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Abstract:
Following recent success on the analysis of the Slope estimator, we pro-

vide a sharp oracle inequality in term of prediction error for Graph-Slope,
a generalization of Slope to signals observed over a graph. In addition to
improving upon best results obtained so far for the Total Variation de-
noiser (also referred to as Graph-Lasso or Generalized Lasso), we propose
an efficient algorithm to compute Graph-Slope. The proposed algorithm is
obtained by applying the forward-backward method to the dual formula-
tion of the Graph-Slope optimization problem. We also provide experiments
showing the interest of the method.
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1. Introduction

Many inference problems of interest involve signals defined on discrete graphs.
This includes for instance two-dimensional imaging but also more advanced
hyper-spectral imaging scenarios where the signal lives on a regular grid. Two
types of structure arise naturally in such examples: The first type of structures
comes from regularity or smoothness of the signal, which led to the development
of wavelet methods. The second type of structure involves signals with few sharp
discontinuities. For instance in one dimension, piecewise constant signals appear
when transition states are present, the graph being a 1D path. In imaging, where
the underlying graph is a regular 2D grid, occlusions create piece-wise smooth
signals rather that smooth ones.

This paper studies regularizers for signals with sharp discontinuities. A pop-
ular choice in imaging is the Total Variation (TV) regularization [24]. For 1D
signals, TV regularization has also long been used in statistics [18]. If an addi-
tional `1 regularization is added, this is sometimes referred to as the fused Lasso
[30, 32, 13].

A natural extension of such methods to arbitrary graphs relies on `1 analysis
penalties [15] which involve the incidence matrix of the underlying graph, see
for instance [25] or the Edge Lasso of [26]. Such penalties have the form

pen : β → λ‖D>β‖1 ,

where λ > 0 is a tuning parameter and D> is the (edge-vertex) incidence matrix
of the graph defined below, and β represents the signal to be recovered. This
approach is notably different from contributions in machine learning where `2
penalties, i.e., Laplacian regularization, have been considered for spectral clus-
tering [27, 20] (see also [33] for a review). Theoretical results in favor of the `1
norm instead of the squared `2 norm are studied in [25].

Penalties based on `0 regularization with the graph incidence matrix have
recently been analyzed [16]. They are of interest as they do not suffer from the
(shrinkage) bias created by the convex `1 norm. However, such methods present
the difficulty that in the general case they lead to non-convex problems. Note
that the 1D path is an exception since the associated optimization problem can
be solve using dynamic programming [1]. Concerning the bias reduction though,
simpler remedies could be used, including least-squares refitting on the model
space associated, applying for instance the CLEAR method [14].
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Following the introduction of the Slope regularization in the context of high
dimensional regression [10], we propose Graph-Slope, its generalization to con-
texts where the signal is supported on a graph. In linear regression, Slope [10]
is defined as follows. Given p tuning parameters λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 with
at least one strict inequality, define the ordered `1 norm by

‖θ‖[λ] =

p∑
j=1

λj |θ|↓j , (1.1)

where for any θ ∈ Rp, we use the notation1 (|θ|↓1, . . . , |θ|↓p) for the non-increasing
rearrangement of its amplitudes (|θ1|, . . . , |θp|). Then, given a design matrix
X ∈ Rn×p and a response vector y ∈ Rn, the Slope estimator is defined as a
solution of the minimization problem

min
b∈Rp

1

2n
‖y −Xβ‖2 + ‖β‖[λ] .

If the tuning parameters λ1, . . . , λp are all equal, then Slope is equal to the Lasso
with tuning parameter λ1.

Slope presents several advantages compared to Lasso in sparse linear regres-
sion. First, Slope provably controls the False Discovery Rate (FDR) for or-
thogonal design matrices [10] and experiments show that this property is also
satisfied for some non-orthogonal design matrices [10]. Second, it appears that
Slope has more power than Lasso in the sense that Slope will discover more
nonzero coefficients of the unknown target vector [10]. An interpretation of this
phenomenon is that Lasso shrinks too heavily small coefficients and may thus
miss the smallest nonzero coefficients of the target vector. On the other hand,
the Slope penalty induces less shrinkage on small coefficients, leading to more
power. Third, while Lasso with the universal parameter is known to achieve the
rate of estimation of order (s/n) log(p) (where s is the sparsity of the unknown
target vector, n the number of measurements and p the number of covariates),
Slope achieves the optimal rate of estimation of order (s/n) log(p/s) [28, 4].
However, Slope requires p tuning parameters while Lasso only requires one.

We propose a theoretical and experimental analysis of Graph-Slope, the coun-
terpart estimator of Slope for signals defined on graphs. Graph-Slope is defined
in the next section. Our theoretical contribution for Graph-Slope borrows some
technical details recently introduced in [17] to control the Mean Square Error
(MSE) for the Generalized Lasso.

Last but not least, we provide an efficient solver to compute the Graph-Slope
estimator. It relies on accelerated proximal gradient descent to solve the dual
formulation [3, 12, 22]. To obtain an efficient solver, we leverage the seminal
contribution made in [36] showing the link between ordered `1 norm (1.1) and
isotonic regression. Hence, we can use fast implementations of the PAVA algo-
rithm (for Pool Adjacent Violators Algorithm, see for instance [6]), available for

1following the notation considered in [7]
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instance in scikit-learn [23] for this purpose. Numerical experiments illus-
trate the benefit of Graph-Slope, in particular in terms of True Discovery Rate
(TDR) performance.

A high level interpretation of our simulation results is as follows. In the
model considered in this paper, a sharp discontinuity of the signal corresponds
to an edge of the graph with nonzero coefficient. Since Graph-Lasso uses an
`1-penalty, the penalty level is uniform across all edges of the graph. Edges with
small coefficients are too heavily penalized with Graph-Lasso. Using Graph-
Slope lets us reduce the penalty level on the edges with small coefficients. This
leads to the discovery of more discontinuities of the true signal as compared to
Graph-Lasso.

1.1. Model and notation

Let G = (V,E) be an undirected and connected graph on n vertices, V = [n],
and p edges, E = [p]. This graph can be represented by its edge-vertex incidence
matrix D> = D>G ∈ Rn×p (we drop the reference to G when no ambiguity is
possible) defined as

(D>)e,v =


+1, if v = min(i, j)

−1, if v = max(i, j)

0, otherwise

,

where e = {i, j}. The matrix L = DD> is the so-called graph Laplacian of G.
The Laplacian L is invariant under a change of orientation of the graph.

For any u ∈ Rp, we denote by ‖u‖0 the pseudo `0 norm of u : ‖u‖0 = |{j ∈
[p] : uj 6= 0}|, and for any matrix A, we denote by A† its Moore-Penrose
pseudo-inverse. The canonical basis of Rp is denoted (e1, . . . , ep).

For any norm ‖ · ‖ on Rn, the associated dual norm ‖ · ‖∗ reads at v ∈ Rn

‖v‖∗ = sup
‖β‖61

〈v, β〉 .

As a consequence, for every (β, v) ∈ Rn × Rn, one have 〈β, v〉 6 ‖β‖‖v‖∗.
In this work, we consider the following denoising problem for a signal over

a graph. Assume that each vertex i ∈ [n] of the graph carries a signal β?i . For
each vertex i ∈ [n] of the graph, one observes yi, a noisy perturbation of β?i . In
vector form, one observes the vector y ∈ Rn and aims to estimate β? ∈ Rn, i.e.,

y = β? + ε ,

where ε ∼ N (0, σ2Idn) is a noise vector. We will say that an edge e = {i, j} of
the graph carries the signal (D>β?)e. In particular, if two vertices i and j are
neighbours and if they carry the same value of the signal, i.e., β?i = β?j , then
the corresponding edge e = {i, j} carries the constant signal. The focus of the
present paper is on signals β? that have few discontinuities. A signal β? ∈ Rn
has few discontinuities if D>β? has few nonzero coefficients, i.e., ‖D>β?‖0 is
small, or equivalently if most edges of the graph carry the constant signal. In
particular, if ‖D>β?‖0 = s, we say that β? is a vector of D>-sparsity s.
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1.2. The Graph-Slope estimator

We consider in this paper the so-called Graph-Slope variational scheme:

β̂ := β̂GS ∈ argmin
β∈Rp

1

2
‖y − β‖2n + ‖D>β‖[λ] , (1.2)

where ‖ · ‖2n = 1
n‖ · ‖

2 is the scaled Euclidean norm, and

‖D>β‖[λ] =

p∑
j=1

λj |D>β|↓j ,

with λ = (λ1, . . . , λp) ∈ Rp satisfying λ1 > λ2 > · · · > λp ≥ 0, and using for any

vector θ ∈ Rp the notation2 (|θ|↓1, . . . , |θ|↓p) for the non-increasing rearrangement
of its amplitudes (|θ1|, . . . , |θp|). According to [10], ‖ · ‖[λ] is a norm over Rp if
and only if λ1 > λ2 > · · · > λp ≥ 0 with at least one strict inequality. This
is a consequence of the observation that if λ1 > λ2 > · · · > λp ≥ 0 then one
can rewrite the Slope-norm of θ as the maximum over all τ ∈ Sp (the set of
permutations over [p]), of the quantity

∑p
i=1 λj |θτ(j)|:

‖θ‖[λ] = max
τ∈Sp

p∑
j=1

λj |θτ(j)| =
p∑
j=1

λj |θ|↓j .

The Generalized Lasso (also sometimes referred to as TV denoiser) relies on
`1 regularization. It was recently investigated in [17, 25], and can be defined as

β̂GL ∈ argmin
β∈Rp

1

2
‖y − β‖2n + λ1‖D>β‖1 , (1.3)

where ‖ · ‖1 is the standard `1 norm, and λ1 > 0 is a tuning parameter.
If λ1 = λ2 = · · · = λp then ‖θ‖[λ] = λ1‖θ‖1 for all θ ∈ Rp, so that the

minimization problems (1.3) and (1.2) are the same. On the other hand, if λj >
λj+1 for some j = 1, . . . , p − 1, then the optimization problems (1.3) and (1.2)
differ. For instance, if λ1 > λ2 > 0, all coefficients of D>β are equally penalized
in the Graph-Lasso (1.3), while coefficients of D>β are not uniformly penalized
in in the Graph-Slope optimization problem (1.2). Indeed, in the Graph-Slope
optimization problem (1.2), the largest coefficient of D>β is penalized as in (1.3)
but smaller coefficients of D>β receive a smaller penalization. The Graph-Slope
optimization problem (1.2) is more flexible than (1.3) as it allows the smaller
coefficients of D>β to be less penalized than its larger coefficients. We will see in
the next sections that this flexibility brings advantages to both the theoretical
properties of β̂GS as well as its performance in simulations, as compared to β̂GL.

2following the notation from [7].
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2. Theoretical guarantees: sharp oracle inequality

We can now state the main theoretical result of the paper, a sharp oracle in-
equality for the Graph-Slope. For any integer s and weights λ = (λ1, . . . , λp),
define

Λ(λ, s) =
( s∑
j=1

λ2
j

)1/2

. (2.1)

Theorem 2.1. Assume that the Graph-Slope weights λ1 ≥ · · · ≥ λp ≥ 0 are
such that the event

1√
n
‖D†ε‖∗[λ] ≤ 1/2 (2.2)

has probability at least 1/2. Then, for any δ ∈ (0, 1), we have with probability at
least 1− 2δ

‖β̂−β?‖2n ≤ inf
s∈[p]

 inf
β∈Rn

‖D>β‖0≤s

‖β − β?‖2n +

(
3Λ(λ, s)

κ(s)
+
σ + 2σ

√
2 log(1/δ)√
n

)2
 ,

(2.3)
where Λ(·, ·) is defined in (2.1) and the compatibility factor κ(s) is defined as

κ(s) , inf
v∈Rn:3Λ(λ,s)‖D>v‖2>

∑p
j=s+1 λj |D>v|

↓
j

(
‖v‖n
‖D>v‖2

)
. (2.4)

Proof. Let β be a minimizer of the right hand side of (2.3) and let s = ‖D>β‖0.
Define the function f(·) by

f(e) = sup
v∈Rn:‖v‖n=1

e>v√
n

+ Λ(λ, s)‖D>v‖2 −
p∑

j=s+1

λj |D>v|↓j

 .
Let also w = (β̂ − β)/(‖β̂ − β‖n). By Lemma A.3 and Lemma A.1 with α = 0,
for any z ∈ Rp, we have almost surely

‖β̂ − z‖2n − ‖β − z‖2n ≤
2

n
ε>(β̂ − β) + ‖D>β‖[λ] − ‖D>β̂‖[λ] − ‖β̂ − β‖2n,

≤ 2

n
ε>(β̂ − β) + Λ(λ, s)‖D>(β̂ − β)‖2

−
p∑

j=s+1

λj |D>(β̂ − β)|↓j − ‖β̂ − β‖
2
n,

=2‖β̂ − β̂‖n
(ε>w√

n
+ Λ(λ, s)‖D>w‖2 −

p∑
j=s+1

λj |D>w|↓j
)

− ‖β̂ − β‖2n,

≤2‖β̂ − β̂‖nf(ε)− ‖β̂ − β‖2n ≤ f(ε)2,
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where for the last inequality we used the elementary inequality 2ab− a2 ≤ b2.
By Lemma A.4 we have Idn = (Idn −Π) + Π with Idn −Π = (D>)†D> and

where Π is the orthogonal projection onto ker(D>). Furthermore, ker(D>) has
dimension 1 so that ‖Πε‖22/σ2 is a χ2 random variable with 1 degree of freedom.
Thus for any v ∈ Rn with ‖v‖n = 1 we have

1√
n
ε>v =

1√
n
ε>Πv +

1√
n
ε>(Idn −Π)v ≤ ‖Πε‖2 +

1√
n
ε>(Idn −Π)v. (2.5)

Let us define the function g(·) by

g(e) = sup
v∈Rn:‖v‖n=1

 1√
n
e>(Idn −Π)v + Λ(λ, s)‖D>v‖2 −

p∑
j=s+1

λj |D>v|↓j

 .
Then, by the definition of f, g and (2.5), we have almost surely f(ε) ≤ ‖Πε‖2 +
g(ε). By a standard bound on χ2 random variable with 1 degree of freedom, we
have P(‖Πε‖2 ≤ σ + σ

√
2 log(1/δ)) ≥ 1 − δ. Furthermore, the function g is is

1-Lipschitz and ε ∼ N (0, σ2Idn). By the Gaussian concentration theorem [11,
Theorem 10.17], we have

P
(
g(ε) ≤ Med[g(ε)] + σ

√
2 log(1/δ)

)
≥ 1− δ ,

where Med[g(ε)] is the median of the random variable g(ε). Combining these
two probability bounds with the union bound, we obtain f(ε) ≤ Med[g(ε)] +
σ + 2σ

√
2 log(1/δ) with probability at least 1− 2δ.

To complete the proof, it remains to show that

Med[g(ε)] ≤ 3Λ(λ, s)/κ(s) .

By cdefinition of the median, it is enough to show that P(g(ε) ≤ 3Λ(λ, s)/κ(s)) ≥
1/2. By Lemma A.4 and the fact that Idn −Π = (D>)†D>, we obtain that for
all v,

1√
n
ε>(Idn −Π)v =

1√
n
ε>(D>)†D>v

≤ 1√
n
‖((D>)†)>ε‖∗[λ]‖D

>v‖[λ]

=
1√
n
‖D†ε‖∗[λ]‖D

>v‖[λ] ,

where we used the duality between ‖·‖∗[λ] and ‖·‖[λ] for the second term and the
fact that the transpose and the Moore-Penrose pseudo-inverse commute, which

implies (D†)> = D>
†
.
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We now bound g(ε) from above on the event (2.2). On the event (2.2),

g(ε) ≤ sup
v∈Rn:‖v‖n=1

1

2
‖D>v‖[λ] + Λ(λ, s)‖D>v‖2 −

p∑
j=s+1

λj |D>v|↓j


≤ sup
v∈Rn:‖v‖n=1

1

2

s∑
j=1

λj |D>v|↓j + Λ(λ, s)‖D>v‖2 −
1

2

p∑
j=s+1

λj |D>v|↓j


≤ 1

2
sup

v∈Rn:‖v‖n=1

3Λ(λ, s)‖D>v‖2 −
p∑

j=s+1

λj |D>v|↓j

 .

Consider v ∈ Rn such that ‖v‖n = 1 and 3Λ(λ, s)‖D>v‖2 >
∑p
j=s+1 λj |D>v|

↓
j .

Then, by the definition of κ(s) given in defined in (2.4) we have

3Λ(λ, s)‖D>v‖2 −
p∑

j=s+1

λj |D>v|↓j ≤ 3Λ(λ, s)‖v‖n/κ(s) = 3Λ(λ, s)/κ(s).

Consider v ∈ Rn such that ‖v‖n = 1 and 3Λ(λ, s)‖D>v‖2 ≤
∑p
j=s+1 λj |D>v|

↓
j ,

then we have trivially

3Λ(λ, s)‖D>v‖2 −
p∑

j=s+1

λj |D>v|↓j ≤ 0 ≤ 3Λ(λ, s)/κ(s) .

Thus, we have proved that on the event (2.2) that has probability at least 1/2,
we have g(ε) ≤ 3Λ(λ, s)/κ(s). This implies that Med[g(ε)] ≤ 3Λ(λ, s)/κ(s) and
the proof is complete.

The constant κ(s) is sometimes referred to as the compatibility factor of D>.
Bounds on the compatibility factor are obtained for a large class of random and
deterministic graphs [17]. For instance, for graphs with bounded degree, the
compatibility factor is bounded from below (see for instance [17, Lemma 3]). In
linear regression, constants that measure the correlations of the design matrix
have been proposed to study the Lasso and the Dantzig selector: [8] defined the
Restricted Eigenvalue constant, [31] defined the Compatibility constant, [35]
defined the Cone Invertibility factors and [13] defined the Compatibility factor,
to name a few. The Weighted Restricted Eigenvalue constant was also defined
in [4] to study the Slope estimator. These constants are the linear regression
analogs of κ(s) defined in (2.4).

Theorem 2.1 does not provide an explicit choice for the weights λ1 ≥ · · · ≥ λp.
These weights should be large enough so that the event (2.2) has probability at
least 1/2. These weights should also be as small as possible in order to minimize
the right hand side of (2.3). Define g1, . . . , gp by

gj = e>j D
†ε/
√
n, for all j = 1, . . . , p . (2.6)
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and let |g|↓1 ≥ · · · ≥ |g|↓p be a nondecreasing rearrangement of (|g1|, . . . , |gp|).
Inequality (2.8) in the appendix reads

(1/
√
n)‖D†ε‖∗[λ] ≤ max

j=1,...,p

(
|g|↓j / λj

)
.

Thus, if the event

max
j=1,...,p

(
|g|↓j / λj

)
≤ 1/2 ,

has probability greater than 1/2, then the event (2.2) has probability greater
than 1/2 as well, and the conclusion of Theorem 2.1 holds. This observation
can be used to the following heuristics for the choice of the tuning parameters
λ1 ≥ · · · ≥ λp. This heuristics can be implemented provided that the Moore-
Penrose pseudo-inverse D† and the probability distribution of the noise random
vector ε are both known. This heuristics goes as follows. Assume that one has
generated many independent copies of the random vector ε, and denote by P̃
the empirical probability distribution with respect to these independent copies
of ε. Next, define λj as the (1− 1/(3p))th quantile of 2|g|↓j , so that

P̃(2|g|↓j ≤ λj) ≥ 1− 1/3p .

By the union bound over j = 1, . . . , p,

P̃
[

max
j=1,...,p

(
|g|↓j / λj

)
≤ 1/2

]
≥ 2/3 .

Now assume that many independent copies of ε have been generated and P̃ is
close to the probability distribution P of ε in total variation, say ‖P− P̃‖TV ≤
γ for some small constant γ ∈ (0, 1/6). Then the event (2.2) has probability
probability greater than 2/3 − γ with respect to the probability distribution P
of ε, and the conclusion of Theorem 2.1 holds. This simple scheme provides a
computational heuristics to choose the weights λ1, . . . , λp.

The following corollaries propose a theoretical choice for the weights. To state
these corollaries, let us write

ρ(G) = max
j∈[p]
‖(D>)†ej‖n ,

following the notation in [17].

Corollary 1. Assume that the Graph-Slope weights λ1 ≥ · · · ≥ λp ≥ 0 satisfy
for any j ∈ [p]

λj ≥ 8σρ(G)

√
log(2p/j)

n
. (2.7)

Then, for any δ ∈ (0, 1), the oracle inequality (2.3) holds with probability at least
1− 2δ.
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Proof. It is enough to show that if the weights λ1, . . . , λp satisfy (2.7) then the
event (2.2) has probability at least 1/2.

Define g1, . . . , gp by (2.6) and let |g|↓1 ≥ · · · ≥ |g|↓p be a nondecreasing rear-
rangement of (|g1|, . . . , |gp|). For each j, the random variable gj is a centered
Gaussian random variable with variance at most ‖D†ej‖2n. By definition of the
dual norm, and [7, Corrolary II.4.3], we have

1√
n
‖D†ε‖∗[λ] = sup

a∈Rp:‖a‖[λ]=1

a>D†ε√
n

≤ sup
a∈Rp:‖a‖[λ]=1

p∑
j=1

λj |a|↓j ·
|g|↓j
λj

≤ max
j=1,...,p

|g|↓j
λj

(2.8)

≤ max
j=1,...,p

|g|↓j
8
√
V log(2p/j)

,

where V = σ2 maxj=1,...,p ‖D>
†
ej‖2n. Thus, by Lemma A.5 below, the event

(2.2) has probability at least 1/2.

Under an explicit choice of tuning parameters, Corollary 1 yields the following
result.

Corollary 2. Under the same hypothesis as Theorem 2.1 but with the special

choice λj = 8σρ(G)
√

log(2p/j)
n for any j ∈ [p], then for any δ ∈ (0, 1), we have

with probability at least 1− 2δ

‖β̂ − β?‖2n ≤ inf
s∈[p],β∈Rn

‖D>β‖0≤s

[
‖β − β?‖2n+ σ2

n

48ρ2(G)s

κ2(s)
log
(

2ep
s

)]
+ σ2

n (2 + 16 log
(

1
δ

)
) .

Proof. We apply Lemma A.2 with the choice C = 8σρ(G)

When the true signal satisfies ‖D>β?‖0 = s?, the previous bound reduces to

‖β̂ − β?‖2n ≤
σ2

n

(
48ρ(G)2s?

κ(s?)2
log

(
2ep

s?

)
+ 2 + 16 log

(
1

δ

))
.

Corollary 2 is an improvement w.r.t. the bound provided in [17, Theorem 2] for
the TV denoiser (also sometimes referred to as the Generalized Lasso) relying
on `1 regularization defined in Eq. (1.3).

Indeed, the contribution of the second term in Corollary 2 is reduced from
log(ep/δ) (in [17, Theorem 2]) to log(2ep/s). Thus the dependence of the right
hand side of the oracle inequality in the confidence level δ is significantly reduced
compared to the result of [17, Theorem 2].



Bellec et al./A sharp oracle inequality for Graph-Slope 11

A similar bound as in Corollary 2 could be obtained for `1 regularization
adapting the proof from [4, Theorem 4.3]. However such a better bound would
be obtained for a choice of regularization parameter relying on the D>-sparsity
of the signal. The Graph-Slope does not rely on such quantity, and thus Graph-
Slope is adaptive to the unknown D>-sparsity of the signal.

Remark 1. The optimal theoretical choice of parameter requires the knowledge
of the noise level σ from the practitioner. Whenever the noise level σ is not
known, the practitioner can use the corresponding Concomitant estimator to
alleviate this issue [21, 5, 29], see also [19] for efficient algorithms to compute
such scale-free estimators.

3. Numerical experiments

3.1. Algorithm for Graph-Slope

In this section, we propose an algorithm to compute a solution of the highly
structured optimization problem (1.2). The data fidelity term f : β 7→ ‖y −
β‖22/2 is a convex smooth function with 1-Lipschitz gradient, and the map β 7→
‖D>β‖[λ] is the pre-composition by a linear operator of the norm ‖ · ‖[λ] whose
proximal operator can be easily computed [36, 10]. Thus, the use of a dual or
primal-dual proximal scheme can be advocated.

Problem (1.2) can be rewritten as

min
β∈Rn

f(β) + g(D>β) ,

where f is a smooth, 1-Lipschitz strictly convex function and g = ‖ · ‖[λ] is a
convex, proper, lower semicontinuous function (see for instance [2, p. 275]). Its
dual problem reads

min
θ∈Rp

f?(Dθ) + g?(−θ) ,

where f? is the convex conjugate of f , i.e., for any x ∈ Rn

f?(x) = sup
z
〈x, z〉 − f(z) .

Classical computations leads to the following dual problem

min
θ∈Rp

1

2
‖Dθ − y‖22 −

1

2
‖y‖22 subject to ‖θ‖∗[λ] 6 1 . (3.1)

The dual formulation (3.1) can be rewritten as an unconstrained problem, using
for any set C ⊂ Rn, and any θ ∈ Rn, the notation

ιC(θ) =

{
0, if θ ∈ C
+∞, otherwise

.
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Algorithm 1 FISTA on dual formulation

Require: (β0, θ0) initial guess, L = ‖D‖2, t0 = 1, ε duality gap tolerance
k ← 0
while ∆(βk, θk) > ε do

θk+1 ← Π 1
L
B∗

(
θ̄k − 1

L
(D>(Dθ̄k − y))

)
. forward-backward step

βk+1 ← y −Dθk+1 . necessary to compute ∆

tk+1 ←
1+

√
1+4t2

k

2
. FISTA rule

θ̄k+1 ← θk+1 + tk−1
tk+1

(θk+1 − θk) . non-convex over-relaxation

k ← k + 1
end while

The quadratic term in y is constant and can be dropped. Thus the optimiza-
tion problem (3.1) is equivalent to

min
θ∈Rp

1

2
‖Dθ − y‖22 + ι{‖·‖∗

[λ]
61}(θ). (3.2)

The formulation in (3.2) is now well suited to apply an accelerated version of
the forward-backward algorithm such as FISTA [3]. As a stopping criteria, we
use a duality gap criterion: ∆(β, θ) 6 ε, where

∆(β, θ) =
1

2
‖y − β‖22 + ‖D>β‖[λ] +

1

2
‖Dθ − y‖22 −

1

2
‖y‖22 ,

for a feasible pair (β, θ) and by ∆(β, θ) = +∞ for an unfeasible pair. In practice
we set ε = 10−2 as a default value. Algorithm 1 summarizes the dual FISTA
algorithm applied to the Graph-Slope minimization problem.

We recall that the proximity operator of a convex, proper, lower semicontin-
uous function f is given as the unique solution of the optimization problem

Proxλf (β) = argmin
z∈Rn

1

2
‖β − z‖22 + λf(z) .

To compute the proximity operator of ι{‖·‖∗
[λ]

61}, we use the Moreau’s decompo-

sition [22, p. 65] which links it to the proximity operator of the dual Slope-norm,

θ = Proxτι‖·‖∗
[λ]

61
(θ) + τ Prox 1

τ ‖·‖[λ]

(
θ

τ

)
= Π 1

τB∗
(θ) + τ Prox 1

τ ‖·‖[λ]

(
θ

τ

)
,

where Π 1
τB∗

is the projection onto the unit ball B∗ associated to the dual

norm ‖ · ‖∗ scaled by a factor 1/τ . The proximity operator of ‖ · ‖[λ] can be
obtained obtained in several ways [36, 10]. In our numerical experiments, we use
the connection between this operator and the isotonic regression following [36],
which can be computed in linear time. Under the assumption that the quantity



Bellec et al./A sharp oracle inequality for Graph-Slope 13

(ui − λi) is positive, non-increasing, computing Prox‖·‖[λ](u) is equivalent to
solving the problem

argmin
θ∈Rp

1

2
‖u− λ− θ‖22 subject to θ1 > θ2 > · · · > θp > 0 .

We have relied on the fast implementation implementation of the PAVA algo-
rithm (for Pool Adjacent Violators Algorithm, see for instance [6]), available in
scikit-learn [23] to solve this inner problem.

The source code used for our numerical experiments is freely available at
http://github.com/svaiter/gslope_oracle_inequality.

3.2. Synthetic experiments

To illustrate the behavior of Graph-Slope, we first propose two synthetic ex-
periments in moderate dimension. The first one is concerned with the so-called
“Caveman” graph and the second one with the 1D path graph.

For these two scenarios, we analyze the performance following the same pro-
tocol. For a given noise level σ, we use the bounds derived in Theorem 2.1 (we
dropped the constant term 8) and in [17], i.e.,

λGL = ρ(G)σ

√
2 log(p)

n
and (λGS)j = ρ(G)σ

√
2 log(p/j)

n
∀j ∈ [p] . (3.3)

For every n0 between 0 and p, we generate 1000 signals as follows. We draw
J uniformly at random among all the subsets of [p] of size n0. Then, we let
ΠJ to be the projection onto KerD>J and generate a vector g ∼ N (0, Idn). We
then construct β? = c(Id−ΠJ)g where c is a given constant (here c = 8). This
constrains the signal β? to be of D>-sparsity at most p− n0.

We corrupt the signals by adding a zero mean Gaussian noise with variance
σ2, and run both the Graph-Lasso estimator and the Graph-Slope estimator.
We then compute the mean of the mean-square error (MSE), the false detection
rate (FDR) and the true detection rate (TDR). To clarify our vocabulary, given

an estimator β̂ and a ground truth β?, the MSE reads ‖β? − β̂‖2n, while the
FDR and TDR read, respectively,

FDR(β̂, β?) =


|{j∈[p] : j∈supp(D>β̂) and j 6∈supp(D>β?)}|

| supp(D>β̂)|
if D>β̂ 6= 0

0 if D>β̂ = 0,

and

TDR(β̂, β?) =

{
|{j∈[p] : j∈supp(D>β̂) and j∈supp(D>β?)}|

| supp(D>β?)| , if D>β? 6= 0,

0, if D>β? = 0,

where for any z ∈ Rp, supp(z) = {j ∈ [p] : zj 6= 0}.

http://github.com/svaiter/gslope_oracle_inequality
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Example on Caveman The caveman model was introduced in [34] to model
small-world phenomenon in sociology. Here we consider its relaxed version,
which is a graph formed by l cliques of size k (hence n = lk), such that with
probability q ∈ [0, 1], an edge of a clique is linked to a different clique. In our
experiment, we set l = 4, k = 10 (n = 40) and q = 0.1. We provide a visuali-
sation of such a graph in Figure 1a. For this realization, we have p = 180. The
rewired edges are indicated in blue in Figure 1a whereas the edges similar to the
complete graph on 10 nodes are in black. The signals are generated as random
vectors of given D>-sparsity with a noise level of σ = 0.2. Figure 1b shows the
weights decay.

Figures 1c–1e represent the evolution of the MSE and TDR in function of
the level of D>-sparsity. We observe that while the MSE is close between the
Graph-Lasso and the Graph-Slope estimator at low level of sparsity, the TDR
is vastly improved in the case of Graph-Slope, with a small price concerning the
FDR (a bit more for the Monte Carlo choice of the weights). Hence empirically,
Graph-Slope will make more discoveries than Graph-Lasso without impacting
the overall FDR/MSE, and even improving it.

Example on a path: 1D–Total Variation The classical 1D–Total Variation
corresponds to the Graph-Lasso estimator β̂GL when G is the path graph over
n vertices, hence with p = n− 1 edges. In our experiments, we take n = 40 and
σ = 0.6. We display a typical realization of such signal in Figure 2a. Figure 2b
shows the weights decay. Note that in this case, the Monte–Carlo weights shape
differs from the one in the previous experiment. Indeed, they are adapated to
the underlying graph, contrary to the theoretical weights λGS which depend
only on the size of the graph. Figures 2c–2e represent the evolution of the
MSE and TDR in function of the level of D>-sparsity. Here, Graph-Slope does
not improve the MSE significantly. However, as for the caveman experiments,
Graph-Slope is more likely to make more discoveries than Graph-Lasso for a
small price concerning the FDR.

3.3. Example on real data: Paris roads network

To conclude our numerical experiments, we present our result on a real-life
graph, the road network of Paris, France. Thanks to the Python module osmnx [9],
which downloads and simplifies OpenStreetMap data, we run our experiments
on p = 20108 streets (edges) and n = 10205 intersections (vertices).

The ground truth signal is constructed as in [16] as follows. Starting from
30 infection sources, each infected intersections has a probability 0.75 to infect
each of its neighbors. We let the infection process runs for 8 iterations. The
resulting graph signal β? is represented in Figure 3a with D>-sparsity 1586. We
then corrupt this signal by a zero mean Gaussian noise with standard-deviation
σ = 0.8, leading to the observations y represented in Figure 3b.

Instead of using the parameters given in (3.4), we have computed the oracle
parameters for the Graph-Lasso and Graph-Slope estimators by evaluating for
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100 parameters of the form

λGL = ασ

√
2 log(p)

n
and (λGS)j = ασ

√
2 log(p/j)

n
∀j ∈ [p] , (3.4)

where α lives on a geometric grid inside [10−5, 101.5]. The best one in term of

MSE (i.e., in term of ‖β̂ − β?‖2n) is refered to as the oracle parameter. The
results are illustrated in Figure 3c for Graph-Lasso and in Figure 3d for Graph-
Slope. We can see the benefit of Graph-Slope, for instance in the center of Paris
where the sources of infections are better identified as shown in the close-up,
see Figures 3e–3g.

Appendix A: Preliminary lemmas

Lemma A.1. Let s ∈ [p]. For any two β, β̂ ∈ Rn such that ‖D>β‖0 6 s we
have

‖D>β‖[λ] − ‖D>β̂‖[λ] 6
s∑
j=1

λj |u|↓j −
p∑

j=s+1

λj |u|↓j ,≤ Λ(λ, s)‖u‖2 −
p∑

j=s+1

λj |u|↓j ,

where u = D>(β̂ − β) and Λ(λ, s) =
(∑s

j=1 λ
2
j

)1/2

.

Proof. This is a consequence of [4, Lemma A.1]. We provide a proof here for com-
pleteness. The second inequality is simple consequence of the Cauchy-Schwarz
inequality. Indeed, (

∑s
j=1 λj |u|

↓
j )

2 ≤ (
∑s
j=1 λ

2
j )(
∑s
j=1(|u|↓j )2) ≤ ‖u‖22(

∑s
j=1 λ

2
j ).

Let v = D>β and w = D>β̂ and note that u = w−v. Let ϕ be a permutation
of [p] such that ‖v‖[λ] =

∑s
j=1 λj |v|ϕ(j). The first inequality can be rewritten as

‖v‖[λ] − ‖w‖[λ] = ‖v‖[λ] − sup
τ

p∑
j=1

λj |w|τ(j) 6
s∑
j=1

λj |u|↓j −
p∑

j=s+1

λj |u|↓j , (A.1)

where the supremum is taken over all permutations τ of [p]. We now prove (A.1).
Let τ be a permutation of [p] such that ϕ(j) = τ(j) for all j = 1, . . . , s. Then
by the triangle inequality, we have

|v|ϕ(j) − |w|ϕ(j) = |v|ϕ(j) − |w|τ(j) ≤ |u|τ(j)

for each j = 1, . . . , s since u = w− v. Furthermore, for each j > s, it holds that
vτ(j) = 0 so that wτ(j) = uτ(j). Thus,

‖v‖[λ] − ‖w‖[λ] ≤
s∑
j=1

λj |v|ϕ(j) −
p∑
j=1

λj |w|τ(j) ≤
s∑
j=1

λj |u|τ(j) −
p∑

j=s+1

λj |u|τ(j).

It is clear that
∑s
j=1 λj |u|τ(j) ≤

∑s
j=1 λj |u|

↓
j . Finally, notice that it is always

possible to find a permutation τ such that (|u|τ(j))j>s is non-decreasing. For

such choice of τ we have −
∑p
j=s+1 λj |u|τ(j) ≤ −

∑p
j=s+1 λj |u|

↓
j .
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Lemma A.2. For the choice of weights: ∀j ∈ [p], λj = C
√

log(2p/j)/n, the
following inequalities hold true

C

√
s log(2p/s)

n
6 Λ(λ, s) 6 C

√
s log(2ep/s)

n
.

Proof. Reminding Stirling’s formula s log(s/e) 6 log(s!) 6 s log(s), one can
check that

s log

(
2p

s

)
6

s∑
j=1

log

(
2p

j

)
6 s log(2p)− log(s!) = log

(
2ep

s

)
.

The lemma holds true multiplying by C/
√
n both sides of the previous display.

Lemma A.3. Let z, ε ∈ Rn, y = z + ε, and β̂ a solution of Problem (1.2).
Then, for all β ∈ Rn,

‖β̂ − z‖2n − ‖β − z‖2n 6
2

n
ε>(β̂ − β) + ‖D>β‖[λ] − ‖D>β̂‖[λ] − ‖β̂ − β‖2n.

Proof. The objective function of the minimization problem (1.2) is the sum of
two convex functions. The first term, i.e., the function β → 1

2‖y − β‖
2
n, is 1-

strongly convex with respect to the norm ‖ · ‖n. The sum of a 1-strongly convex
function and a convex function is 1-strongly convex, and thus we have

1

2
‖β̂ − y‖2n + ‖D>β̂‖[λ] ≤ dT (β̂ − β) +

1

2
‖β − y‖2n + ‖D>β‖[λ] −

1

2
‖β − β̂‖2n

for all β ∈ Rn and for any d in the subdifferential of the objective function (1.2)

at β̂. Since β̂ is a minimizer of (1.2), we can choose d = 0 in the above display.
For d = 0, the previous display is equivalent to the claim of the Lemma.

Lemma A.4. Let us suppose that the graph G has K connected components
C1, . . . , CK . Then,

ker(D>) = span(1C1)⊕ · · · ⊕ span(1CK ),

where for any k ∈ [K], the vectors 1Ck ∈ Rn are defined by

(1Ck)i =

{
1 if i ∈ Ck
0 otherwise

, for i = 1, · · · , |V | .

Moreover, the orthogonal projection over ker(D>) is denoted by Π and is the
component-wise averaging given by

(Π(β))i =
1

|Ck|
∑
i∈Ck

βi, where k is such that Ck 3 i, for i = 1, . . . , n.

Furthermore, if G is a connected graph then ker(Π) = span(1n).
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Proof. The proof can be done for the simple case of a connected graph (i.e., K =
1), and the result can be generalized by tensorization of graph for K > 1 compo-
nents. Hence, we assume that K = 1. For any β ∈ ker(D>), the definition of the
incidence matrix yields that for all (i, j) ∈ E, βi = βj . Since all vertices are con-
nected, by recursion all the βj ’s are identical, and β ∈ span(1n) = span(1C1

).
The converse is proved in the same way.

Lemma A.5 (Proposition E.2 in [4]). Let g1, . . . , gp be centered Gaussian ran-
dom variables (not necessarily independent) with variance at most V > 0. Then,

P

(
max

j=1,...,p

|g|↓j√
V log(2p/j)

≤ 4

)
≥ 1/2 .
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(a) Realization of a caveman graph
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(b) Weights
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(c) Mean-square error (MSE)

0 25 50 75 100 125 150 175

D -sparsity

0.0

0.2

0.4

0.6

0.8

FD
R

Graph-Lasso
Graph-Slope
Graph-Slope (MC)

(d) False Detection Rate (FDR)
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Fig 1: Relaxed caveman denoising
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(a) Example of signal
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(b) Weights
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(c) Mean-square error (MSE)
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(d) False Detection Rate (FDR)
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Fig 2: TV1D
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(a) True signal β? (b) Noisy signal y

(c) Graph-Lasso β̂GL

(MSE=0.070,FDR=83.4%,TDR=52.1%)
(d) Graph-Slope β̂GS

(MSE=0.074,FDR=88.6%,TDR=73.5%)

(e) True signal close-up (f) Graph-Lasso close-up (g) Graph-Slope close-up
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Fig 3: Paris road network. Comparaison of oracle choice for the tuning parameter
between Graph-Lasso and Graph-Slope.
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