1], one can check that the restriction of 7 to S (resp
S.) is one to one and onto. Thus, we can use (795) " (resp (70|s,) ") to define the norm of H (resp H.) by

||(fa UO)”l)”H = ||(7—0|S)71(f7 UO7U1)||H1(Q) ) (f7 U07U1) €H,

(resp 7, 00) e, = [ 7o15.) ™ 0000 o rgrsay - (o) € Ha).
Let us consider the initial boundary value problem (IBVP in short)

Zv—Ayv+qu=F(tz), (t,z)€Q,
v(0,2) = vo(z), Ow(0,z) =v1(x), x € (2.1)
v(t,z) =0, (t,x)eX.

We have the following well-posedness result for this IBVP when ¢ is unbounded.

Proposition 2.1. Let p; € (1,4+0) and py € (n,+00). For g € LP1(0,T; LP2(Q)), vo € HL(Q), v1 € L3(Q)

and F € L*(Q), problem (2.1) admits a unique solution v € C([0,T]; HE(Q)) N C([0,T]; L*(Q)) satisfying
lolleqo, 23503 2)) F 10ller o, 1352200y < Clllvoll gy + lvall 2oy + I1F N2 () (2.2)

with C' depending only on p1, p2, n, T, Q and any M = ||q| 1, (0,T:L72(Q)) "

Proof. According to the second part of the proof of [37, Theorem 8.1, Chapter 3], [37, Remark 8.2, Chapter

3] and [37, Theorem 8.3, Chapter 3|, the proof of this proposition will be completed if we show that for any

v € W2(0,T; H}(Q)) solving (2.1) the a priori estimate (2.2) holds true. Without lost of generality we

assume that v is real valued. From now on we consider this estimate. We define the enery E(t) at time
t € [0,T] by

B(t) = / (100t 2) 2 + |Vou(t, 2)|?) de.
Q
Multiplying (2.1) by Orv and integrating by parts we get

E(t) - E(0) = —2/;/Qq(s,x)v(s,m)atv(s,@dxds+2/Ot/QF(s,x>atu<s,x)dxds. (2.3)
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On the other hand, we have

/Ut /Q q(s, )v(s, z)0pv(s, x)dzds

Applying the Sobolev embedding theorem and the Holder inequality, for all s € (0,T) we get

t
< [ vt e 0105,y . (2.4)

I 2
LPr2-2(Q)

< Cllgs M prs o l0(s;-)

< Clla(s ) ez oy lo(s; ey
with C' depending only on 2. Then, the Poincarré inequality implies

llqu(s; M z2q) < (s Mz () 0(s, )

HH%(Q)

1
2

lgv(s, Mgy < C 165> Mgmacey 19065, Moy < C 1905, Moy B6)E,
where C' depends only on 2. Thus, from (2.4), we get

p1—1
P1

t t t oy
/0 /Qq(s,x)v(s,x)atv(s,;v)dxds < C’/O lg(ss M 1oz () E(8)ds < Nlall por (0,7, 102 () (/0 E(s)m1 ds)

(2.5)
In the same way, an application of the Holder inequality yields

/ot /Q F(s,x)0pv(s, x)dxds

py—1

1 ¢ p1 21
<TH Pl (| BeIHas)

1 2 t P1 ”;;1
< TH Fag + ( / E(s)ml)

Combining this estimate with (2.3)-(2.5), we deduce that

t P pi{l
E(t) < B(0) + C | Fl2aq) + C ( / E(s)m—l) ,
Pi1

where C' depends only on 7', © and any M > ||q|| ., (0,T:Lr2(Q))- BY taking the power o7 on both side of

this inequality, we get
2pq

t
Pl p1—1 _P1_
E®)7T < C (ollr o) + o1l 2y + 1Fllaigy) ™ +C / B(s) 77 ds.

Then, the Gronwall inequality implies

2py

P1 Pt
E(t)nT < C(HvoHHl(m +lvill 2y + “F”L"‘@)) T

2py

p1—1
< & (ol @y + onll gy + 1Flgaggy) ™ e

From this last estimate one can easily deduce (2.2).

a
Let us introduce the IBVP
O2u — Agu+ q(t,x)u =0, in Q,
u(0,+) =wvo, Ou(0,-) = vy, in Q, (2.6)
u =g, on 3.

We are now in position to state existence and uniqueness of solutions of this IBVP for (g,vp,v1) € H and
g€ LP(Q),p>n+1.
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Proposition 2.2. Let (g,vp,v1) € H, ¢ € LP(Q), p > n+ 1. Then, the IBVP (2.6) admits a unique weak
solution u € HY(Q) satisfying

[ull 11y < Cll(g: w0, v1) 5 (2.7)

and the boundary operator By : (g,vo,v1) — (T11u)v, T1,2u) is a bounded operator from H to
H=3(0,T; H-2(V')) x H-2(1).

Proof. We split u into two terms u = v + 7'0_1(9, vg, v1) where v solves

Zv— Ao+ qv = qTo_l(g7U07U1)a (t,x) € Q,
V=0 = Ovji=0 = 0, (2.8)
’U\E = 0

Since ¢ € LP(Q) and 75 '(g,v0,v1) € H'(Q), by the Sobolev embedding theorem we have g7, *(g,vo,v1) €
L?(Q). Thus, according to Proposition 2.1 one can check that the IBVP (2.8) has a unique solution v €
CH([0,T]; LA(©)) N C([0, T]; H(Q)) satisfying

HUHcl([o,T];Lz(Q)) + ”UHC([O,T];H(%(Q)) <C |}q751(9»00701)’|L2(Q)

B (2.9)
< c ||qHLP(Q) HTO 1(97”07’”1)”1{1(@2) .

Thus, u = v+7; ' (g, v, v1) is the unique solution of (2.6) and estimate (2.9) implies (2.7). Now let us consider
the last part of the proposition. For this purpose, let (g, vg,v1) € H and let u € H'(Q) be the solution of
(2.6). Note first that (92 — A,)u = —qu € L2(Q). Therefore, u € H(Q) and 7 yu € H=3(0,T; H™%(9Q)),
T1,2U € H_Q(Q) with

2 2 2 2 2

I aull” + [l 2ull® < C% Jully ) = C*(ull gy + laulliz )
2 2

<C*(1+ HqHLP(Q)) HU”Hl(Q) :

Combining this with (2.7), we find that B, is a bounded operator from # to H=3(0,T; H=2 (V")) x H~2(%).
]

From now on, we define the set Cy(T,V) by
Cq(T7 V) = {(g,?}o,’l}th(g,UO,’U])) : (g,’UO,’Ul) € H}

In the same way, for ¢ € LP*(0,T;LP>(Q2)), p1 = 2,p2 > n, we consider the set Cy(T'), Cq(0), Cy(0,T)
introduced before Theorem 1.1. Using similar arguments to Proposition 2.2 we can prove the following.

Proposition 2.3. Let (g,v1) € H. with vg =0 and let ¢ € L>(0,T; L?(2)), p > n. Then, the IBVP (2.6)
admits a unique weak solution u € L*(0,T; H'(Y)) satisfying

HU’HL?(O,T;Hl(Q)) < Cl(g:v1)ll3, (2.10)

and the boundary operator By . : (g,v1) = (T1,1u)v, T1,2u) is a bounded operator from H. to
H=3(0,T; H=3(V')) x H2(1).

We define the set Cy(0,T,V) by

Cq(OaTa V) = {(g,’Ul,qu*(g,’Ul)) : (gvvl) € H*}
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3. PROOF OF THEOREM 1.1
The goal of this section is to prove Theorem 1.1. For this purpose, we consider special solutions u; of
the equation

Q?Uj — Awuj +qju; =0 (31)

taking the form
U; = aj’lei)\l/jl(t’x) + ajyge“”/”(t’x) + Rj’)\ (32)
with a large parameter A > 0 and a remainder term R; ) that admits some decay with respect to A. The
use of such a solutions, also called oscillating geometric optics solutions, goes back to [40] who have proved
unique recovery of time-independent coefficients. Since then, such approach has been used by various authors
in different context including recovery of a bounded time-dependent coefficient by [34]. In this section we
will prove how one can extend this approach, that has been specifically designed for the recovery of time-

independent coefficients or bounded time-dependent coefficients, to the recovery of singular time-dependent
coefficients.

3.1. Oscillating geometric optics solutions. Fixing w € S"7!, A > 1 and a;; € C®(Q), j = 1,2,
k = 1,2, we consider solutions of (3.1) taking the form

ul(t7 l‘) = al,l(t7 m)eii)\(thx.w) + al,?(ta x)eiiA((ZTitHkm.w) + Rl,k(t I), (ta Jf) € Qa (33)

U (t, ) = ag 1 (t,2)eEFTD) Ly o(t, 1)) L Ry (1 1), () € Q. (3.4)

Here, the expression a; , j, k = 1,2, are independent of A and they are respectively solutions of the transport
equation

Oraj i + (—1)*w - Veajr =0, (t,z)€Q, (3.5)
and the expression R; , j = 1,2, solves respectively the IBVP

2Ry —AyRix+qRin =Fi, (t,x)eQ,

RL)\(T, JJ) = 0, atRL,\(T, :17) =0, z e (36)
Ryia(t,z) =0, (t,x) € %,
O2Ry ) — AyRox+ q@Ron = Foy, (t,x) €Q,
Ry 2 (0,2) =0, O;R2,(0,2) =0, z€Q (3.7)
ng)\(t,x) =0, (t, (E) e,
with F; » = —[(O+44¢;)(u; —R;.»)]. The main point in the construction of such solutions, also called oscillating

geometric optics (GO in short) solutions, consists of proving the decay of the expression R; » with respect
to A = +o0o. Actually, we would like to prove the following,

W Bl o 0,722y = 0- (3.8)

For ¢ € L>(Q), the construction of GO solutions of the form (3.3)-(3.4), with a;  satisfying (3.5) and R; ,
satisfying (3.6)-(3.8), has been proved in [34, Lemma 2.2]. The fact that ¢ is bounded plays an important
role in the arguments of [34, Lemma 2.2]. For this reason we can not apply the result of [34] and we need to
consider the following.

Lemma 3.1. Let g; € LP*(0,T;LP>(Q2)), j = 1,2, p1 > 2, po > n. Then, we can find u; € K(Q) solving
(3.1), of the form (3.3)-(3.4), with R; x, j = 1,2, satisfying (3.8) and the following estimate

Sup A [R5 Al o 0,71 ) < 2 (3.9)
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Proof. We will consider this result only for j = 2, the proof for j = 1 being similar by symmetry. Note first
that, (3.5) implies that

Foa(t,x) = —eNH29)(0 4 go)ag (1, ) — eNTHENO + go)aga(t, x)
= H\(t,z)
= ei’\tHL)\(t, x) + e_”‘tHg’)\(t, x),
with
HHz\HL2(Q) < O+ Q2)a2,1||L2(Q) + 1@+ QZ)a272||L2(Q) : (3.10)

Thus, in light Proposition 2.1, we have Ry » € K(Q) with

HR27)\||C1([07T];L2(Q)) + HR27)\||C([07T];H1(Q)) SO+ [lg2llpe (o,T;Lpz(Q)))(HaZI||W2,oo(Q) + ||a2,2||W2,oo(Q))-
(3.11)
In particular, this proves (3.9). The only point that we need to check is the decay with respect to A given

by (3.8). For this purpose, we consider v(t, x) fo Ry (s, x)ds and we easily check that v solves

v — Ayv =Gy, (t,z)€Q,
v(0,2) =0, Ow(0,z)=0, x € (3.12)
v(t,z) =0, (t,z)€X,

with
¢ ¢
Gi(t,x) = —/ qg(s,a:)Rg,)\(s,x)ds—l—/ Hy(s,z)ds, (t,z) € Q.
0 0

In view of [38, Theorem 2.1, Chapter 5|, since G, € H'(0,T; L*(Q)) we have v € H?(Q). We define the
energy F(t) at time ¢ associated with v and given by

E(t) = / (|ow]?(t, z) + |V (t, 2) / |Ro 2 (t, )| d.
Multiplying (3.12) by 9;v and taking the real part, we find

= 2R (/ /Q (/ @ (7, T) Ro 5 (T, x)dr) dyv(s, x)dxds) +2R </ / (/O H,y(T, x)dT) atv(s,x)dxds> )

Applying Fubini’s theorem, we obtain

:_2m<//qu2m (/ (s, 2)d >dxd7)+m(//(/ Hytr, )i ) B s
— _om ( /0 /Q 4o, 2) Ro (7, 2) (008, 7) — v(v-,x))dxdT) +om ( /0 /Q ( /0 CHA(r, x)dT) Ms,x)dxds) .
(3.13)

On the other hand, applying the Holder inequality, we get
q2(1, ) Ra A (1, 2)0(t, x)dxdT

t
< [ 1007 s (ol
(/ Jocw(r. 52 s M 7 ) Tt

> (@)
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Then, combining the Sobolev embedding theorem with the Poincarré inequality, we deduce that

G2(7, ) Ro A (7, z)v(t, x)dxdT

Q

C (/OtE(T)l/2 la2(7, )| o e dr) (o)

2

P E(t

<@ (/0 (1) lla2(7, Ml 12 0 dT) + %
5 E(t

<CT (/O (™) llg2(7 M0 0 d7'> + %’

with C' depending only on . Applying again the Holder inequality, we get

P1—2

P1 2 E
S (/ E(r)m- 2d7> ||Q2||LP1(07T;LP2(Q))+T

//qung)\Tx) (t,z)dzdr| <

In the same way, we obtain

q2(7, ) Ro A (7, )v(T, x)dxdT

t
<C [ B laatr Myraioy

P1—2

P1
(/ E m 2dT> HQQHLQ 0,T;LP2(Q))
t
ta) = [ Har)dr
0

t s
</ H(r, x)d7'> O (s, x)dxds
2 \Jo

Q

Finally, fixing

we find

P1—2

t e
<10, oy ([ B2 0r)
K _P1
H/B)\HL 5 (OTLZ(Q)) + (/O' E(’]‘) 2(p1—2) d7—>
p1—2

P1
HB}‘”LQ(OTLZ(Q +T (/E )7 2dT>

2(p1—=2)

Combining (3.13)-(3.16), we deduce that

p1—2

E(t) N
50) < 20 4 Cllallmo rasmian + U ([ BOF20r) ™+ 1 g

and we get

¢ . m=z oy ||5>\||L " 0.15L2())
E(t) < Cllg2ll o (0.1:102 2y + 1) (/O E(T)m—?d’r) + 3 ,

Pl

with C' depending only on 2 and 7. Now taking the power —&

t
<C ( / 1007, ) 2 a2, M o ey df) ot )10

2pq t _P1 Pl ||ﬁ)\||LT 0.T:L2()
E(t)zn -2 <2P1 20?1 2(||q2||LP1(OTLP2(Q))+1)p1 2/ E(T)Pl—QdT+2P1—2 (7 ) ( ))
0

3

(3.15)

(3.16)

on both side of this inequality, we get

51
p1—2
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and applying the Gronwall inequality, we obtain

_2p1_ 2p3

P

1
Et)n—2<C T @tge T T
O < QU o rgaay © " S DI g0

where C depends only on p; and Cs on ||g2|| ;. (0,T3LP2 () Q and T. According to this estimate, the proof
of the lemma will be completed if we prove that

JJim 1BA Loe (0,73 L2(02)) = O- (3.17)

This follows from some arguments similar to the end of the proof of [34, Lemma 2.2| that we recall for sake
of completeness. Applying the Riemann-Lebesgue lemma, for all ¢ € [0, T] and almost every = € 2, we have

t t
lim GZATHL)\(T, z)dr = lim 6_7'>\TH2’A(T, x)dr = 0.
A——+oo 0 A——+oo 0

Therefore, for all ¢ € [0,7] and almost every x € €, we obtain

¢
lim By(t,z) = lim Hy(r,z)dr = 0.

A——+oo A——+oo 0

Moreover, from the definition of Hy, we get

t
/ Hy(r,z)dr
0

Thus, we deduce from Lebesgue’s dominated convergence theorem that

/Ot Hy(r,-)dr

t
< / O+ @)asa| + O+ g)azsl)ds, te0,T], ze0.
0

lim
A—+oo

=0, te€]l0,T].
L2(Q)

Combining this with the estimate

to ty
\ / Hy(r, )dr — / Hy(r, )dr
0 0

< (tg — 1) 2 [|(O0 + g2)ag.|

we deduce (3.17). This completes the proof the lemma. O

L2(Q)

L2(Q) + ||(D + q2)a'2,2||L2(Q))L 0<t <ty <T,

3.2. Proof of Theorem 1.1 with restriction at ¢ = 0 or ¢ = 7. In this section we will prove that
(1.3) or (1.4) implies that g1 = g2. We start by assuming that (1.3) is fulfilled and we fix ¢ = g2 — ¢1 on
Q extended by 0 on R**"\ Q. We fix A > 1, w € S ! and we fix £ € R*" satisfying (1, —w) - & = 0.
Then, in view of Lemma 3.1, we can consider u; € K(Q), j = 1,2, solving (3.1), of the form (3.3)-(3.4), with

a1 (t,z) = (2m) "2 e 102 E gy ) =0, agy = 1, azs = —1 and with condition (3.8)-(3.9) fulfilled, that is,

ul(t7x) _ (27T)"T'He—i(t,z)'fe—i)\(t+m'w) + le)\(t,$), (3 18)
up(t, x) = ePFow) _A=tFew) 4Ry (1, 1), .

Obviously, we have ug(0,z) = 0, since Ry 2(0,2) = 0 by (3.7). In view of Proposition 2.1, there exists a
unique weak solution v € K(Q) to the IBVP:
RPv—Av+qu=0 in Q,
V]i=0 = Uz|t=0 = 0, Otvli=0 = Opuzli=0, v|z = uz|s.
Setting u := v — ug, we see
dfu—Au+qru= (g2 — qi)ug in Q,

3.19
u|t:0 = O7 6tu\t:0 = 0, u‘z =0. ( )
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Noting that the inhomogeneous term (g2 —q1)us € L?(Q), due to the fact that go —q; € L?(0,T; LP2(£2)) and
ug € L>=(0,T; H'(£2)). Hence, again using Proposition 2.1 gives that u € C([0, T]; H} (2))NCY([0, T]; L?(£2)).
Therefore, we have u € K(Q) N Hg(Q). Combining this with u; € K(Q) N Ho(Q), we deduce that

(Opu, — V), (Opur, —Vaur) € Haw(Q) = {F € L*(Q;C**1) : divy ) F € L*(Q)}.

Now, in view of [28, Lemma 2.2] we can multiply u; to the equation in (3.19) and apply Green formula to
get

/ (g2 — q1)uouy dadt

Q

:/ (02u — Au + qru)uy dedt
Q

:/ (Ou + qru)ur — (COuy + qrug Ju dzdt (3.20)
Q

z/ Ouwy — Ouqu dadt
Q

= (@, =Vat) 1) oy ) ko) — (O =Vat) B0 oy ) 41k ag)

with n the outward unite normal vector to Q. Since Cy, (0) = Cy,(0) and v|i=g = uali=o0 = 0, we see

Oyuls = ult=r = Orult=r = 0, in addition to the boundary conditions of u in (3.19). Consequently, it follows
from (3.20) that

/ (g2 — q1)uguy dzdt = 0.
Q
Inserting the expressions of u; (j = 1,2) given by (3.18) to the previous identity gives the relation

0= (27r)(n+1)/2/ q(t, x)e” ") E dudt + Ry,
Q

R}\ — (271_)(n+1)/2/ q(t,x)e_i(t’m)'f (_e—QiAt + e—i)x(t+m~w) R27,\(t,$)> drdt
Q
+\/ q(t,x)Rl,A(t,x) <€i)\(t+a:»w) _ ei)\(*t+a:»w) + R27)\(t,1')) dxdt
Q

for all A > 1. Using the fact that ¢ € L?(Q) and applying the Riemann-Lebesgue lemma and (3.8), we
deduce that

’/ q(t,x)e_i(t’””)'g (_6—21'/\15 + e—i/\(t-i-ac‘w) RQ,)\(t;x)> dxdt’ — 0,
Q

' / q(t, )Ry \(t, ) (e’“(t”'w) — e’“*t*w'w)) dzdt| — 0
Q
as A — 0o. On the other hand, by Cauchy-Schwarz inequality it holds that

'/@ q(t, x) Ry \ (¢, @) Ry (E, ) dardt

<|lg Riallzz() [[R2allr2(@)

< Cllgllzer 0,1;102 () 1R | Lo (0,751 () [ B2,2 [0 (0,712 (02))
which tends to zero as A — oo due to the decaying behavior of R; x (see (3.8)) and estimate (3.9). Therefore,
|RA| — 0 as A — co. It then follows that

n+41

Fq(&) = (2m) = /R . q(t, z)e "B Edrdt = 0. (3.21)

Since w € S"~! is arbitrary chosen, we deduce that for any w € S*~! and any ¢ lying in the hyperplane
{¢ e R"™ : (- (1,—w) = 0} of R'™ the Fourier transform Fgq is null at £. On the other hand, since
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q € L*(R'*™) is compactly supported in @, we know that Fgq is a complex valued real-analytic function
and it follows that Fq = 0. By inverse Fourier transform this yields the vanishing of ¢, which implies that
@1 =¢q2 in Q.

To prove that the relation (1.4) implies g1 = g2, we shall consider u; € K(Q), j = 1,2, solving (3.1),
of the form (3.3)-(3.4), with a11 =1, a12 = —1, az1 = (QW)HTHe’i(tVI)f, a2 = 0 and with condition
(3.8)-(3.9) fulfilled. Then, by using the fact that uy (T, z) = 0, x € Q, and by repeating the above arguments,
we deduce that ¢; = ¢2. For brevity we omit the details.

We have proved so far that either of the conditions (1.3) and (1.4) implies ¢; = g2. It remains to prove
that for T' > Diam(2), the condition (1.5) implies ¢1 = ¢a.

3.3. Proof of Theorem 1.1 with restriction at ¢t = 0 and ¢ = T. In this section, we assume that
T > Diam(Q) is fulfilled and we will show that (1.5) implies ¢ = go. For this purpose, we fix A > 1,

q
weS" lande = %ﬁm(m. We set also x € C5°(—¢, T +Diam(Q2) +¢) satisfying x = 1 on [0, T+ Diam(2)]
and zg € € such that
2o -w = inf z - w.
e
We introduce the solutions u; € K(Q), j = 1,2, of (3.1), of the form (3.3)-(3.4), with
ar(t ) = (2m) 5 x(t+ (2 = 20) - w)e I, ana(t ) = —(2m) T (2T )+ (w — wo) - w)e T,

agq(t,x) = x{t+ (x —x0) - w), ag2(t,x) =—x(—t+ (x —z0) -w)
and with condition (3.8)-(3.9) fulfilled. Then, one can check that u;(T,z) = u2(0,z) = 0, z € Q, and
repeating the arguments of the previous subsection we deduce that condition (1.5) implies the orthogonality
identity

/ q(t, z)us(t, v)uy (t, x)dzdt = 0. (3.22)
Q

It remains to proves that this implies ¢ = 0. Note that

/ q(t, x)us(t, 2)uy (¢, x)dedt =(27) =R / q(t, 2)X2(t + (x — x0) - w)e "B Edadt + / e 2Ny yag odxdt
Q Ri+m Q

_|_/ e—zi,\(T—t)a172a271d$dt+6—2MT/ a172a272dxdt+/ Zx(t, x)dzdt,
Q @ @
(3.23)

with
Zy =q(ur — Rix)Ra ) + q(ua — Ra))Rix + qR2 2R a.
In a similar way to the previous subsection, one can check that (3.8)-(3.9) imply that

lim Zydxdt = 0.

Moreover, the Riemann-Lebesgue lemma implies

lim </ e*%/\tal,lag,gdmdt—i—/ €2i>\(Tt)(11’2a2’1d.’Edt) =0.

In addition, using the fact that for (¢,2) € QQ we have
0<t+(x—m0) w<T+|x— 20| <T+ Diam(Q),
we deduce that
q(t, 2)x3(t + (z = 20) - w) = q(t,2), (t,x) €R"
and that
(2m) %" / L A2+ (2= o) - w)e ™0 Sdudt = Fo(8).
Ri+n
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Thus, repeating the arguments of the previous subsection we can deduce that g; = go provided that

/ a172a272d$dt =0. (324)
Q

Since az 2(t, ) = —x(—t + (z — x0) -w) and a1 2 = —(277)"T+1X((2T —t) + (x — x0) - w)e E)E ) we deduce

that
supp(asg,2) C {(¢t,x) € R*™ . (x —x0) - w>=t—e},

supp(ai 2) C {(t,z) € R*"™ . 2T —t + (z — ) - w < T + Diam(Q) + ¢}.
But, for any (t,z) € {(t,x) € R™*": (z —x¢)-w >t — €}, one can check that
2T —t+ (x —xp) -w 2 2T —e = T + Diam(Q2) 4+ 3¢ > T + Diam(Q2) + ¢.
Therefore, we have
{(t,z) eR™™ . (x —2p) - w=t—c}n{(t,z) eR™™: 2T —t + (. — 20) - w < T + Diam(Q) + &} =0

and by the same way that supp(az,2) Nsupp(ai 2) = 0. This implies (3.24) and by the same way that ¢ = go.
Thus, the proof of Theorem 1.1 is completed.

4. PROOF OF THEOREM 1.2

In the previous section we have seen that the oscillating geometric optics solutions (3.2) can be used
for the recovery of some general singular time-dependent potential. We have even proved that, by adding a
second term, we can restrict the data on the bottom ¢ = 0 and top ¢t = T of @) while avoiding a "reflection".
Nevertheless, as mentioned in the introduction, it is not clear how one can adapt this approach to restrict
data on the lateral boundary ¥ without requiring additional smoothness or geometrical assumptions. In
this section, we use a different strategy for restricting the data at 3. Namely, we replace the oscillating GO
solutions (3.2) by exponentially growing and decaying solutions, of the form (1.9), in order to restrict the
data on ¥ by mean of a Carleman estimate. In this section, we assume that ¢1,¢2 € LP(Q), with p > n+1,
and we will prove that (1.6) implies ¢; = ¢o. For this purpose, we will start with the construction of solutions
of (1.1) taking the form (1.9). Then we will show Carleman estimates for unbounded potentials and we will
complete the proof of Theorem 1.2.

4.1. Geometric optics solutions for Theorem 1.2. Let w € S" ! and let £ € R!*" be such that
€-(1,—w) = 0. In this section we consider exponentially decaying solutions u; € H'(Q) of the equation
(0?2 — A, + q1)u; = 0 in Q taking the form

u (t,z) = ef)\(t+x-w)(efi(t,x)'§ +wy(t, ), (4.1)
and exponentially growing solution us € H'(Q) of the equation (97 — A, + g2)uz = 0 in Q taking the form
ug(t, z) = eNFT (1 4wy (t, x)) (4.2)

where A > 1 and the term w; € HY(Q), j = 1,2, satisfies
ijHHl(Q) +A ||wj||L2(Q) < C? (4-3)
with C independent of \. We summarize these results in the following way.

Proposition 4.1. There exists A > 1 such that for A > A\ we can find a solution u; € H*(Q) of Ouy +
qru1 = 0 in Q taking the form (4.1) with wy € HY(Q) satisfying (4.3) for j = 1.

Proposition 4.2. There exists Ay > A1 such that for X > Xa we can find a solution us € H*(Q) of
Ous + goug = 0 in Q taking the form (4.2) with wy € HY(Q) satisfying (4.3) for j = 2.
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We start by considering Proposition 4.1. To build solutions u; € H*(Q) of the form (4.1), we first recall
some preliminary tools and a suitable Carleman estimate in Sobolev space of negative order borrowed from
[33]. For all m € R, we introduce the space H{*(R'™™) defined by

HP R ={ue SR : (|(r,) +A)7d e L2(R)},
with the norm

lullyganeny = [ [ (6P + X fatr.¢)Pdear.

Note that here we consider these spaces with A > 1 and, for A = 1, one can check that H{*(R!™™) =
H™(RY™). Here for all tempered distribution u € &'(R'*"), we denote by @ the Fourier transform of w.
We fix the weighted operator

P, 4y = ePAAFTOedrttew) — (4 9)(9, —w - V,)
and we recall the following Carleman estimate
Lemma 4.1. (Lemma 5.1, [33]) There exists \| > 1 such that
0]l p2@reny < C ol o1 gaseny» v ECT(Q), A> Ay, (4.4)
with C' > 0 independent of v and A.
From this result we can deduce the Carleman estimate

Lemma 4.2. Let p; € (n+ 1,+00), p2 € (n,+00) and ¢ € LP(Q) U L>°(0,T; LP2(QY)). Then, there erists
A > A such that

[oll L2 @ieny < CllPoav + C]U”H;l(RHn) , vECT(Q), A> A, (4.5)
with C > 0 independent of v and .
Proof. We start by considering the case ¢ € LP*(Q). Note first that
[P0+ qoll o1 asny 2 1P a0l ot ey = 90l 2 iy - (4.6)

On the other hand, fixing
n+1 1 1 1 n+1-2r

pr ps 2 p1 2n+1)]
by the Sobolev embedding theorem we deduce that

||qv||H;1(R1+n) <t ||‘I”HH;T(Rn+1)
< /\r—l ||QUHH7T(RTL+1)
<

Cx\ 1 ||qU||Li‘.L

P3=1(Q)
Combining this with the fact that
ps— 1 1 1 1
= 1 _ — = — + —,
D3 P32 m;

we deduce from the Hoélder inequality that
lqvll o2 (Rany < CXHlall o 10l 22(q) -

Thus, applying (4.4) and (4.6), we deduce (4.5) for A > 1 sufficiently large. Now let us consider the case
q € L>=(0,T; L*2(Q2)). Note first that

||qv||H;1(R1+n) < ||q”HL2(o,T;H;1(R"))'

Therefore, by repeating the above arguments, we obtain

o
||qv||H;1(R1+n) < CArz ||Q||L°°(O,T;LP2(Q)) HU||L2(Q)



16 GUANGHUI HU AND YAVAR KIAN

which implies (4.5) for A > 1 sufficiently large. Combining these two results, one can find AY > A} such that
(4.5) is fulfilled. O

Using this new carleman estimate we are now in position to complete the proof of Proposition 4.1.
Proof of Proposition 4.1. Note first that

D(e—)\(t+z~w)e—i£~(t,z)) — [27:/\(1’ _w) _ge—ié(t,m) + De—i§~(t,z)]e—)\(t+r'w)
_ [Defigv(t,a:)]ef)\(ﬂ»w-w),

D(e—)\(t—kx‘w)wl) — e—)x(t-‘ra:w)Pw _\wy.
Therefore, we need to consider w; € H(Q) a solution of
Pw7_)\lU1 + qwy = _e)\(ter-w) (|:| + ql)(efk(t%»mw)efi@(t,m)) _ —(D + Q1)€7i£.(t7x) —F (47)

and satisfying (4.3) for j = 1. For this purpose, we will use estimate (4.5). From now on, we fix \; = Af.
Applying the Carleman estimate (4.5), we define the linear form £ on {P, xz+¢12 : z € C5°(Q)}, considered
as a subspace of H; '(R'*™) by

L(Poaz+ q12) = / zFdzdt, z € C5o(Q).
Q

Then, (4.5) implies
|£(Pw,>\z +q2)| <C ||FHL2(Q) ||Pw,>\z + Q1Z||H;1(R1+n) , %€ CSO(Q)

Thus, by the Hahn Banach theorem we can extend £ to a continuous linear form on H LR still denoted
by £ and satisfying || £|| < C'[|F||2(q). Therefore, there exists w; € H; (R'™™) such that

<h’w1>H;1(R1+”),H>1\(]R1+") = E(h), h e H;l(RlJrn).

Choosing h = P, xz + 1z with z € C§°(Q) proves that w; satisfies P, _ wy +¢rwy = F in Q. Moreover, we
have ||w1||H§(R1+") < LI < CIF | 12(g)- This proves that wy fufills (4.3) which completes the proof of the
proposition. O
Now let us consider the construction of the exponentially growing solutions given by Proposition 4.2.
Combining [33, Lemma 5.4] with the arguments used in Lemma 4.2 we obtain the Carleman estimate.

Lemma 4.3. There exists Ny > 0 such that for A > X}, we have
[Vl p2(giny < Cl|Pu,—xv + Q2U||H;1(R1+n) , vECT(Q), A> A, (4.8)
with C > 0 independent of v and .
In a similar way to Proposition 4.1, we can complete the proof of Proposition 4.2 by applying estimate
(4.8).
4.2. Carleman estimates for unbounded potential. This subsection is devoted to the proof of a Car-

leman estimate similar to [33, Theorem 3.1]. More precisely, we consider the following estimate.

Theorem 4.1. Let p; € (n+1,+00), p2 € (n,+00) and assume that g € LP*(Q) (resp q € L>=(0,T; LP2(Q)))
and u € C*(Q). If u satisfies the condition

U\E = 0, U|t:0 = atU|t:0 = O, (49)
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then there exists A3 > Ao depending only on Q, T and M > ||Q||Lp1(Q) (resp M > ||q||LOO(O7T;Lp2(Q))) such
that the estimate
Ao eI (9T, )P de + A [y, e 4D 9 [w - v(x)| do(x)dt
+ fQ e 2A(t+w-x) (A2 |u|2 + |8pul? + |V pul?]dzdt
<C (fQ e PHw D) (92 — A, + q)u|2 dadt + N3 [, e=THea) jo(T, )| dx)
+C ()\ [ e 2T+ ) | (T, ) da + )‘fo,w e~ 2w ) |9y |w - ()] da(x)dt>

holds true for A > A3 with C depending only on Q, T and M.

(4.10)

Proof. Since the proof of this result is similar for ¢ € LP*(Q) or ¢ € L*°(0,T; LP2(R)), we assume without
lost of generality that ¢ € LP'(Q). Note first that for ¢ = 0, (4.9) follows from [33, Theorem 3.1]. On the
other hand, we have

—A(t4w-z) 82 — A+ ’ > H —A(t+w-z) 82 —A ’ _ H —“A(tHw-z) ‘
e U > |le u e U
H (0= 8a + L2(Q) 07 = Axul 12(Q) a0
and by the Holder inequality we deduce that
“Attwn) (92 _ A 4 H S H —2A\(twa) [(§2 _ A ‘ _ H —A(t+w-z) ‘
e z U > |le z)U » e U
| @7 = Ao, @2 = a2y |, o = el o) @
with p3 = p21p_12. Now fix s := "p—tl € (0,1) and notice that
1 n+1-2s
p3 2(n+1)°
Thus, by the Sobolev embedding theorem, we have
Hef)\(term)u‘ <C Hef)\(term)u‘
L3 (Q) H4(Q)

and by interpolation we deduce that

%
, (Q)@( / 6_2’\(t+w'z)()\2|U|2+|8tU|2+|VIU|2da:dt) ey
P3

1-s

He—)\(t-i-ww)u‘

L*(Q)

-

<ON! (/ e2>‘(t+°"x)(z\2|u|2+|8tu|2+|qu|2dxdt> .
Q

On the other hand, in view of [33, Theorem 3.1], there exists A5 > 1 such that, for A > A5, we have
—2X(t+w-z 2 2 2 2
t x
Joe ( V(N2 Jul? + |0pu)? + |V pul?)dxdt
<C (fQ e A twa) | (52 — Am)u|2 dadt + X3 [, e 2T Hwa) |y(T, z)|? dm)
+C ()\ Jo e 2T+ D) |V (T, 2)|? da + )‘fE_,w e\t D) |9 ) |w - v(z)] da(a:)dt) .
Thus, we get
fQ e 2w | (52 — A, + q)u’2 drdt + N3 [, e 2MTHe @) gy (T, o)) da
A [ e 2T+ |V (T, 2) P de + X [y, ) e\t D) |5y w - v(z)| do(x)dt
>1 Jo e @) (52 — Ax)u|2 drdt + N3 [, e” A THea) (T, 2)|? d
HA [ e AT |\ V(T 2) P da 4+ A [y em 2D 9 uf |w - v(x)| do(z)dt
s— — w-x ) 2 - w-r
~C gl gy X2 (fig ) (07 — A Jul* dadt 4+ Ay eI |u(T, ) de
~Cllgl 71 () A7V (A fg e 2T+ ) |V (T, 2) [ daz + A Jo_ e iten 10, u)? |w - v(z)] da(:c)dt) .

Therefore, fixing A sufficiently large and applying [33, Theorem 3.1] with a = ¢ = 0 we deduce (4.10).
O
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Remark 4.1. Note that, by density, (4.10) remains true for u € C1([0,T); L%(Q))NC([0,T]; H'(2)) satisfying
(4.9), (0?2 — A)u € L2(Q) and d,u € L*(X).

4.3. Completion of the proof of Theorem 1.2. This subsection is devoted to the proof of Theorem 1.2.
From now on, we set ¢ = g2 — q; on Q and we assume that ¢ = 0 on R**"\ Q. For all § € S"~! and all
r > 0, we set
Oy rog={x€d: v(z)-0>r}, O0_,9={x€d: v(z)-0<r}

and Xy 9 = (0,T) X 9Q4 ;9. Here and in the remaining of this text we always assume, without mentioning
it, that 6 and r are chosen in such way that 04 , +¢ contain a non-empty relatively open subset of 9.
Without lost of generality we assume that there exists € > 0 such that for all w € {§ € S"~1 : |6 — wo| < &}
we have 00— ., C V'. In order to prove Theorem 1.2, we will use the Carleman estimate stated in Theorem
4.1. Let A > A3 and fix w € {# € S" 1 : |§ — wg| < €}. According to Proposition 4.1, we can introduce

ur(t,x) = e AT (e ODE fy(t,2)), (1 2) € Q,

where u; € H'(Q) satisfies 92u1 — Ayzus +qru; = 0, € (1, —w) = 0 and w; satisfies (4.3) for j = 1. Moreover,
in view of Proposition 4.2, we consider us € H'(Q) a solution of 02us — Ayus + qauz = 0, of the form

up(t, z) = AT (1 fay(t, ), (t,z) € Q,

where wo satisfies (4.3) for j = 2. In view of Proposition 2.2, there exists a unique weak solution z; € Ho(Q)
of

{ 6321 - A;vzl + qiz1 = 0 in Q? (411)
ToR1 =— ToU2.
Then, u = z; — us solves

Ou— Agu+ qu= (g2 — q)ug inQ,

u(0,2) = dpu(0,z) =0 on , (4.12)

u=20 on X.

Since uy € H*(Q), by the Sobolev embedding theorem we have (go — q1)us € L?(Q). Thus, repeating the
arguments of Theorem 1.1, we derive the formula (3.20). On the other hand, we have u;—o = diuj—g = uz =
0 and condition (1.6) implies that u—r = d,ujy = 0. In addition, in view of [36, Theorem 2.1], we have
dyu € L*(X). Combining this with the fact that u € C1([0,T]; L3(2)) and u; € HY(Q) c H(0,T; L*()),

we obtain

/quzuldxdt: - ayuulda(x)dt—i—/ (T, z)uy (T, x)dx. (4.13)
Q Z\V Q

Applying the Cauchy-Schwarz inequality to the first expression on the right hand side of this formula and
using the fact that (X \ V) C 34 . o, we get

</

by
1
2

2
< O+ [lwnllp2sy) (/E ]e*MHw-I)ayu] da(x)dt> :
+,e,w

Oyuurdo(x)dt
S\V

Dyue NtFw ) (p=ilt.o)E 4 wl)' do(x)dt

+.6,w

for some C independent of A\. On the other hand, one can check that
lwillz2s)) < Cllwill g g -
Combining this with (4.3), we obtain
1
3

dyuuydo(x)dt
S\V

2
<C (/ ‘e_’\(t“"'w)&,u‘ da(a:)dt)
E+,s,w
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In the same way, we have

/6tu(T,:E)u1(T,x)dx </ ‘8tu(T,m)e_)‘(T+“'x) (e_i(T’x)'g—l-wl(T,x))’dx
Q Q

ce(,

Combining these estimates with the Carleman estimate (4.10) and applying the fact that u;—r = dyu;s_ =
0, 004 o C 004 ,, we find

’ / quauydxdt
Q

2 2
<C (/ ‘e*’\(“r“"’”)ayu‘ da(x)dt—l—/ ‘e*A(T“"w)&gu(T, x)’ dm)
Z+,5,w Q

1
2 2
efA(T+w-z)atu(T’ x)’ dx) )

2

<e ot )\/

Yy

2
‘e—/\(t-&-w-x)auu‘ w - v(x)do(z)dt + )\/

2
‘e—A(T+w~x)atu(T’ x)‘ dx)
Q

2

<e ot < / ‘e_’\(t'“‘"w) (0} — A, + ql)u‘ dmdt)

Q

2

<e toat (/ ‘e_’\(t+“'l)qu2‘ da?dt)

Q
<e toat (/ lg(1 + wo)[? dxdt) . (4.14)

Q

Here C > 0 stands for some generic constant independent of A\. On the other hand, in a similar way to
Lemma 4.2, combining the Hoélder inequality and the Sobolev embedding theorem we get

2 2 2 2
/Q (1 + w2) [P dedt < Cllgll ) (T4 w2 nir < Claling) (1+ lwall g1 (g))*-

Combining this with (4.3) and (4.14), we obtain
’/ quguldacdt’ < ON V2,
Q

It follows

lim quaurdzdt = 0. (4.15)

Moreover, (4.1)-(4.3) imply

/quzuld:ﬂdt:/ q(t,m)e*ig'(t’“:)dmdt—l—/ Wi(t, z)dxdt,
Q R1+n Q

with
/ |Wi(t, z)|dedt < CA™L.
Q

Combining this with (4.15), for all w € {y € S"1 : |y —wp| < €} and all € € (1,-w)* = {¢ € RIT":
¢+ (1, —w) = 0}, the Fourier transform F(q) of q satisfies (q)(¢) = 0. On the other hand, since ¢ € L}(R!*™)
is supported on @ which is compact, F(q) is a complex valued real-analytic function and it follows that ¢ = 0
and g1 = g2. This completes the proof of Theorem 1.2.
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5. PROOF OF THEOREM 1.3

Let us first remark that, in contrast to Theorem 1.1, in Theorem 1.2 we do not restrict the data to
solutions of (1.1) satisfying u;—o = 0. In this section we will show Theorem 1.3 by combining the restriction
on the bottom ¢ = 0, the top ¢t = T of @ stated in Theorem 1.1 with the restriction on the lateral boundary
Y stated in Theorem 1.2. From now on, we fix ¢1,q2 € L*°(0,T; LP(2)), p > n, and we will show that
condition (1.7) implies ¢; = g2. For this purpose we still consider exponentially growing and decaying GO
solutions close to those of the previous subsection, but this time we need to take into account the constraint
u2(0, z) = 0 required in Theorem 1.3. For this purpose, we will consider a different construction comparing
to the one of the previous section which will follow from a Carleman estimate in negative order Sobolev
space only with respect to the space variable.

5.1. Carleman estimate in negative Sobolev space for Theorem 1.3. In this subsection we will derive
a Carleman estimate in negative order Sobolev space which will be one of the main tool for the construction
of exponentially growing solutions us of (3.1) taking the form

Uy (t, z) = AT (1 pay(t, x)) — M HHEw) (5.1)

with the restriction 7o 2us = 0 (recall that for v € C*°(Q), T0,2v = vj4—¢). In a similar way to the previous
section, for all m € R, we introduce the space HY*(R™) defined by

HP(R™) = {ue S'(R"): (¢ +X)%a e L*(R™)},
with the norm

ol ey = [ (€ + 327 )P

In order to construct solutions us of the form (4.2) and satisfying 79ous = 0, instead of the Carleman
estimate (4.8), we consider the following.

Theorem 5.1. There exists Ny > 0 such that for A > Xy and for all v € C%([0,T);C5°(2)) satisfying
o(T,z) = 0w(T,z) =v(0,2) =0, ze€R", (5.2)
we have
||’UHL2((0,T)><R7L) <C|P N q2U||L2(07T;H;1(Rn)) ) (5.3)
with C' > 0 independent of v and A.
In order to prove this theorem, we start by recalling the following intermediate tools. From now on, for
m € R and £ € R”, we set
1
(€N = (P + %)z
and (D, \)"™ u defined by
(D, V" u = FLHE N Fu).
For m € R we define also the class of symbols
S5 = {en € C¥(R" x R") : 1970 er(2,6)] < Cas (6,77, o, f € NV},
Following [24, Theorem 18.1.6], for any m € R and ¢y € S, we define ¢y (z, D), with D, = —iV,, by
(e DaJu(e) = 2m) [ ea( (e s

n

For all m € R, we define OpSY* := {ca(z,D,) : ¢y € SV} and for m = —oo we set

OpS; > := (1] OpSy"
meR

Now let us consider the following intermediate result.
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Lemma 5.1. There exists Ay > 0 such that for A\ > N and for all v € C2([0,T);Cs°(Q)) satisfying (5.2), we
have

||U\|L2(0,T;H;(Rn)) < C|P ,—AUHLz((o,T)XRn)) ) (5.4)
with C' > 0 independent of v and .

Proof. Consider w(t,z) = v(T — t,z) and note that according to (5.2), we have w € C%([0,77;C5°(£2)) and
w(0,z) = dyw(0,z) = w(T,z) =0, zeR™

Therefore, in a similar way to the proof of [32, Lemma 4.1], one can check that
/ P w2 dzdt > / Cwl2dadt + A2 / o 2dadt, (5.5)
Q Q Q

with ¢ > 0 independent of w and A. Now, recalling that w solves

2w — Ayw =Dw, (t,z) €Q,
w(0,z) =0, Jdww(0,x) =0, x €
w(t,z) =0 (t,z) €,

we deduce that
/ |V w|?dedt < C/ |Ow|?dadt,
Q Q

where C' depends only on T and €. Combining this with (5.5), we obtain
2
[wllz2 0,701 &) < C/Q | Py w|*dzdt.

Using the fact that P_, yw(t,z) = P, _xv(T —t,x), we deduce (5.4). O

Armed with this Carleman estimate, we are now in position of completing the proof of Theorem 5.1.
Proof of Theorem 5.1. Let v € C2([0,T];C°(9)) satisfy (5.2), consider ;, j = 1,2, two bounded open
smooth domains of R™ such that Q C Q;, Q1 C Q5 and let ¥ € C5°(22) be such that ¢ = 1 on ;. We
consider w € C2([0,T]; C§°()) given by

wt,) = Dz, X) ot )
and we remark that w satisfies
w(T,z) = Ow(T,z) =w(0,2) =0, x€R". (5.6)
Now let us consider the quantity (D, \)™" P, _»(Dg, X) w. Note first that

1 Porr Dy )l 0 g gy = [[ (P X7 P (D A w

L2((0,T)xR")
Moreover, it is clear that
<D;c7 A>_1 Pw,—)\ <D1,7 A) = Pw,—)\-

Therefore, we have

HPw,—A <Dw7 )\> wHLz(O,T;H;l(]R")) = ”P“Jv—/\wHLZ((O,T)X]R")
and, since w satisfies (5.6), combining this with (5.4) we deduce that

||w||L2(o,T;H;(Rn)) < C|[Pu,~x (Dq, A) wHLz(o,T;H;l(Rn)) . (5.7)
On the other hand, fixing ¢ € C§°(1) satisfying ¥; = 1 on Q, we get

w(t,) = (Do, N u(t, ) + (1 — 1) (Dg, )™ pro(t, )
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and, combining this with (5.7), we deduce that
||’U||L2((O,T)><R")

= H<DI7A>*IU
L2(0.7:H} (Bn))

—1
< lwll 20,7501 @nyy + H(w = 1) (Dg, A) wlv‘ LT HI®™)
-1
< Cl P r Dy Nl a0 g ey + || (¥ = 1) (Das N i .

Poox (D N) (6 = 1) (D, ) oo

< O3l ey +C |
+ | @ =1 DN o

L2(0,T;H; ' (R™))

L2(0,T;HL(R"))

Moreover, since (¢ — 1) = 0 on neighborhood of supp(#;), in view of [24, Theorem 18.1.8], we have (¢ —
1) (D, )\>_1 Y1 € OpSy >°. In the same way, [24, Theorem 18.1.8] implies that

Fo,-a <Dz7)‘> (¢ —-1) <Dm7)‘>71 P € OPS;OO
and we deduce that
C|Por (D ) (& = 1) (D ) 610

lvll .2 0,T) xR™
< ((/\2 )XR™)

+ || =1 (D N o]

L2(0,T;H; ' (R™)) L2(0,T;H; ' (R™))

Combining this with (5.8) and choosing A sufficiently large, we deduce (5.3) for g = 0. Then, we deduce
(5.3) for g2 # 0 by applying arguments similar to Lemma 4.2. O

Applying the Carleman estimate (5.3), we can now build solutions us of the form (5.1) and satisfying
To,2u2 = 0 and complete the proof of Theorem 1.3.

5.2. Completion of the proof of Theorem 1.3. We start by proving existence of a solution us €
L2(0,T; H'(Q)) of the form (5.1) with the term wo € L%(0,T; HY(Q)) N e MH=@) Ay (Q), satisfying

lwall 20,711 ) + Alwall o) < € (5.9)
To’gwg =0. (510)
This result is summarized in the following way.

Proposition 5.1. There exists Ay > A1 such that for A > \a we can find a solution us € L%(0,T; H'(2))
of Dug + qauz = 0 in Q taking the form (5.1) with wy € L?(0,T; HY(Q)) N e 2@ gy (Q) satisfying
(5.9)-(5.10).

Proof. We need to consider we € L?(0,T; H*(Q)) a solution of
Pywz + gowy = —e AT (O 4 ga) (A7) — AW = gy (1 — 72N, (5.11)

satisfying (5.9)-(5.10). Note that here, we use (5.11) and the fact that P, ywq = e ANt OeAlt2w), in
order to prove that wy € e AT [ (Q) and we define 70 9ws by T 2wy = e A7y KN HT Wy We
will construct such a function wy by applying estimate (5.3). From now on, we fix Ay = Aj. Applying the
Carleman estimate (5.3), we define the linear form M on

I={P, sv+qu: veC*0,T];C(Q)) satistying (5.2)},

considered as a subspace of L2(0,T; Hy '(R")), by

M(Py v+ qov) = f/ vga(1 — e MYdxdt, veT.
Q

Then, (5.3) implies
‘M(Pw,—/\v + Q1v)‘ <C H‘DHL?(Q) ||Pw,—>\v + q1U||L2(o7T;H;1(]Rn) , veL,
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with C > 0 independent of A and v. Thus, by the Hahn Banach theorem we can extend M to a continuous
linear form on L2(0,T; H; ' (R™)) still denoted by M and satisfying M| < C g2/ 12(q)- Therefore, there
exists wy € L%(0,T; Hi (R™)) such that

<gvw2>L2(0,T;H;1(Rn),L?(o,T;H;(Rn)) =M(g), g€ LQ(O,T; H,(l(Rn)~

Choosing g = P, _»v + g2v with v € C§°(Q) proves that ws satisfies P, xw2 + qaw; = —g2(1 — e72*) in Q.
Moreover, choosing g = P, _z\v+qiv, with v € 7 and dyv;— arbitrary, proves that (5.10) is fulfilled. Finally,
using the fact that Hw2||L2(O7T;H;(Rn)) < Ml < Cligllp2(g) proves that wy fulfills (5.9) which completes the
proof of the proposition. O

Using this proposition, we are now in position to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let us remark that since Lemma 4.2 and Theorem 4.1 are valid when ¢q €
L*>(0,T; L*(2)) one can easily extend Proposition 4.1 to the case q; € L°°(0,T; LP(f2)). Therefore, in the
context of this section, Proposition 4.1 holds true. Combining Proposition 4.1 with Proposition 5.1, we
deduce existence of a solution u; € H'(Q) of Juy + qru; = 0 in Q taking the form (4.1), with w; € HY(Q)
satisfying (4.3) for j = 1, as well as the existence of a solution us € L2(0,T; HY(Q)) of Cug + qous = 0
in Q, Toouz = 0, taking the form (5.1) with the term wy € L%(0,T; H'(Q2)) satisfying (5.9). Repeating
the arguments of the end of the proof of Theorem 1.2 (see Subsection 4.4), we can deduce the following
orthogonality identity

lim quiugdxdt = 0. (5.12)
A——+oco Q

Moreover, one can check that

/qulquacdt:/ q(t,x)e_if'(m”)dxdt—i—/ Y (t, z)dzdt,
Q R1+m Q

with
YA(L‘, $) = q[e—2)\te—i(t,m)-§ + e_i(t’m)fu& + wqy + wlwg}.
Combining (4.3), (5.9) with the fact that

1
2

/Q la(t, )| [em2Me €] dadt < Jlgl 2 (/ e—mdt) < lall oy A2

we deduce that

lim Ya(t, z)dzdt = 0.
Combining this asymptotic property with (5.12), we can conclude in a similar way to Theorem 1.2 that
91 = Q2. ]
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