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Abstract— Emerging evidence show that the connectivity 

analysis of the uterine signals is a powerful tool in characterizing 

pregnancy and labor contractions. Here, we present the results of 

studying the connectivity between uterine sources identified from 

the electrohysterogram (EHG) signals, which reflects the 

electrical activity of the uterine muscle. We started by evaluating 

the effect of the two key steps involved in EHG source 

connectivity processing: i) the algorithm used in the solution of 

the inverse problem and ii) the method used for the estimation of 

the functional connectivity. We evaluate three different inverse 

solutions (to reconstruct the dynamic of uterine sources) and 

three connectivity measures (to compute statistical coupling 

between the reconstructed sources). The networks obtained by 

each combination of the inverse/connectivity methods were 

compared to a reference network (ground truth) generated by 

the model. The method was then applied to real EHG signals in 

order to discriminate pregnancy and labor contractions.  
Keywords—Uterine sources; electrohysterogram EHG; 

forward/inverse problem; network analysis 

I.  INTRODUCTION 

“Every object that biology studies is a system of systems” 

[1]. Among the complex system of systems of the human body, 

many questions remain open concerning the human uterus. One 

of the most promising markers of the uterine contractions is the 

electrical activity of the uterus. This activity is reflected in the 

electrohysterogram (EHG), which is a noninvasive abdominal 

measurement of the uterine electrical activity [2]. Delivery is 

preceded by two physiological phenomena: increased 

excitability and increased connectivity among the myometrial 

cells resulting in increased propagation of the action potentials 

that underlie uterine contractions [2]. Thus, numerous studies, 

based on the analysis of the propagation (or synchronization) 

of the uterine signals, have shown its power in characterizing 

uterine activity and discriminating pregnancy and labor 

contractions [3]. 

Several studies have been realized to characterize the uterine 

propagation by means of the synchronization between EHG 

signals recorded at the abdominal surface. These efforts were 

based on various methods such as i) correlation/connectivity 

analysis [4], [5] where the methods were applied on the entire 

uterine burst manually segmented, and ii) propagation velocity 

quantified by analyzing either the propagation of whole bursts 

of EHG [6], or of single spikes identified within bursts [7]. 

The original feature of the present work is to study the uterine 

connectivity at the uterine electrical sources. Briefly, the 

method consists of reconstructing the dynamic of uterine 

sources by solving the inverse problem and then compute the 

connectivity between these reconstructed time series. First, we 

test the methods on simulated data (ground truth) generated by 

using a biophysically plausible model developed in our team. 

By changing the inverse and connectivity methods, we 

compared with the reference network the networks obtained 

by each of the combination. Uterine networks then were 

estimated for contractions recorded during pregnancy and 

labor. A network-based analysis was performed to compute 

the significant differences between both conditions. This 

analysis was done at a node-wise level (computing the 

difference at each uterine source). 

II. MATERIALS AND METHODS 

A. Inverse problem 

The uterine sources have first to be estimated from the 

surface-level recordings, the EHGs, by solving the so-called 

inverse problem. Generally speaking, this inverse problem 

consists of estimating the internal sources S(t) from the 

surface signals X(t) (here the EHGs). The main advantage of 

this approach is to analyze directly the sources that generate 

the EHG signals. Source reconstruction has been widely 

applied to EEG [8] and MEG [9]. To our knowledge, the 

source localization has been applied on uterine EHG very 

recently, for the first time, by Marque et al. [10]. Source 

localization requires two processing steps: i) the forward 

problem, to model the path from the source to the surface 

signals; ii) the inverse problem, going from real surface 

signals to the estimated sources. 

The forward problem was solved by using the boundary 

element method (BEM) with OpenMEEG [11] 
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According to the linear discrete equivalent of current dipole 

model, EHG signals X(t) measured from M channels can be 

expressed as linear combinations of P time-varying current 

dipole sources S(t) as follow:  

 
(1) 

where G is the leadfield matrix of the dipolar sources and N(t) 

an additive noise. The inverse problem consists of finding an 

estimate  of the dipolar source parameters given X(t) and 

G, already computed using BEM by means of the forward 

problem step. We used here three of the most classically used 

algorithms to solve the inverse problem: Minimum Norm 

Estimate (MNE), weighted Minimum Norm Estimate (wMNE) 

and the standardized Low Resolution brain Electromagnetic 

Tomography (sLORETA) [8]. 

B. Data 
Real Data: The signals were recorded from 16 monopolar 
channels of a 4x4 matrix located on the woman's abdomen. The 
third electrode column was always put on the uterine median 
vertical axis (see [12] for more details). The sampling 
frequency was 200 Hz. The data were recorded at the 
Landspitali university hospital (Iceland) using a protocol 
agreed by the relevant ethical committee (VSN02-0006-V2) 
and at the Center for Obstetrics and Gynecology (Amiens, 
France), using a protocol agreed by the relevant ethical 
committee (ID-RCB 2011-A00500-41). The EHG signals were 
manually segmented and denoised by using a CCA-EMD 
method developed in our team [13]. After segmentation and 
denoising, we obtained 183 labor and 247 pregnancy EHG 
bursts, associated to contractions, at different weeks of 
gestation. The analysis below has been applied to these 
segmented uterine bursts.  

Simulated Data: We have used a realistic model developed 
in our team, to simulate EHGs [14]. This model permits us to 
control the number, position and activity of the uterine sources 
(network of sources) used to simulate the EHGs. The original 
simulated network is called the “ground truth”. The simulation 

time was 45 seconds and the sampling frequency was 200 Hz. 
In our case we have activated 1000 cells that were grouped into 
sixteen zones depending on their Euclidian distance. We have 
labeled these zones by their number (from 1 to 16). Only four 
zones were activated (zones 1, 3, 5 and 6). The signals of zones 
1 and 6 started at t0=0s, while a time delay was added to 
signals of zones 3 and 5. Zones 3 and 5 were highly correlated 
with zones 1 and 6, but with a delay (30s). (Figure 1B). 

C. OVERVIEW 

As illustrated in Figure 1A, a given simulated network was 

generated at the source level. Surface EHG signals were 

obtained by solving the forward problem. The volume 

conductor contains: the myometrium (where the source is 

located) with conductivity = 0.2 S/m and depth = 0 (all the 

sources are located at the uterine surface); the abdominal 

muscle with conductivity 0.3 S/m, and thickness = 0.936 cm; 

fat with conductivity = 0.04 S/m and thickness = 2 cm; and 

skin with conductivity = 0.5 S/m and thickness = 0.2 cm. The 

corresponding leadfield is computed by using the BEM with 

OpenMEEG [11]. After the estimation of EHG signals we 

added to these signals different SNR values. Sources were 

then estimated by using inverse solution algorithms (wMNE, 

sLORETA and MNE). After that, functional connectivity was 

estimated by using three methods (R2, h2, Icoh). The 

connectivity matrices were 16x16. These matrices were 

thresholded by saving edges with the highest weight values. In 

order to compare the reference uterine network with the 

network identified by each of the inverse/connectivity 

combination, we used the simNet algorithm [15]. This 

algorithm provides a normalized Similarity Index (SI) between 

0 (totally different graph) and 1 (same graph).  

D. MEASURING THE FUNCTIONAL CONNECTIVITY 

We have quantified the correlation using three well know 

connectivity methods: the linear correlation coefficient (R2) 

the nonlinear correlation coefficient (h2) and the imaginary 

part of coherence (Icoh). 

                           
Figure 1: A) Structure of the investigation. First, a given network is generated by the model and considered as the ‘ground truth’. The 

statistical couplings are then computed between the original sources by using three connectivity methods (R2, h2 and Icoh). By solving the 
forward problem, we generate synthetic EHGs. These signals are then used to solve the inverse problem by using three inverse solutions 

(MNE, wMNE, sLORETA). The statistical couplings are then computed between the reconstructed sources by using the same connectivity  

methods (R2, h2 and Icoh). The identified network by each combination (inverse/connectivity) was then compared with the original network 

using a ‘network similarity’ algorithm. B) Simulated Network 

 

 



E. GRAPH METRICS 

To quantify the graph connectivity, we have used in this 

work one parameter classically used to characterize graph 

connectivity, the Strength (Str). This parameter quantifies the 

importance and contribution of each node with respect to the 

rest of the network.  

 
(2) 

where i, j denotes respectively the ith , jth nodes, and wij is the 

value (Icoh value) of the relation between nodes i and j [16]. 

III. RESULTS 

A. Results on simulated data 

The results obtained on the simulated data are illustrated 
Figure 2. A visual analysis shows that the number of 
connections between the different zones vary according to the 
combination of methods used. For a given connectivity 
approach, changing the localization method modify more or 
less the network, depending on the connectivity method. On 
the other hand, for a given source localization approach, the 
functional connectivity measure changes qualitatively the 
network only for Icoh. h2 or R2 combined with sLORETA give 
the network that best matches the reference network. Overall, 
values of the Similarity Index are low (16% to 27%). Results 
obtained by using h2 are on average better than by using R2 and 
Icoh. The combination providing the highest similarity is 
sLORETA/h2 (27.8%), followed by sLORETA/R2 (27.7%) and 
wMNE/h2 (27%). Icoh gives the lowest similarity whatever the 
localization algorithm. The results obtained with sLORETA/h2 
and sLORETA/R2 are significantly closer to the reference 
network than the other ones (Wilcoxon rank-sum test, p<0.01, 
corrected using Bonferroni).  
B. Results on real data 

We then applied the EHG source connectivity methods to real 

EHG data. The main motivation is to find a possible 

significant difference (at node level) between networks 

obtained for pregnancy and labor contractions. As no one 

combination of inverse/connectivity methods arose from the 

simulation-based analysis (described above), we applied all 

the combinations on real EHG (segmented and denoised 

bursts). In this analysis we compute the Str for each zone. We 

then performed a statistical test at the level of each node (each 

zone) between pregnancy and labor networks. We plot for 

each inverse/connectivity combination method only the zones 

that present a difference between labor and pregnancy. Figure 

3 shows the different zones that present a significant 

difference between labor and pregnancy when using Str as 

graph measure. All the nodes presented in this figure have p-

value<0.01 using Wilcoxon test, corrected for multiple 

comparison using Bonferroni method. Results show that, when 

using h2 as a connectivity method, the number of significant 

zones (6/16) is the same whatever the inverse problem method 

used. The lowest p_value is obtained when using the wMNE 

for zone 8 (p=1.27 10-30). R2 gave the highest number of zones 

combined with sLORETA (10 zones) and with wMNE (9 

zones). The lowest p_value is given for zone 8 with wMNE 

(p=6.69 10-27). Only one zone (zone 16) provided a significant 

difference when using MNE/Icoh (p=4.4 10-4), while no 

efficient zones are given with wMNE/Icoh and 

sLORETA/Icoh.  

IV. DISCUSSION AND CONCLUSION 

In this paper, we presented the preliminary results of a novel 

approach aiming at characterizing the EHG functional 

connectivity at the source level. The originality in this work is 

the use of a network-based uterine source level analysis to 

study the synchronization between uterine electrical activity, 

in clinical perspective. We reported a comparative study of the 

networks obtained from all possible combinations between 

 

Figure.1. A) Uterine networks obtained by using the different inverse and connectivity methods, B) The original network (ground truth) and 

C) Values (mean ± standard deviation) of the similarity indices computed between the network identified by each combination and the 

model network. 

C 



three algorithms to solve the EHG inverse problem and three 

methods to estimate the functional connectivity. A second 

originality of this study is related to the use of simulated EHG 

signals from a realistic uterine model, as a ground truth to 

compare the performance of the studied methods. 

Results obtained on the simulated data indicated that more 

than one combination give relevant networks when compared 

with the ground-truth. Indeed, sLORETA combined with h2 or 

R2 gives best results but the similarity indexes are low. Thus, 

we have applied on real EHGs all the possible combinations. 

The obtained results indicate that wMNE combined with R2 or 

h2 gives better results than the other combinations. 

Methodological consideration 
The connectivity matrices were thresholded by keeping the 

edges with the highest weight values (strongest 10%). We 

were aware of a possible effect of this threshold. Several 

threshold values (50% to the 5%) were tested and results were 

relatively consistent across threshold. 

Three classical inverse and connectivity algorithms were 

evaluated here. We focused this study on evaluating 

‘functional’ connectivity methods. Nevertheless, the analyse 

of ‘effective’ connectivity methods that investigate the 

causality between different active zones, may be of interest in 

order to study the propagation direction in labor and 

pregnancy. In addition, using other inverse methods more 

suited to the uterine activity (currently under study) will be of 

great interest to improve these preliminary results.  

The uterus model used in this study was computed by using 

the BEM method with four tissue layers. Nevertheless, other 

methods to solve the forward model such as the Finite 

Element Method (FEM) are under investigation. 

Node wise analysis 

The strength graph metric showed several significant zones 

that differentiate between pregnancy and labor. This parameter 

(and other graph measures) will be used as features for 

classification purpose (using machine learning approaches for 

instance) to test its performance in detecting labor or 

predicting premature labor when such data are available. 
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Figure 3.  Node-wise analysis for Strength metric. Only nodes showing 

significant differences between pregnancy/labor were visualized 

 



 


