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Figure 1: The WILD (left) and WILDER (right) wall-sized displays running CamRay, and close-ups on the cameras (center).

ABSTRACT
Remote collaboration across wall-sized displays creates a key
challenge: how to support audio-video communication among
users as they move in front of the display. We present CamRay,
a platform that uses camera arrays embedded in wall-sized
displays to capture video of users and present it on remote
displays according to the users’ positions. We investigate two
settings: in Follow-Remote, the position of the video window
follows the position of the remote user; in Follow-Local, the
video window always appears in front of the local user. We
report the results of a controlled experiment showing that with
Follow-Remote, participants are faster, use more deictic instruc-
tions, interpret them more accurately, and use fewer words.
However, some participants preferred the virtual face-to-face
created by Follow-Local when checking for their partners’ un-
derstanding. We conclude with design recommendations to
support remote collaboration across wall-sized displays.
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INTRODUCTION
Compared with desktop displays, high-resolution wall-sized
displays let users physically navigate large amounts of data [2],
scan and find objects more easily [18], and use spatial memory
to move and classify objects more efficiently [20]. Because
of their large size, such displays also support colocated group
work: users can understand and be aware of what their col-
leagues are doing, enabling tightly-coupled collaboration [19].
But how can we support such collaboration in remote settings?
Current tools for remote collaboration are designed for users
sitting at a desk or a video conferencing table, and do not scale
to large interactive spaces where users can move.

Our challenge is to create a system in which remote users
of wall-sized displays can interact easily with each other, as
well as with data on the wall. Most remote collaboration
systems use video as an effective surrogate for face-to-face
conversation. However, in wall-sized display environments
where users move, it is unclear where to position cameras and
where to display the captured video.

We introduce CamRay, a platform that captures video of users
as they move in front of wall-sized displays using camera ar-
rays, and presents this video on remote walls. Using available
hardware and open-source platforms, we add cameras to exist-
ing large wall-sized displays, stream video to a remote site in
real time and display it according to users’ position.

We first examine related work and describe an observational
study that informed the design of CamRay, which we then
present in detail. We report on an experiment where pairs of
users worked on a data manipulation task, while we manip-
ulate the position of each other’s video. We conclude with
implications for the design of systems for remote collaboration
on wall-sized displays and discuss directions for future work.

http://dx.doi.org/10.1145/3025453.3025604


Our contribution is twofold: 1) CamRay, a platform that cap-
tures and displays users as they move in front of wall-sized
displays; 2) an experiment that shows how the position of the
video feed affects collaboration and communication.

RELATED WORK
We first review Clark’s work on communication as it provides
a theoretical basis for our work. We then review previous work
on the use of video for remote collaboration and systems that
support remote collaboration across large interactive spaces.

Technology-mediated Communication
According to Clark [9], communication is characterized by a
series of messages between parties which, once understood,
become part of their common ground: the mutual knowledge,
beliefs and assumptions shared by partners in communica-
tion [9, 10]. Common ground is updated through grounding,
the collective process by which participants try to reach mutual
belief that what has been said has been understood [8]. This
process has a cost in technology-mediated communication,
which Clark characterizes and defines [8], e.g., start-up cost to
establish communication, delay and asynchrony when it is not
purely real-time. Telepresence systems must take these costs
into account and attempt to reduce them in order to support
effective video-mediated communication.

Personal Video for Remote Collaboration
Previous work has shown the benefits of personal video for
remote collaboration. According to Isaacs & Tang [15], a

“video channel adds or improves the ability to show under-
standing, forecast responses, give non-verbal information,
enhance verbal descriptions, manage pauses and express atti-
tudes.” Veinott et al. [31] have shown that seeing each other’s
faces in collaborative tasks improved the negotiation of com-
mon ground, as opposed to using non-video media. Monk &
Gale [23] observed that having mutual gaze awareness pro-
vides an alternative to non-linguistic channels for awareness
of a remote person’s understanding.

Previous work on Media Spaces [4, 22] has leveraged the
power of video-mediated communication by creating systems
that support peripheral awareness, chance encounters, locating
colleagues and other social activities. While Media Spaces
have also been used to support focused remote collaboration,
they have not emphasized settings where distributed groups
work on shared data in large interactive spaces. Our work
extends the concept of Media Spaces to such settings.

A number of remote collaboration systems have used video
to convey more than just people’s faces. Hydras [27] keep
spatial relations among remote participants consistent in a
multi-party conversation; VideoDraw [30] and VideoWhite-
board [29] show the shadow of the remote participant overlaid
with the shared space they can draw on. Clearboard [16] ex-
pands on this idea by overlapping personal video with a shared
task space. More recently, Nguyen & Canny [24] and Bos
et al. [5] have explored how trust formation in video confer-
encing is affected by spatial distortions and communication
channels. Nguyen & Canny [25] also showed how video fram-
ing affects empathy. Although previous systems have explored

video as a tool to support remote collaboration, they depend
on a static user sitting in front of a display. This does not scale
to large interactive spaces that support physical navigation.

Personal video has also been used to provide remote awareness
in what Buxton calls the reference space [6], by integrating
the shared person and task spaces. Three’s Company [28]
implements this space by positioning the shadows of the users’
arms on top of shared content, while ImmerseBoard [14] de-
forms the user’s arm to place it on top of the content. Although
the benefits of reference spaces for video-mediated communi-
cation have been demonstrated, research has not focused on
wall-sized displays. We believe that creating reference spaces
can greatly enhance collaboration across large displays, since
they provide ample real-estate to integrate content and people.

Remote Collaboration in Large Interactive Spaces
To support remote collaboration across 3D virtual environ-
ments, Beck et al. [3] capture users through depth cameras and
present them using a realistic 3D reconstruction in an immer-
sive virtual environment. Willert et al. [32] use a 2D array of
cameras mounted on the bezels of the screens of a wall-sized
display to capture video. They provide an extended window
metaphor between two sites, but do not study communication.
Dou et al. [11] place RGB and depth cameras on wall-sized
displays to capture two remote sites and create a room-sized
telepresence system. The goal of this type of systems is to
display remote video using the available screen space. They
let people see each other and engage in conversation, but make
it hard to collaborate on shared objects.

Luff et al. [21] proposed a high-fidelity telepresence system
that supports remote collaboration on shared digital objects.
Participants engaged in different formations, allowing them to
meet the requirements of the task at hand, such as pointing to
objects or talking to collaborators. This was possible because
physical relations between video and digital objects was kept
intact, such that, when users looked or pointed at objects,
others knew what they were referring to. Although this system
allows to collaborate on digital shared content, our focus is on
large interactive spaces where people can walk.

We believe that remote communication on wall-sized displays
can benefit from keeping physical relations between people
and objects faithful as in a remote site. Avellino et al. [1] used
this strategy in a large interactive space and showed that video
on wall-sized displays can be used for accurately interpreting
deictic gestures: placing video relative to content allows to
accurately understand remote indications of shared digital
objects. Nonetheless, it does not ensure that people will be
able to see each other’s face when collaborating, since they
move and might be far from the video.

In summary, previous research has shown that video supports
remote collaboration in various settings, but wall-sized dis-
plays have received little attention.

OBSERVATIONAL STUDIES
Our goal is to create a system that supports remote collab-
oration across wall-sized displays, so that users are able to
communicate easily with each other over audio-video links



while working on shared content. To inform the design of this
system, we created low-fidelity prototypes and conducted sev-
eral observations. We simulated two remote sites by dividing
a wall-sized display with a curtain, to simplify the setup.

In the first prototype, we asked two collaborators to put to-
gether a slide show presentation based on text and images
from a presentation they had recently worked on. On each
side, blank sheets of paper (for blank slides), text clippings,
and images were laid out on the display. Two helpers held
tablets running a videoconferencing software, enabling col-
laborators to see each other. We simulated shared content by
manually syncing changes between the two sides (Fig. 2-top).

In this session, participants looked at the content on the wall-
sized display much more than at each other’s face on the
tablets. They only looked at each other when they disagreed,
and when they discussed the meaning of objects or where they
should be placed. Based on the observation and debriefing,
we hypothesized that the participants would have looked at
the video feeds more often if they had been located on the
wall-sized display, close to the content they were working on.

In the second low-fidelity prototype, we displayed the video
feeds on the wall-sized display. We set up two cameras on
each side: a front camera attached to the bezels of the display,
and a back camera placed at the back of the room, facing the
display. In this way, we could capture both the face and the
back of participants. We asked two collaborators working on
a publication to sort their related work using a Wizard-of-Oz
prototype application built for this purpose. PDFs of scientific
papers were laid out on the two sides of the display; their
position and current page were synchronized. Each user had
three video feeds (Fig. 2-bottom): on their left, the remote
person’s front camera feed; right below, a smaller feed of their
own front camera; and, on their right, a feed of the remote
back camera. These video feeds had fixed position and size,
making it easy to determine when participants looked at them.

In this second session, participants physically moved to a spe-
cific video feed according to the task they were working on.
They used the front-facing camera feed for discussions and
arguments about the content of a particular paper, or how to
cluster it. They used the back-facing camera feed when in-
terpreting references to objects and locations and to maintain
common ground—mostly through deictic instructions, e.g.,

“this one should go there”. In other words, conversational com-
munication was best supported by the front-facing video and
gestural communication by the back-facing video. However,
participants had to stop what they were doing to move in front
of the fixed video feeds. This interrupted their work and was
perceived as annoying.

Based on these observations, it became clear that we needed to
capture the users’ faces as they moved in front of the display
and present the video feeds in a flexible way. We identified
two approaches to place the video feeds:

● close to each user, to support face-to-face conversation; or,
● matching the remote user’s position, to understand where

the user is looking and pointing.

Figure 2. Early observations: assembling a slide-show on a paper proto-
type with tablets streaming video (top). Sorting related work with video
on the wall-sized display (bottom).

Based on our observations, we believe that the second solution,
where the video feed is placed in the context of the shared
content, will:
● support the use of deictic instructions in manipulation tasks;
● increase efficiency when manipulating content; and,
● be preferred to other video placements.

However, since we also observed the value of face-to-face
communication supported by the first approach, we wanted
to create a system that supports both approaches in order to
compare them. In addition, while we only observed pairs of
users with one user per site, this approach should scale to more
than one user at each site, as well as to more than two sites.

CAMRAY: A CAMERA ARRAY FOR TILED DISPLAYS
We created CamRay, a system that adds telepresence capabili-
ties to wall-sized displays. Our prototype links two interactive
rooms with large tiled displays on our campus:
● WILD consists of an 8×4 grid of 30" LCD screens with

22mm top, left and right bezels and 30mm bottom bezels.
It measures 5.5m×1.8m for a resolution of 20 480×6 400
pixels. It is controlled by a cluster of 16 Apple Mac Pros
running Linux, each managing two screens.

● WILDER consists of a 15× 5 grid of 21.6" LCD screens
with 3mm bezels. It measures 5.9m×2m for a resolution of
14400×4800 pixels. It is controlled by a cluster of 10 PCs
running Linux, each managing a row of 7 or 8 screens.

Both wall-sized displays are equipped with a VICON infrared
tracking system used to track users with 6 degrees of freedom.

We mounted 8 cameras on each display to capture the users’
faces as they move: one camera per column of monitors in
WILD (8 in total) and 8 equally-spaced cameras in WILDER.
For consistency, we placed the cameras proportionally to the
overall horizontal size of each display. On WILD, the cameras
are standard Raspberry Pi Camera Modules, placed on the
bezels (Fig. 1-left). On WILDER, because of the thinner screen
bezels, the cameras are smaller Spy Cameras for Raspberry
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Figure 3. CamRay architecture to communicate from site A to site B.
A similar setup is used to communicate from site B to site A.

Pi1 (8.5mm×11.3mm) (Fig. 1-right). The cameras are placed
on the nearest bezel above eye level on both displays. Each
camera is directly connected to a Raspberry Pi2 board mounted
onto the back of the displays, and the cables are slipped though
the gap between two adjacent screens (Fig. 3). The boards are
connected using an Ethernet network to a dedicated computer
(desktop Mac Pro) that processes the 8 video streams.

Each Raspberry Pi captures and encodes video in H.2643

and streams it to the dedicated computer over UDP using
GStreamer4, an open source multimedia framework. The
videos are captured at 30 frames per second with a resolution
of 800×600 pixels to avoid overloading the main computer.

The dedicated computer runs a custom C++ application based
on OpenCV5 and OpenWebRTC6. It uses OpenCV to receive
all the video streams and automatically select the one that
corresponds to the camera in front of the user. To achieve
this selection, the custom C++ application receives the user
position data sent by the VICON infrared tracking system
using Open Sound Control messages. This application uses
the OpenWebRTC library to stream the selected video to the
remote wall-sized display using the WebRTC protocol, which
supports video over firewalls and large-area networks.

At the other location, an OpenWebRTC relay server receives
the remote video stream and transmits it to the node of the
visualization cluster that runs the top-left screen of the wall-
sized display. A web application based on NW.js7 runs on
each node of the cluster. These applications can display the
WebRTC video stream that they receive, either from the relay
server or from another node, and they can also forward the
stream to 2 or 3 others nodes. Using a tree pattern (Fig. 3), all
the nodes of the cluster can receive the video stream with low
latency. In our experience, this approach is much better than

1https://www.adafruit.com/products/1937
2https://www.raspberrypi.org/
3We use the raspivid command included with Raspbian
4https://gstreamer.freedesktop.org/
5http://opencv.org/
6http://www.openwebrtc.org/
7http://nwjs.io/
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Figure 4. The two video modes. The arrows show which participant
controls the position of the video displayed at the local site.

overloading the main server by having it send the video feeds
to all the cluster nodes at the same time.

Once all the nodes receive the stream, the video of the remote
user can be displayed and moved all over the tiled wall-sized
display, spanning several screens if necessary. The video
window can be displayed on top of any application that may be
running on the wall. The relay server notifies all the nodes of
the cluster about the position of the video window so that each
node can decide whether to display the video or part of it on
their associated screens. In addition, the relay server receives
the position of the local and remote users through WebSockets,
and it uses this information to compute the position of the
video window according to the video mode (see below).

CamRay can easily be adapted to a variety of tiled wall-sized
displays: the number of cameras can be adapted to the size of
the display, and the tree pattern used to distribute the stream
can scale to larger clusters. If the main computer becomes
overloaded because of the larger number of cameras or higher-
quality video, the load can be distributed over several com-
puters, each one connected to a subset of the cameras. The
WebRTC protocol traverses almost any network, making it
possible to connect to diverse sites. CamRay can support more
than one user per site since users are identified by the VICON
system. CamRay also scales to multiple remote locations be-
cause the relay server can simultaneously receive several video
streams from different WebRTC connections. In such multi-
user, multi-site configurations, CamRay would send one video
stream per user and per site, which is still much less than the
total number of cameras per site.

Positioning Video Feeds
We implemented the two video modes described in the previ-
ous section (Fig. 4):
● Follow-Local: the video window follows the horizontal

position of the local user, i.e. the local user has the video
window always in front of her. This mode supports, e.g., a
face-to-face conversation even if the users are standing at
different positions relative to their display.

● Follow-Remote: the video window follows the horizontal
position of the remote user. This mode makes it easy to
interpret deictic references made by the remote user since



the video feed has the same position relative to the shared
content as the remote user.

In both modes the video of the remote user is mirrored hori-
zontally to ensure spatial consistency: when a user looks to
the left, she is displayed as looking to the left in the video
window at the remote location. In other words, the remote
user is seen as standing behind the wall-sized display, as in
Clearboard [16]. CamRay mirrors the video when capturing it.

Face-to-face conversation greatly benefits from eye contact.
In video-mediated conversation, eye contact requires that the
video feed be close to the camera. CamRay supports arbitrary
positioning of the video window, but as recommended by
Chen [7], by default it positions the video window right below
the closest camera in the camera array. As a result, the video
window jumps among 8 discrete positions.

Finally we do not show feedback of the users’ own video,
unlike most desktop videoconferencing systems. Surprisingly,
nobody asked for it in our observations. Some participants
reported that they trust the system to capture them properly,
since they do not have to adjust a webcam position as in
standard desktop videoconferencing systems.

The two video modes can scale to multiple users and multiple
sites. Follow-Remote can simply display the remote users at
their remote positions. In case of overlap, the system can either
use transparency or a simple physics engine to avoid collisions.
For Follow-Local, the system can lay out remote users side by
side or in a half-circle, consistently across sites, in the same
way as in some multiparty videoconferencing systems.

EXPERIMENT
In order to assess the effects of video position on communica-
tion and the trade-offs it incurs, we ran a controlled experiment
comparing three ways to display a remote collaborator video
on wall-sized displays:

● Follow-Remote: the video windows appears on the wall at
the same position as the remote collaborator;

● Follow-Local: the video windows appears on the wall in
front of the local user; and

● Side-by-Side (control condition): the fixed video window
appears on a separate screen, perpendicular to the wall.

In our observations, deictic gestures were better supported
when the video was placed in the context of the shared content.
Therefore we formulate the following hypotheses:

● H1: participants use more deictic instructions in Follow-
Remote than Follow-Local and Side-by-Side;

● H2: participants manipulate data more efficiently in Follow-
Remote than in Follow-Local and Side-by-Side; and,

● H3: Follow-Remote is preferred for manipulation tasks
when giving and receiving instructions.

Method
The [3 × 2] within-participant design has two primary factors
and a secondary factor:

● VIDEO (Follow-Local, Follow-Remote, Side-by-Side);
● LAYOUT (Medium and Hard); and
● ROLE (Instructor and Performer).

LAYOUT controls the difficulty of the task, while ROLE ac-
counts for the asymetry of the task, as described below. The
order of VIDEO conditions is counterbalanced across pairs us-
ing a balanced Latin Square; the order of LAYOUT and ROLE
are counterbalanced for each VIDEO condition.

Participants
We recruited 12 pairs of participants, aged between 23 and
40, all with normal or corrected-to-normal vision, none color
blind. Couples were formed as participants were recruited,
leading to 9 male-male, 2 female-male and 1 female-female
couples. 1 participant used video conferencing systems on a
daily basis, 8 on a weekly basis, 6 on a monthly basis, 5 on a
yearly basis and 4 almost never.

Hardware and Software
The setup of the experiment is composed of the two wall-
sized displays, WILD and WILDER. Follow-Local and Follow-
Remote conditions are implemented with CamRay (Fig. 1).
The video windows of the remote users move horizontally at
a fixed height of 1.75m (center of the window) at both sites.
In Side-by-Side, video is displayed on an LCD screen on the
left side of the room, at approximately the same height as the
window in the other conditions. In all three VIDEO conditions,
the video windows have the same size (34.7cm×26cm).

Although WILD and WILDER have different sizes and resolu-
tions, we scale the content so that it spans the entire display.
We use Webstrates [17] to create and synchronize content.
Participants interact with each wall-sized display with a cur-
sor controlled by a handheld pointer through raycasting. The
pointer is mounted on a smartphone that displays a virtual
button for picking and dropping. The orientation and position
of the pointers and of the participants’ heads are tracked using
the VICON tracking systems in each room.

Procedure
Task Description
During our observations, participants often referred to on-
screen objects by pointing and looking at them. To assess
whether our setup enables the interpretation of such deictic
gestures by remote participants, we need a task that required
the production and interpretation of such gestures.

We use a version of Liu et al.’s [20] task, which consists of
classifying discs into containers based on their label. In one
condition of their experiment, one participant had to tell the
other which disc to move into which container. They naturally
used deictic instructions, such as “take this one and put it
here”. We adapted this abstract data manipulation task to
a remote setting: at one site, the Instructor sees the labels
and gives instructions, while at the other site, the Performer
manipulates the discs. This forces each dyad to produce and
interpret deictic instructions.

We divided each wall-sized display into 32 (8 rows × 4
columns) virtual containers holding up to 6 discs each (Fig. 1).



Discs belong to one of 8 classes, represented by the letters C,
D, H, N, K, R, X, Z. When more than two discs of the same
class are in the same container, they are properly classified and
turn green. Misclassified discs are red. On the Instructor side,
the disc classes are displayed in a small font (2mm×2.5mm),
forcing the Instructor to move to read the labels.

Layout: when the task begins, the layout features 160 discs,
five per container. 12 discs are misclassified, distributed ran-
domly across containers. The goal is to classify all the red
discs by picking, moving and dropping them into a correct
container. We assign a ROLE to each participant: the Instruc-
tor sees the disc labels but cannot interact with them; the
Performer sees green and red discs without labels but can
manipulate them with a pointing device. The Instructor must
therefore guide the Performer to classify the discs.

We created two types of LAYOUTs by varying the euclidean
distance between a red disc and its closest solution8. This dis-
tance is between 1.5 and 2.6 for Medium layouts, vs. between
2.7 and 3.5 for Hard layouts. The further away a solution is
from a disc, the more navigation is required, making the task
harder. We generate random LAYOUTs for both Medium and
Hard and pick one at random when starting a new session.

Trial description: a trial is the correct classification of a disc.
A trial begins when the last disc of the previous trial is dropped,
and ends when the disc is correctly classified (which may take
several pick and drops).

Participants were welcomed and given paper instructions on
how to perform the task. They were instructed to solve the task
as quickly and accurately as possible. For each VIDEO condi-
tion, each participant performed 2 practice conditions (one for
each ROLE), followed by 4 experimental conditions (2 LAY-
OUT × 2 ROLE). Participants filled out 5 questionnaires: one
for collecting demographic data, one after each VIDEO condi-
tion, and one at the end of the experiment. Participants could
take a break after each LAYOUT and were encouraged to do so
at the end of a VIDEO condition block. Sessions lasted about
70 minutes including the time to fill out the questionnaires.

Data Collection
We logged each pick and drop event with the time, position
of the disc on the screen and number of discs left to classify.
Using each room’s VICON tracking system, we recorded kine-
matic data of (a) user position, (b) user head direction and (c)
cursor movement. Sessions were video recorded.

Pairs assessed their understanding of each other’s actions and
use of video in the questionnaire at the end of each VIDEO con-
dition. The final questionnaire assessed the strategies and par-
ticipant’s preference when acting as Instructor and Performer.
We used 5-point Likert scales and open-ended comments.

Analysis Procedure
We analyze three different measures: task performance, move-
ment data from the kinematic logs, and conversations.

8The unit is the size of a container and the distance between two
adjacent containers is 1.

Task Performance
We measure performance as Task Completion Time (TCT). The
number of pick-and-drops for classifying one disc is a less
useful indicator of performance than time, since all layouts
were successfully solved with low error rates. TCT is the time
required to correctly classify a disc. Since this may require
several attempts, TCT starts when the Performer drops the
previous disc and ends on the first drop in the correct container.
We observed that some dyads picked one disc immediately
and waited for an instruction, whereas others waited for an
instruction and then picked a disc. To ensure a fair comparison
and account for the time taken to find a container and produce
the instruction in all trials, we include the time elapsed from
the previous drop until a disc is picked.

Kinematic Analysis
To account for the slightly different sizes of the two wall-sized
display, we normalize user position, cursor position and head
direction between −1 and 1. After normalization, two users
standing at the same relative position, e.g., the center of each
room, have the same value, e.g., 0 on the X axis.

Conversational Analysis
Using the sessions’ video recordings, we tagged each pick
and drop and coded (I) the Instructor strategy to indicate
containers/discs; (II) the Performer error when performing
instructions; and, for both roles, (III) the word count, including
the amount of deictic instructions.

I. Instructor strategy to indicate containers or discs used the
following coding scheme:

● pointing: using the finger to point, no verbal instruction;
● pure deictic: using only deictic instructions (“..goes there”);
● relative to own position: relative to the Instructor’s position

(“here, one up”);
● relative to video: relative to the Instructor’s video (“where

I am, second row”);
● relative to disc: relative to where the Performer is moving

the disc (“there, one up”);
● relative to container: relative to where the disc is picked

(“two to the right, one down”);
● absolute: relative to the display grid (“column 3, row 4”);
● based on previous pick/drop: using the location where the

previous disc was picked or dropped (“put it in the same
place as the last one”).

II. Performer error when performing instructions used the
following coding scheme:

● understanding error: error when interpreting an instruction;
● instruction error: the Instructor provides a wrong instruction

(the container is not of the same class as the disc); and,
● interaction error: the Performer accidentally drops a disc

while moving it.

III. Word count serves as a measure of the efficiency when
producing and understanding instructions. We used a coding
scheme based on Gergle et al. [12]. We only coded utterances
relevant to instructions, i.e. references to a specific disc and
position. We counted words related to acknowledgment of be-
havior only when discs were not already dropped and changed
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their color to green; once this happened, words were consid-
ered redundant for the classification and ignored. We ignored
context information not relevant to an instruction (such as
discussing the task itself) and back channel responses such as

“hmmm” or “so”. Hauber et al. [13] also used this approach for
counting words. Politeness forms were not coded, e.g., “could
you please”. Finally, repeated terms were counted once, since
we identified that many participants repeated utterances, e.g.,

“that one, yes, yes, yes”).

RESULTS
We registered 4330 pick and drop events (excluding practice
trials) and aggregated them into 1728 disc classifications (12
discs * 2 ROLE * 2 LAYOUT * 3 VIDEO * 12 pairs).

Task Performance
We tested TCT for normality in each VIDEO condition using
a Shapiro-Wilk W test9 and found that it was not normally
distributed. We tested for goodness-of-fit with a lognormal
distribution using Kolmogorov’s D test, which showed a non-
significant result for all three VIDEO conditions. Therefore,
we ran the analyses using the log-transform of TCT, as recom-
mended by Robertson & Kaptein [26] (p. 316). We also ran
all the analyses using the original time data an found the same
effects with very similar p values.

We ran an analysis of variance for the model TCT ∼ VIDEO ×

LAYOUT × Rand(PARTICIPANT) with a REsidual Maximum
Likelihood (REML) analysis 10. The result of the full factorial
analysis (Fig. 5) yields a significant effect on VIDEO (F2,1699 =
7.69, p = 0.0005) and LAYOUT (F1,1714 = 22.41, p < 0.0001);
and a non-significant VIDEO × LAYOUT interaction (F2,1713 =
0.50, p = 0.61).

A post-hoc analysis11 reveals that in Follow-Remote (MT =

13.23±6.88 s), participants classified discs significantly faster
than in Follow-Local (MT = 14.63±7.15 s, p=0.0004) and
Side-by-Side (MT = 14.41±7.47 s, p=0.0173). There was
no difference between Follow-Local and Side-by-Side. Data
9All analyses are performed with SAS JMP

10 Unless otherwise specified, all analyses used this method.
11All post-hoc analysis are performed using a Tukey-Kramer “Hon-
estly Significant Difference” (HSD) test
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Figure 6. Kinematic data for dyad 9. The paths show a bird’s eye view of
the normalized horizontal positions of the participant, cursor and gaze
over time. Left: Performer cursor and Instructor position for Follow-Local
(a), Follow-Remote (b) and Side-by-Side (c). Right: Performer cursor and
Instructor gaze for Follow-Local (d), Follow-Remote (e) and Side-by-Side (f).
The histograms show the cursor-position difference (g) and cursor-gaze
difference (h) for each VIDEO condition, with 95% confidence intervals.

shows an improvement of Follow-Remote over Side-by-Side
of 8.2% (1.19s); and over Follow-Local of 9.6% (1.41s).

Kinematic Analysis
In Follow-Remote, we observed that after picking a disc, the
Performer would try to predict the target container by looking
at the Instructor’s cursor and head direction. Some Performers
where even able to interpret target containers with minimal
instructions, often following the Instructor and dropping the
disc into the container that the Instructor was looking at.

We computed two measures to investigate this observation.
Cursor-position difference: the horizontal distance between
the Performer’s cursor and the Instructor’s position (Fig. 6a-c);
and, cursor-gaze difference: the horizontal distance between
the Performer’s cursor and the estimated point the Instructor
is looking at (based on the direction of the head) (Fig. 6d-f).
To get a single value per trial, we average these measures for
all kinematic data points between a pick and a drop.

Cursor-Position Difference
We find a significant difference in cursor-position difference
for VIDEO (F2,1697 = 64.09, p < 0.0001) and for LAYOUT
(F1,1711 = 32.42, p < 0.0001), but not for VIDEO × LAYOUT
(F2,1711 = 0.023, p = 0.98) (Fig. 6g). A post-hoc analysis
shows that Follow-Remote (X = 0.151±0.116) has a signifi-
cantly smaller cursor-position difference than Follow-Local
(X = 0.228±0.154) and Side-by-Side (X = 0.227±0.155).



Follow-Local Follow-Remote Side-by-Side
pure deictic 8 92 43

relative to video 3 318 0
relative to own position 0 0 7

relative to disc 116 61 148
relative to container 221 63 196

established pick order 284 302 257
based on previous drop 58 27 19
based on previous pick 10 5 12

absolute 447 254 435
arbitrary by Performer 80 83 111

none 248 241 247
total 1475 1446 1475

4396

Table 1. Instructor strategies for indicating objects.

Cursor-Gaze Difference
We also find a significant difference in cursor-gaze difference
for VIDEO (F2,1697 = 30.64, p < 0.0001), but not for LAYOUT
(F1,1704 = 2.28, p = 0.13) nor VIDEO × LAYOUT (F2,1704 =
0.9021, p = 0.41) (Fig. 6h). A post-hoc analysis shows that all
VIDEO conditions are significantly different from each other.
Follow-Remote has the smallest cursor-gaze difference (X =

0.201±0.190), followed by Follow-Local (X = 0.244±0.216)
and Side-by-Side (X = 0.284±0.217).

Conversational Analysis
We analyze the strategies used by the Instructor and the errors
produced by the Performer when picking and dropping discs.
For this analysis, we use the tagged data for each pick and drop,
not the aggregated data for correctly classified discs. While
tagging video data two new categories emerged: arbitrary (no
instruction), when the Performer picks any disc; established
pick order, when the Performer picks in an order defined at
the beginning of the session.

4396 events were tagged (Table 1), evenly distributed among
the three VIDEO conditions. Note that events that have no
strategy come from the Performer correcting errors (most
often due to a failed interaction, such as releasing the disc
too soon while moving it), which required no instruction: she
would re-pick the disc and drop it in the planned destination.

Instructor Strategies
We investigate the role of video on the use of deictic instruc-
tions by the Instructor (Instructor strategies or IS). We consider
as deictic instructions the following categories: pure deictic,
relative to video and relative to own position. For the last
two, we always observed that the Instructor used a deictic
pronoun to make a reference relative to the position of the
video or to herself. We counted 410 deictic instructions for
Follow-Remote (318 relative to video; 92 pure deictic), 50 for
Side-by-Side (7 relative to own position; 43 pure deictic) and
11 for Follow-Local (3 relative to video, 8 pure deictic). No
deictic relative to own were used.

As expected, participants were able to use more deictic in-
structions in Follow-Remote (28% of total) than Side-by-Side
(3.4%) and Follow-Local (only 0.7%). If we take a closer look
at the strategies for disc drop events only, the use of deictic

instructions in Follow-Remote goes up to 45% (265 relative to
video, 65 pure deictic; 729 total). These findings support H1.

We were surprised to see some participants using deictic in-
structions in Side-by-Side. We believe that they tried, failed,
and switched to less unambiguous strategies such as using
coordinates relative to the container where the disc was picked.
We were also surprised that almost all participants pointed
with their hands in all VIDEO conditions, even though they
clearly knew that pointing would not be correctly understood
in Follow-Local and Side-by-Side.

Performer Errors
We investigate the role of video on Performers producing
errors (PE) when interpreting instructions, especially deictic
instructions. We remove instruction and interaction errors
from the analysis, leaving 246 misunderstanding errors. Over-
all, participants produced fewer errors in Follow-Remote (66,
27% of total), followed by Follow-Local (82, 33% of total)
and Side-by-Side (98, 40% of total).

Follow-Remote accounted for fewer errors if we consider the
total number of deictic instructions produced in each VIDEO
condition. 36% (4/11) of deictic instructions led to an error
in Follow-Local and 40% (20/50) in Side-by-Side, but only
5% (21/410) in Follow-Remote. Deictic instructions were
better interpreted in Follow-Remote than in the other VIDEO
conditions, supporting H2.

Word Count
We measure word count (WC) as a measure of communica-
tion efficiency. Using fewer words to communicate the same
information suggests that the communication is more effi-
cient, because the information is transmitted through other
non-linguistic channels—video in our case. Participants used
significantly different number of words in each VIDEO condi-
tion (F2,3739 = 50.0747, p < 0.0001). As expected, in Follow-
Remote, Instructors used significantly fewer words (WC =

2.98±2.66 words) per instruction than in Follow-Local (WC =

3.80±3.42 words) and Side-by-Side (WC = 4.07±3.52 words).

We tagged the number of deictic pronouns used by Instructors.
In Follow-Remote, 272 deictic pronouns were used, 110 in
Side-by-Side and only 70 in Follow-Local.

In summary, when providing instructions in Follow-Remote,
Instructors used fewer words but more deictic pronouns than
in other VIDEO conditions. To illustrate this point, Instructors
in Follow-Local typically used more verbose instructions, e.g.,

“two to the left, then top”, whereas in Follow-Remote they used
short instructions with a deictic pronoun, e.g., “top” once they
were in the correct column or simply “there” while pointing.

Qualitative Feedback
We asked participants to answer a short questionnaire at the
end of each VIDEO condition, and a final questionnaire at the
end of the experiment. Questionnaires had both Likert scales
and open questions.12

The questionnaire for the different VIDEO conditions had two
identical parts, one for each ROLE. Most questions were about

12We used a Wilcoxon Signed rank test for Likert scale data analysis



perceived attention to each other: (Q1) I paid attention to my
partner; (Q2) My partner paid attention to me; (Q3) It was easy
to understand my partner; (Q4) My partner found it easy to
understand me; (Q5) My behavior was in direct response to my
partner’s behavior and (Q6) The behavior of my partner was
in direct response to my behavior. (Q7) asked to estimate how
much time they spent looking at the video when classifying
objects (on a scale from 1 to 100), and (Q8) asked to assess
how useful was the video of their partner for solving the task.

We found a significant effect of VIDEO on how useful the video
was when acting both as Performer (F2,22 = 26.96, p < 0.0001)
and Instructor (F2,22 = 11.34, p = 0.0004). For Performers, the
video of the remote partner was significantly more useful in
Follow-Remote (mean 4.42) than in Follow-Local (p < 0.0001,
mean 2.67) and Side-by-Side (p < 0.0001, mean 2.25). For In-
structors, the video was also more useful in Follow-Remote
(mean 2.83) than in Follow-Local (p = 0.00003, mean 1.92) and
Side-by-Side (p = 0.0011, mean 1.50). Also, Instructors had
the impression that their partner paid significantly more at-
tention to them (F2,22 = 7.50, p = 0.0033) in Follow-Remote
(mean 4.58) than in Follow-Local (p = 0.0051, mean 3.92) and
Side-by-Side (p = 0.013, mean 3.83).

We also found an effect of VIDEO on how much participants
looked at video both as Performer (F2,22 = 13.24, p = 0.0002)
and Instructor (F2,22 = 11.44, p= 0.0004). Performers used the
video significantly more in Follow-Remote (% o f time = 87±
17) than in Follow-Local (p = 0.0047, % o f time = 53±35) and
Side-by-Side (p = 0.0002, % o f time = 40±33). Instructors used
the video significantly more in Follow-Remote (% o f time =
55±36) than in Follow-Local (p = 0.023, % o f time = 30±25)
and Side-by-Side (p = 0.0003, % o f time = 15±22).

The final questionnaire asked participants (Q1) if they under-
stood their partner’s instructions when acting as Performer
and (Q2) if their partner understood their instructions when
acting as Instructor. It also asked (Q3-4-5) how often they
used each Instructor Strategy (IS) in each VIDEO condition,
(Q6-7) their preferred VIDEO condition as Instructor and as
Performer, and (Q8-9-10) a description of how they used the
video in each VIDEO condition.

Participants reported that as Performers in Follow-Remote,
they understood their partner’s instructions significantly bet-
ter (p = 0.0188), and that the most used strategy to indicate
objects was to use the video. We found no other significant
effects. The vast majority of Performers preferred Follow-
Remote (22/24), while Side-by-Side was ranked first twice.
Follow-Local and Side-by-Side were ranked as the second pre-
ferred strategy by roughly half the participants (12 and 10
respectively) and as least preferred by the other half (12 each).

Video in Follow-Remote was used by Performers to “see where
[the Instructor] was and then get the column where the object
should be” (P5) and “to know on which column I have to place
my object” (P6). It also allowed them to “follow [the Instruc-
tor’s] position around the wall” (P7). Many Performers used
the video “to know what column [the Instructor] wants to pick
and sometimes even the row” (P9). We also observed that they
used the video to determine gaze and predict the destination

container more quickly: “to get [the Instructor’s] position,
even the gaze helped me” (P21). Some Performers cleverly
used the video in Follow-Local to estimate their partner’s posi-
tion. As people move, CamRay switches from one camera to
the next in the array to capture their faces. These Performers
counted the “jumps” of the video window to “roughly figure
out how much I should move to the left/right” (P23).

Surprising, only half the Instructors ranked Follow-Remote
first. Follow-Local was ranked first 10 times, and Side-by-Side
2 times. This was confirmed by participants when asked to
describe how they used the video in Follow-Local and Side-
by-Side: “to see if [the Performer] was moving the object or
not” (P5), “to know if my partner was focusing on the same
task” (P6), “to get gaze direction and gestures, not position”
(P7) and “to confirm verbal instructions” (P20).

These findings partially support H3: almost all Performers
preferred Follow-Remote, but half of the Instructors preferred
having the video in front of them or on the side. Instruc-
tors liked seeing their remote collaborator as they performed
instructions to check for understanding.

To summarize our results, in Follow-Remote participants:
● used more deictic instructions than in other VIDEO condi-

tions, supporting H1;
● classified discs more efficiently, used fewer words and pro-

duced fewer misunderstanding errors, supporting H2; and,
● preferred this condition as Performer, but half did not prefer

it as Instructors, partially supporting H3.

DISCUSSION
The above results provide evidence that the increased perfor-
mance of Follow-Remote is related to (1) Performers more
closely following the Instructors’ position and gaze (cursor-
person difference, gaze-position difference); and, (2) Instruc-
tors using more deictic instructions (IS), leading to fewer errors
(PE); and, (3) Instructors using fewer words (WC).

First, Performers were able to predict the target container as
Instructors moved and looked at the display: once an Instruc-
tor found a target container, the Performer would already be
hovering a disc nearby and gazing in the vicinity, requiring less
time to move and drop the disc. Second, as Performers made
fewer errors they saved time. Third, awareness of the remote
person’s actions allowed for short and simple instructions,
such as “just there!” or “one above!”.

These findings can be explained by the natural tendency to min-
imize communication costs when generating common ground.
Let us consider Clark’s costs of grounding [8] in mediated
communication for our experiment. Certain costs do not exist:
there is no start-up time, and no delay nor asynchrony since
communication was synchronous and real-time. Other costs
are the same across VIDEO conditions: production, reception
and speaker change, since all conditions used video-mediated
communication; fault and repair since the severity of a fault
and the time and effort to repair it dependended mainly on the
task. We are thus left with three costs: formulation, under-
standing and display.



Formulation cost states that “it costs more to plan complicated
than simple utterances” and “to formulate perfect than imper-
fect utterances” [8]. Different strategies have different costs:
an instruction that relies on a coordinate system for absolute
mapping, e.g., “on container 3, 2”, or a relative mapping to a
container, e.g., “two up, one down” are costlier than pointing
and using a pure deictic pronoun, e.g., “there!”. This suggests
that Follow-Remote had a lower formulation cost.

Understanding cost states that “the costs can be compounded
when contextual clues are missing” [8]. This explains why,
when using deictic pronouns in Follow-Local or Side-by-Side,
participants produced more errors: the cost of understanding
is higher since the context to interpret instructions is missing.

Finally, display cost states that “In media without copresence,
gestures cost a lot, are severely limited, or are out of the
question. In video teleconferencing, we can use only a limited
range of gestures.” [8]. This explains why in Follow-Remote,
Instructors were able to use more deicitc gestures and these
were understood more accurately by Performers, reducing the
display cost. This also explains why Performers preferred
Follow-Remote when interpreting instructions, while half the
Instructors preferred Follow-Local or Side-by-Side, since they
could more easily check the Performers for understanding.

In summary, by presenting video according to the remote col-
laborator’s location in Follow-Remote, we enabled participants
to use and understand deictic instructions, reducing the overall
cost of communication.

Implications for Design
The above analysis leads to a set of recommendations for the
design of telepresence systems for wall-sized displays.

Camera Arrays support remote collaboration in large interac-
tive spaces that allow physical navigation. An array of cameras
placed at eye’s level can capture people’s faces as they move
across a wall-sized display. Remote displays can present this
video feed in various ways to enable collaboration.

Follow-Remote supports deictic instructions when collaborat-
ing remotely across wall-sized displays. By displaying the
remote participant’s video in the context of the shared space,
it creates an instance of Buxton’s Reference Space, “the space
within which the remote party can use body language to ref-
erence the work—things like pointing, gesturing [and] the
channel through which one can sense proximity, approach,
departure, and anticipate intent” [6]. Collaborative data ma-
nipulation tasks can particularly benefit from this setup, as
they often require deictic instructions.

Users should control video position in order to better support
different tasks: when interpreting deictic instructions, Follow-
Remote provides an image of the remote person in the context
of the shared space; when checking for understanding, creating
a virtual face-to-face with Follow-Local makes the remote
person’s gaze and facial expressions directly available.

CONCLUSION AND FUTURE WORK
This paper introduces CamRay, a platform for remote col-
laboration that captures and presents video feeds of remote

participants while working in front of wall-sized displays.
CamRay is based on consumer hardware and open software;
it can be incorporated into existing wall-sized displays to add
telepresence capabilities.

We ran an experiment where we used CamRay to support
collaboration on an asymmetric data manipulation task. The
video feed either followed the local person’s position (Follow-
Local), the remote person’s position (Follow-Remote) or was
on the side (Side-by-Side). We investigated how the position
of the video feed affects collaboration. Participants were able
to manipulate data more efficiently, taking less time, making
fewer errors and using fewer words when video followed
the remote collaborator. This can be explained by the fact
that video enabled them to use and better understand deictic
instructions, reducing the cost of communication. However,
many participants liked having video always visible, either in
front of them or on the side, when checking their partner’s
understanding of instructions.

We found that both Follow-Local and Follow-Remote have
their own advantages. With Follow-Remote, people are po-
sitioned in the context of shared content, allowing them to
communicate using deictic gestures. With Follow-Local, non-
verbal cues, such as facial expressions and eye contact, are
made visible, supporting face-to-face communication. We
believe that both approaches can be used in a telepresence
system to support different moments in the collaboration. We
recommend that collaboration systems for wall-sized displays
present video feeds according to the local and remote users’
position, and provide a way to transition between them.

This is only a first step for telepresence in large interactive
spaces. We believe that CamRay can be used to further explore
the role of video in remote collaboration across wall-sized dis-
plays. We plan to explore how Follow-Local can support tasks
that require discussion or benefit from seeing each others’
faces, such as data visualization or sense making. We are
also interested in exploring the benefits of collaboration using
asymmetric video positions. We observed that people pre-
ferred different video behaviors depending on their role in the
task, and we believe there are further benefits in positioning
the video feeds independently from each other.

Finally, we are interested in exploring how camera arrays can
support collaboration with more than two users and two sites.
From a technical perspective, we need to solve the challenge
of selecting and displaying multiple video and audio feeds as
multiple collaborators are present in multiple sites. From the
perspective of collaboration, we need to support the variety of
collaboration styles that occur spontaneously in larger groups.
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