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We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature.
Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single
overpass without any ancillary information. This is possible since TES makes use of an empirical relationship
that estimates the minimum emissivity ε-min from the emissivity spectral contrast captured over several chan-
nels, so-calledmaximum-minimum difference (MMD). In previous studies, the ε-min - MMD empirical relation-
ship of TES was calibrated and validated for various sensor spectral configurations, where the proposed
calibrations involved single or linearly mixed spectra of emissivity at the leaf or soil level. However, cavity effect
should be taken into account at the vegetation canopy level, to avoid an underestimation of emissivity, especially
for intermediate vegetation conditions between bare soil and full vegetation cover.
The current study aimed to evaluate the performances of the TES method when applied to vegetation canopies
with cavity effect. We used the SAIL-Thermique model to simulate a library of emissivity spectra for a wide
range of soil and plant conditions, and we addressed the spectral configurations of recent and forthcoming sen-
sors.We obtained good results for calibration and validation over the simulated library, except for full cover can-
opies because of the TES gray body problem. Consistent with previous studies, the calibration/validation results
were better with more channels that capture emissivity spectral contrast more efficiently. Our TES calibrations
provided larger ε-min values as compared to former studies, especially for intermediate vegetation cover.We ex-
plained this trend by the simulated spectral library that involved numerous vegetation canopies with cavity ef-
fect, thereby shifting up the ε-min - MMD empirical relationship. Consequently, our TES calibration provided
larger (respectively lower) estimates of emissivity (respectively radiometric temperature) that were likely to
be more realistic as compared to previous calibrations. Finally, SAIL-Thermique simulations permitted to show
that increasing Leaf Area Index induced a displacement of the (ε-min, MMD) pairs along the empirical relation-
ship. This was consistent with the TES underlying assumption, where any change in ε-min induces changes in
MMD since ε-max is bounded on [0.98–1]. Further investigations should focus on validating the outcomes of
the current study against ground-based measurements, and on assessing TES performances when accounting
for instrumental and atmospheric perturbations.

1. Introduction

Land surface temperature is a key environmental variable that drives
several land surface processes, including radiation budget (Hulley and
Hook, 2011; Ogawa et al., 2003), heat and water exchanges within
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surface boundary layer (Chehbouni et al., 2008; Schröder et al., 2006;
Vinukollu et al., 2011), soil water depletion though evaporation and
transpiration (Anderson et al., 2012; Er-Raki et al., 2008; Galleguillos
et al., 2011; Kalma et al., 2008; Olioso et al., 1996; Pardo et al., 2014),
vegetation photosynthesis and soil respiration (Inoue et al., 2004;
Olioso et al., 2005), pollutant degradation (Louchart and Voltz, 2007),
or pathogen dissemination (Courault et al., 2009). Given the implica-
tions for the related environmental issues, multi-decadal monitoring
of land surface temperature has been recognized as a priority specifica-
tion for recent satellite missions devoted to Earth observation (Green et
al., 2012; Lagouarde et al., 2013;Malenovský et al., 2012;Murphy, 2006;
Roy et al., 2014; Schmit et al., 2005).

Various difficulties have to be overcome when recovering land sur-
face temperature from remote sensing data collected over the thermal
infrared (TIR) spectral domain (Dash et al., 2002; Jacob et al., 2008;
Jacob and Weiss, 2014; Li et al., 2013). One challenging task is to sepa-
rate land surface emissivity and radiometric temperature by solving
an undetermined problem with N equations (N waveband measure-
ments) and N+ 1 unknowns (N waveband emissivities and one radio-
metric temperature). Besides, solving this undetermined problem
requires accounting for the coupling of atmospheric emission with
land surface reflectance, the latter being often assumed equal to 1-
emissivity.

Variousmethods have been proposed to separate land surface emis-
sivity and radiometric temperature (Dash et al., 2002; Jacob et al., 2008;
Li et al., 2012). They rely on using the spectral, angular and temporal in-
formation collected from remotely sensed data, and may require prior
atmospheric corrections or not. The first group of methods consists of
combining data from one or two TIR channels alongwith data from vis-
ible and near infrared channels (Jiménez-Muñoz et al., 2014). The sec-
ond group of methods consists of combining the spectral, angular and
temporal information collected over the TIR domain and optionally
over the middle infrared domain (Petitcolin and Vermote, 2002; Wan
and Li, 1997). The third group of methods consists of using the spectral
information captured with TIR multispectral/hyperspectral data
(Barducci and Pippi, 1996; Payan and Royer, 2004; Schmugge et al.,
2002). As compared to the methods belonging to the first two groups,
those of the third group use single overpasses only while minimizing
the dependency upon ancillary information, which is interesting over
land surfaces that depict temporal dynamics in temperature and spatial
heterogeneities.

Separating emissivity and temperature from TIR multispectral data
consists of estimating waveband emissivity for a given channel to next
retrieve all thewaveband emissivities and the radiometric temperature.
Normalized emissivitymethod (NEM) aims to accurately quantify emis-
sivity variations, by arbitrarily setting the maximum emissivity (Coll et
al., 2002), whereas adjusted NEM (ANEM) makes use of vegetation
cover fraction to improve the setting of maximum emissivity (Coll et
al., 2003). The temperature emissivity separation (TES) approach con-
sists of estimating minimum emissivity from the emissivity spectral
contrast captured with multispectral measurements (Gillespie et al.,
1998; Schmugge et al., 1998). As compared to NEM and ANEM, TES
does not rely neither on arbitrary setting of emissivity nor on ancillary
information, but on an empirical relationship between minimum emis-
sivity ε-min and emissivity spectral contrast. The latter is estimated as
the ratio of emissivity range to emissivity mean value, the so-called
maximum - minimum difference (MMD).

Many studies investigated the retrieval performances of TES, by fo-
cusing either on calibration (Grigsby et al., 2015; Hulley, 2011; Hulley
et al., 2014; Hulley and Hook, 2011; Jimenez-Munoz et al., 2014;
Payan and Royer, 2004; Sobrino and Jiménez-Muñoz, 2014) or on re-
trieval accuracies (French et al., 2008; Gillespie et al., 2011; Göttsche
and Hulley, 2012; Hulley et al., 2012b; Jacob et al., 2004;
Jiménez-Muñoz et al., 2006; Jimenez-Munoz et al., 2014; Mira et al.,
2009, 2011; Sabol et al., 2009; Sobrino et al., 2007). These studies ad-
dressed several issues among which (1) the calibration of the ε-min -

MMD relationship for different sensor spectral configurations, (2) the
robustness of the ε-min - MMD relationship and the TES retrieval per-
formances with regards to emissivity variations depicted by land sur-
faces, and (3) the impact of experimental errors (e.g., instrumental
and atmospheric perturbations) on the accuracy of TES emissivity/tem-
perature retrievals. All calibration studies relied on emissivity spectra
derived from single or linearly mixed samples of soil/leaf spectra, with-
out accounting for the characteristics of radiative transfer within vege-
tation canopy.

The use of single or linearly mixed samples of soil/leaf spectra in-
duces an underestimation of land surface emissivity in a large range of
situations (Olioso et al., 2014). This underestimation is explained by
the cavity effect that results from radiation trapping within vegetation
canopy: multiple scattering combined with large leaf absorptance in-
duce larger emissivity for vegetation canopy as compared to single
leaf (Anton and Ross, 1990; Chen et al., 2004; Francois et al., 1997;
Guillevic et al., 2003; Merlin and Chehbouni, 2004; Olioso, 1995;
Olioso et al., 2007). In most cases, land surface emissivity increases as
the amount of aboveground vegetation increases (e.g., van de Griend
and Owe, 1993). In case of low leaf emissivity due to leaf dryness, land
surface emissivity can decrease as the amount of aboveground vegeta-
tion increases, but it is still larger than leaf emissivity (Olioso et al.,
2007). The cavity effect is neither constant nor proportional to the veg-
etation amount. At low vegetation cover, canopy emissivity increases
rapidly with vegetation amount and next follows an asymptotic behav-
ior towards the highest level of cavity effect. This induces the classical
non-linear relationship between normalized difference vegetation
index (NDVI) and land surface emissivity (e.g., Olioso, 1995; van de
Griend andOwe, 1993). Vegetation leaves depict large emissivity values
(N0.9), so that saturation effect occurs at intermediate leaf area index
(around 3–4) that correspond to intermediate NDVI values (around
0.6–0.7). Therefore, the calibration of the ε-min - MMD empirical rela-
tionship may be critical when using single or linearly mixed samples
of soil/leaf spectra, because of cavity effect within canopy, especially
for intermediate vegetation cover.

The current study aimed to evaluate the performances of the TES
method when applied to vegetation canopies with cavity effect. We
addressed the canopy level without any consideration of atmospher-
ic or instrumental perturbations. Since emissivity spectra for land
surfaces including plant canopies were not available in the existing
spectral libraries, we used the SAIL-Thermique model (Olioso,
1992; Olioso, 1995) to simulate emissivity spectra for a wide range
of soil and plant canopy conditions. We investigated two critical is-
sues applying TES over vegetation canopies. We first addressed the
calibration/validation of the ε-min - MMD relationship over the li-
brary of simulated spectra, by addressing the spectral configurations
of recent and forthcoming sensors. Then, we evaluated the interest of
using the SAIL-Thermique simulated dataset of emissivity spectra, by
comparing the corresponding calibration/validation results with
those obtained in former studies based on single or linearly mixed
samples of soil/leaf spectra.

Section 2 presents the TES concept. Section 3 presents themethodo-
logical strategy, including the set-up of an emissivity spectral library by
using the SAIL-Thermiquemodel (Section 3.1), the set-up of a library of
surface outgoing radiance (Section 3.2), the computation of the
waveband quantities for different spectral configurations correspond-
ing to various sensors (Section 3.3), as well as the calibration of the ε-
min - MMD relationship and the validation of TES retrievals against
original prescriptions (Section 3.4). Section 4 reports the results, includ-
ing the calibration of the ε-min - MMD relationship (Section 4.1), the
validation of the TES retrievals (Section 4.2), and the interest of using
SAIL-Thermique simulations of emissivity spectra as compared to the
use of single or linearly mixed samples of soil/leaf spectra (Section
4.3). Section 5 discusses the results in the light of former studies. Finally,
concluding remarks highlight themain outcomes, the current investiga-
tions and the future challenges.
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2. TheTES concept: linkingminimumemissivity and emissivity spec-

tral contrast

We give here an overview of the TESmethod, by focusing on the key
points that are relevant for the current study. Detailed descriptions can
be found in Gillespie et al. (1998); Schmugge et al. (1998) and
Schmugge et al. (2002). Hereafter, emissivity and radiance values corre-
spond to waveband values over channels.

TES was originally designed to make use of the emissivity spectral
contrast captured from multispectral remote sensing data over the TIR
spectral domain. The undetermined problem related to the recovering
of N + 1 unknowns (N emissivities and radiometric temperature)
from N equations (measurements of surface outgoing radiance over N
channels) is solved by empirically relating the minimum emissivity ε-
min to the emissivity spectral contrast captured over the N channels.
In order to reduce experimental noises that stem from instrumental
and atmospheric perturbations, emissivity spectral contrast is charac-
terized using the maximum minimum difference (MMD). MMD is the
ratio of the emissivity range over the channels (difference between
the maximum and minimum emissivity values, ε-max − ε-min) to
the mean emissivity value ε-mean (Gillespie et al., 1998). Once ε-min
is estimated, emissivity for any channel can be retrieved along with ra-
diometric temperature. This relies on the calculation of surface outgoing
radiance as the sum of (1) the emission component driven by surface
emissivity and radiometric temperature and (2) the reflection compo-
nent driven by atmospheric downwelling irradiance and surface reflec-
tance (assumed equal to 1-emissivity).

The empirical relationship between minimum emissivity and MMD
is a power function: ε-min = A + B × MMDC. Given the importance
of estimating ε-min that is the first step for retrieving N emissivities
and radiometric temperature, a special attention has been paid to the
calibration of this empirical relationship. Gillespie et al. (1998) first pro-
posed a calibration for earth observation system (EOS)/advanced
spaceborne thermal emission and reflection radiometer (ASTER) using
five channels. Several studies have subsequently proposed calibrations
for the spectral configurations of various sensors such as EOS/moderate
resolution imaging spectroradiometer (MODIS) with three channels
(Hulley et al., 2014; Hulley and Hook, 2011; Jimenez-Munoz et al.,
2014), EOS/ASTER with three channels close to the MODIS ones
(Hulley and Hook, 2011), hyperspectral infrared imager (HyspIRI)
with six channels (Hulley, 2011), MODIS/ASTER simulator (MASTER)
with five channels close to HyspIRI ones (Grigsby et al., 2015), or
Meteosat second generation (MSG)/spinning enhanced visible and in-
frared image (SEVIRI) with three channels (Jimenez-Munoz et al.,
2014). Overall, calibrated coefficients vary greatly from one sensor to
another, with relative changes in A, B and C values up to 15–20% rela-
tive, and with subsequent changes in ε-min value up to 0.015 (respec-
tively 0.025) for a MMD value of 0.1 (respectively 0.3).

3. Applying TES over vegetation canopies by using radiative transfer

modeling

To simulate emissivity spectra of vegetation canopies for a wide
range of soil and plant conditions, we used the SAIL-Thermique model
that mimics radiative transfer within the canopy by accounting for radi-
ation trapping and subsequent cavity effect. We next calculated spectra
of surface outgoing radiance from (1) the emissivity spectra simulated
with SAIL-Thermique, (2) prescribed values of radiometric temperature,
and (3) spectra of atmospheric downwelling irradiance. We finally
calculated waveband values of emissivity, atmospheric downwelling
irradiance and surface outgoing radiance, by convolving the corre-
sponding spectra with the channel filters of existing and forthcoming
sensors.

Prior to the calculation of radiance/irradiance spectra and of
waveband values, the library of emissivity spectra was split into two
equal parts. The first part, referred to as calibration dataset hereafter,

was used to calibrate the TES empirical relationship, i.e. to adjust the
(A, B, C) coefficients of the ε-min - MMD relationship. The second
part, referred to as validation dataset hereafter, was used to (1) apply
TES on waveband values of surface outgoing radiance, and (2) compare
TES retrievals of radiometric temperature and emissivities against orig-
inal prescriptions. The robustness of the coefficient estimation bymeans
of randomization was a posteriori confirmed, since the variability of the
calibrated coefficients was about 1–2% relative when repeating the pro-
cedure 100 times.

We detail hereafter the different methodological steps, where emis-
sivity and radiance values correspond to waveband values for given
channels, except when indicated for a specific wavelength. Fig. 1 dis-
plays a flowchart of the procedure.

3.1. Setting up a library of emissivity spectra with radiative transfer

modeling

Conducting simulations with the SAIL-Thermique model, pre-
sented in Section 3.1.1, required the gathering of the model inputs
(Section 3.1.2), the design of the model simulations (Section 3.1.3),
and the filtering of simulated emissivity spectra to avoid redundan-
cies in spectral behavior (Section 3.1.4). We did not add any noise
to the simulations, since we addressed the canopy level without
any consideration of atmospheric or instrumental perturbations
that impact at-sensor radiance.

3.1.1. The SAIL-Thermique radiative transfer model

The scattering by arbitrarily inclined leaves (SAIL) model was origi-
nally developed byVerhoef (1984, 1985) to simulate land surface reflec-
tance over the solar domain. SAIL describes any land surface as a turbid
medium that includes a soil substrate beneath a homogeneous vegeta-
tion layer, possibly extended to a stack of vegetation layers. SAIL de-
scribes vegetation canopy thanks to leaf optical properties and
prescribed canopy structure (i.e., LAI for leaf area index and LIDF for
leaf inclination distribution function). The radiative transfer equations
on which SAIL relies account for successive radiation scattering (reflec-
tion, transmission, absorption)within the canopy and between the can-
opy and the soil.

The SAIL-Thermique model was adapted from the original SAIL
model by Olioso (1992) and Olioso (1995) to simulate vegetated land
surface emissivities using the SAIL underlying physics. SAIL-Thermique
permits to simulate radiative transfer over the TIR domain and thus to
compute emissivity or directional brightness temperature. The simula-
tion of land surface emissivity between 8 and 14 μmwas demonstrated
by Olioso et al. (2007) andOlioso et al. (2014). Verhoef et al. (2007) also
favorably compared SAIL-Thermique against the 4SAIL model.

SAIL-Thermique considers the Kirchhoff's law at the thermodynam-
ical equilibrium. It assumes that surface emissivity in any direction can
be calculated as surface absorptance for the radiation originating from
this direction. Then, the spectral emissivity ελ is computed from the
simulated directional-hemispherical reflectance ϱλ: ελ = 1− ϱλ, thus
corresponding to directional r-emissivity (Norman and Becker, 1995).

To compute directional-hemispherical reflectance, SAIL-Thermique
requires information about (1) the optical properties of the canopy
components: soil reflectance spectra, leaf reflectance spectra and leaf
transmittance spectra; (2) vegetation structure: LAI and LIDF for each
vegetation layer, and (3) view zenith angle for the considered sensor.
We explain in the next section how this information was obtained.

3.1.2. SAIL-Thermique inputs: spectral libraries of soil and leaf optical

properties

Only few leaf data including reflectance and transmittance spectra
were available. We used data from five soil spectral libraries and one
leaf spectral library. These spectra were obtained from laboratory mea-
surements over soil and leaf samples, using TIR spectrometry combined
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with an integrating sphere. All reflectance and transmittance values to
be considered hereafter are directional-hemispherical quantities.

For soil samples, we used several spectral libraries, to be listed
below. Since we focused on vegetation canopies, we excluded spectra
collected over rock samples.

1. The ASTER spectral library version 2 was set up in the context of the
EOS/ASTERmission (Baldridge et al., 2009). It included 41 reflectance
spectra over the [0.4–14] μm spectral interval.

2. The MODIS University of California Santa Barbara (UCSB) spectral li-
brary was set up in the context of the EOS/MODIS mission (Zhang
and Wan, 1999). It included 69 reflectance spectra over the [3–14]
μm spectral interval.

3. The soil spectral library from the hydrologic atmospheric pilot exper-
iment in the Sahel (HAPEX-Sahel) program included nine reflectance
spectra over the [7–14] μm spectral interval (Nerry et al., 1996).

4. The soil spectral library collected in the context of the JORNada EX-
periment (JORNEX) program included four reflectance spectra over
the [2–14] μm spectral interval (Schmugge et al., 2002).

5. The soil spectral library of French Space Lab (ONERA) was set up
using soil samples collected in southern France (Lesaignoux et al.,
2013). It included 190 reflectance spectra over the [3–14] μm spec-
tral interval, measured over 32 soil samples with five to seven soil
moisture levels.

For leaf samples, we found one spectral library only. It was jointly ac-
quired by the French Space Lab and the United States Geological Survey
(USGS) Reston, VA, USA (Gerber et al., 2011). The spectral library in-
cluded 64 spectra of leaf transmittance/reflectance over the [0.4–14]
μmspectral interval, for 26 plant species at different leafmoisture levels.

Overall, 313 spectra of soil directional-hemispherical reflectance and
64 spectra of leaf directional-hemispherical transmittance/reflectance
were available for conducting the SAIL-Thermique simulations. All spec-
tra were resampled to the spectral resolution of the SAIL-Thermique
simulations that is indicated in the next Section.

3.1.3. SAIL-Thermique simulations

To account for a wide range of soil and plant conditions, we consid-
ered large intervals of LAI and LIDF values (Table 1), by referring to
Weiss and Baret (1999). In order to consider intermediate values for
vegetation cover fraction between bare soil and full cover, we set LAI
values between 0 (bare soil) and 7 (high vegetation cover), with
narrower LAI intervals at low LAI values so that we accounted for the
larger influence of LAI at these low values (Olioso, 1995). LIDFwas com-
puted by using an ellipsoidal function (Campbell, 1990), and we set the
average leaf angle (ALA) between 15° and 75° in order to account for a
wide range of leaf inclination conditions, i.e., from planophile to
erectophile species (Weiss et al., 2004).

For the view zenith angle, we set the observation direction to nadir
only. Indeed, former simulation studies showed that angular variation
of canopy emissivity are low between nadir and 40° (Guillevic et al.,
2003; Labed and Stoll, 1991; Olioso, 1995; Ren et al., 2015). The spectral
interval and resolution of the SAIL-Thermique simulations were set to
[7.5–13.5] μm and 10−3 μm, respectively. To consider a wide range of
plant and soil conditions, we set up the simulations by mixing each
spectrum for leaf and soil along with each LAI and ALA value.

3.1.4. Filtering of emissivity spectra and resulting database

To minimize redundancies in the library of simulated emissivity
spectra, we filtered the SAIL-Thermique input and output spectra
by removing those that depicted similarities in spectral behavior.
We used the spectral angle mapper (SAM) algorithm that calculates

SAIL 
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SAM 
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Canopy emissivity
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Fig. 1. Flowchart of the procedurewe implemented to assess the TES performances over vegetation canopies. SAMwas the algorithmused for filtering out the emissivity spectra that were
similar. S (λ) stands for the calculation of waveband quantities. Others variables are defined in Sections 2 and 3. SAIL stands for SAIL-Thermique.

Table 1

SAIL-Thermique inputs used for the simulations.

Input parameter Values

LAI 0, 0.25, 0.5, 1, 2, 4, 7
ALA 15°, 35°, 55°, 75°
View zenith angle Nadir
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the similarity between two spectra (Girouard et al., 2004). SAMmea-
sures the angle γ between two spectra, treating them as vectors in a
v-dimensional space (v being the number of spectral values). We im-
plemented the SAM procedure as following. Each spectrumwas used
as a reference and compared to the other ones. In case any of the lat-
ter was similar to the reference spectrum, it was removed from the
library. Two spectra were considered similar when angle γ between
both was lower than 1°.

The SAM based filtering was firstly applied to SAIL-Thermique input
spectra. Among the 313 soil spectra and 64 leaf spectra to be filtered
separately, SAM selected 65 spectra of soil reflectance/transmittance
and 35 spectra of leaf reflectance. When combined with the LAI and
ALA values, we simulated 63,700 canopy emissivity spectra (65 soil
spectra × 35 leaf spectra × 7 LAI values × 4 ALA values) using SAIL-
Thermique. The SAM based filtering was secondly applied to SAIL-
Thermique output spectra, which led to the selection of 271 simulated
emissivity spectra. The database of 271 emissivity spectra was split
into two equal parts: a calibration data set with 136 spectra, and a vali-
dation dataset with 135 spectra.

3.2. Setting up a library of surface outgoing radiance to apply and validate

TES

As explained in Section 2, TES is applied to TIR remote sensingmea-
surements at the surface level, i.e. over a set of waveband values of sur-
face outgoing radiance within the channels of the considered sensor.
The surface outgoing radiance is the sum of the emission component
that involves surface emissivity and radiometric temperature, and of
the reflection component that involves atmospheric downwelling irra-
diance and surface reflectance, the latter being assumed equal to 1-
emissivity (Schmugge et al., 1998).

We computed the emission component from the emissivity spectra
and the prescribed values of surface radiometric temperature. We
used the 135 emissivity spectra from the validation dataset. For each
spectrum, 10 radiometric temperature values were randomly drawn
(uniform distribution) within the [270–340] K range, with a maximum
value of 305 K for LAI larger than 4, so that radiometric temperature is
consistent with vegetation cover at satellite overpass around solar
noon, for a large range of soil, plant and atmospheric conditions
(Chávez et al., 2011).

We computed the reflection component from both emissivity spec-
tra and spectra of atmospheric downwelling irradiance. We used the
same emissivity spectra as selectedwhen computing the emission com-
ponent. We simulated the spectra of atmospheric downwelling irradi-
ance using the MATISSE-V2 (Acronym for French label meaning “earth
advance modeling for imagery and simulation of scenes and their envi-
ronments”) atmospheric radiative transfer model (Labarre et al., 2010;
Labarre et al., 2011). We used atmospheric profiles from the Air Force
Research Laboratory (AFRL) dataset (Simoneau et al., 2006) as inputs
for MATISSE-V2. We selected three atmospheric profiles (“US standard
1976”, “tropical” and “mid-latitude winter”) that represented a large
range of atmospheric conditions, from dry to humid atmospheres and
from cold to warm atmospheres. The MATISSE simulations were con-
ducted over the [740–1335] cm−1 spectral interval, with a 1 cm−1 spec-
tral resolution that corresponds to 0.005 μm at 7.5 μm and to 0.02 μm at
13.5 μm. The spectra of atmospheric downwelling irradiance were then
resampled to the spectral resolution of the SAIL-Thermique simulations,
by using a linear interpolation.

We combined each of the 135 emissivity spectra from the validation
dataset with the 10 prescribed values of radiometric temperature and
the three spectra of atmospheric downwelling irradiance. Among the
resulting 4050 spectra of surface outgoing radiance, we selected those
for which the surface - air temperature gradient ranged between
−10 K and +30 K, where air temperature is the temperature value at
the first atmospheric profile level (Du et al., 2015; Sobrino and
Romaguera, 2004). The goal was to select realistic surface – air

temperature gradients for a large range of soil, plant and atmospheric
conditions. The final dataset subsequently included 2157 spectra of sur-
face outgoing radiance.

3.3. Computing waveband emissivity and radiances from simulated spectra

Calibrating and applying TES requires accounting for the sensor
spectral configuration. We considered those of three existing sensors:
ASTER (Yamaguchi et al., 1998), MODIS (Justice et al., 1998) and MAS-
TER (Hook et al., 2001). We also considered the spectral configurations
of two sensors under study: HyspIRI (Green et al., 2012) and MISTIGRI
(Lagouarde et al., 2013). Overall, considering a panel of different sensors
permitted to address the impact of channel number on the TES perfor-
mances, where TES aims to capture the emissivity spectral contrast
from multispectral observations.

The characteristics of the channel filters are given in Fig. 2. They
were obtained from dedicated web sites for ASTER (https://asterweb.
jpl.nasa.gov/characteristics.asp), TERRA/MODIS (ftp://mcst.ssaihq.com/
permanent/MCST/PFM_L1B_LUT_4-30-99/L1B_RSR_LUT/) and MASTER
(https://asapdata.arc.nasa.gov/Master/srf/May_01/). The spectral con-
figurations of MODIS, ASTER and MASTER included three, five and 10
channels, respectively. Although including MASTER band 41 @ 7.85
μmwas questionable because of atmospheric perturbations, we includ-
ed all theMASTER channels since it permitted to address a configuration
with a large number of channels. At the time of the study, the design of
the HyspIRI and MISTIGRI spectral configurations were in progress, and
we set up their configurations according to the available information. By
following Hulley (2011), we considered the five ASTER channels along
with the MODIS channel located at 12 μm for HyspIRI. For MISTIGRI,
we followed the specifications from the A-phase of the MISTIGRI mis-
sion (Lagouarde et al., 2013), and we set-up two configurations: one
with three channels and the other one with four channels. The corre-
sponding channel filters were provided by the French space agency
(CNES). For MISTIGRI, larger bandwidths aimed to reduce instrumental
noise induced by the use of micro-bolometer detectors (Lagouarde et
al., 2013).

The channelfilterswere interpolated to the spectral resolution of the
SAIL-Thermique simulations (10−3 μm). Finally, we computed the
waveband quantities in each channel by convolving the spectra (e.g.,
emissivity, surface outgoing radiance and atmospheric downwelling ir-
radiance) with the corresponding filter.

3.4. Calibrating and validating the TES method

The ε-min - MMD empirical relationship of the TES method was cal-
ibrated for each sensor spectral configuration. We used the waveband
values derived from the 136 emissivity spectra of the calibration
dataset. Coefficients A, B and C were calibrated over the dataset of (ε-
min,MMD)pairs, byminimizing the quadratic difference between actu-
al and predicted values. We used the R “Optim” function that relies on
the Newton's method (R Development Core Team, 2011), and we ob-
tained the same calibration results regardless of initial guess. The
resulting root mean square error (RMSE) was calculated as the calibra-
tion residual error. Additionally, we evaluated the calibrated ε-min -
MMD relationship against the 135 emissivity spectra from the valida-
tion dataset.

For each sensor spectral configuration, we used the calibrated co-
efficients to apply TES over the waveband values of surface outgoing
radiance along with the waveband values of atmospheric
downwelling irradiance. Then, TES retrievals of waveband emissivity
and radiometric temperature were compared against the original
prescriptions used to calculate surface outgoing radiance (Section
3.2). The quadratic differences were expressed in terms of RMSE
values.
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4. Results

We first report the results obtained when calibrating the ε-min -
MMD relationship (Section 4.1), and when validating the TES retrievals
of emissivity and radiometric temperature (Section 4.2). We then com-
pare the SAIL-Thermique based results for TES calibration/validation
against those reported in former studies that relied on single or linearly
mixed samples of soil/leaf spectra (Section 4.3).

4.1. Calibration of the TES empirical relationship

Fig. 3 displays a typical example of the calibration results for the ε-
min - MMD relationship when considering the MASTER sensor. We ob-
tained similar results with the other sensor spectral configurations.

Indeed, the calibrated relationships were rather similar for low MMD
values, with differences in ε-min value around 0.007 for a MMD value
of 0.1, and they could be quite different for large emissivity spectral con-
trasts, with differences in ε-min value up to 0.02 for MMD values of 0.3.
Also, the channel number impacted the MMD range, up to 0.05 MMD
units for large MMD values.

Table 2 displays the results we obtained when calibrating the ε-min
- MMD relationship for each sensor spectral configuration, as well as
when comparing the ε-min estimates against those derived from the
validation dataset. The A, B, C coefficients were different from one con-
figuration to another, but they were similar when channel numbers
were close (e.g., MODIS versus MISTIGRI with 3 channels, ASTER versus
MISTIGRI with 4 channels, or ASTER versus HyspIRI). The calibration er-
rors decreased by 25–30% when the channel number increased from 3

Fig. 2. Characteristics of the spectral configuration for each of the sensorswe considered (black lines), alongwith a typical example of atmospheric transmittance (gray lines). MISTIGRI-N
stands for the MISTIGRI configurations that involve N channels. The configurations are ranked according to a growing number of channels.
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to 10, and it remained lower than 0.0065. Similar results were obtained
when comparing ε-min estimates against those derived from the vali-
dation dataset, with errors lower than 0.007.

4.2. Validation of the TES retrievals of emissivity and radiometric

temperature

Fig. 4 displays a typical example of the results obtained when com-
paring TES retrievals of waveband emissivity against prescribed values
from the validation dataset. Prescribed values were waveband emissiv-
ities derived from the emissivity spectra used to compute waveband
surface outgoing radiance over which was apply TES (see Fig. 1). This
typical example corresponded to the ASTER spectral configuration,
and we obtained similar results with the other sensor spectral configu-
rations. It is shown that the emissivity spectra were well retrieved by
TES. For a given spectrum, the retrievals of waveband emissivity were
closer to the prescribed values at larger wavelengths that usually
corresponded to flatter portions of the emissivity spectra (10 to 12 μm).

Fig. 5 displays the comparison of the TES retrievals of waveband
emissivity against the prescribed values derived from reference spectra
of the validation dataset, when considering the MISTIGRI spectral con-
figuration with four channels. We obtained similar results with the
other sensors. Regardless of channel, we noted larger discrepancies
around the 1:1 line for large emissivity values. Besides, retrievals of
waveband emissivity agreed better with prescribed values for larger

wavelengths (10 to 12 μm) that corresponded to flatter portions of
emissivity spectra (Fig. 4). This was observed for all sensor spectral con-
figurations, with RMSE values decreasing from 0.01 to 0.005, apart from
the MASTER channel at 7.8 μm (Fig. 6).

Fig. 7 displays the comparison of TES retrievals of radiometric tem-
perature against the prescribed values when considering HyspIRI. We
obtained similar results with the other sensors, with RMSE values of
0.47 K for MISTIGRI with 3 channels, 0.44 K for MODIS, 0.38 K for
MISTIGRI with 4 channels, 0.35 K for ASTER, 0.34 K for HyspIRI, and
0.28 K for MASTER. The results were consistent with those obtained
when validating emissivity retrievals: we noted better agreements be-
tween retrieved and prescribed values of radiometric temperature for
sensors with more channels, the RMSE value being twice lower when
using 10 channels rather than 3.

4.3. Impact of cavity effect on TES calibration and retrievals

For the spectral configurations of ASTER and MODIS, we compared
our TES calibration/validation results against those reported in former
studies (Gillespie et al., 1998; Hulley et al., 2012a; Jimenez-Munoz et
al., 2014).We could not compare the calibrated coefficients for MASTER
and HyspIRI, because of differences in channel selections (Grigsby et al.,
2015; Hulley, 2011).

Table 3 displays the various coefficients of the ε-min - MMD rela-
tionship proposed for MODIS and ASTER by the current study and by
former studies. The resulting ε-min estimates differed by 0.015 on aver-
age, and up to 0.025 forMMD larger than 0.1. Further, the ε-min predic-
tions derived from our calibrationwere systematically larger than those
derived from former calibrations. As an example, Fig. 8 displays the ε-
min - MMD relationship when considering the newly fitted calibration
we proposed in the current study and that proposed by Gillespie et al.
(1998) for the ASTER spectral configuration.We obtained similar results
when dealing with MODIS. Fig. 8 shows that both calibrations provided
different ε-min predictions, and that the ε-min predictions derived from
our calibration were systematically larger than those derived from the
Gillespie's calibration, mostly for intermediate MMD values. The bias
between predictions and actual values from our calibration dataset
was obviously close to zero for our calibration, while it was about

Fig. 3. Calibration of the ε-min - MMD relationship for the spectral configuration of the
MASTER sensor. Dots correspond to the samples used for the calibration, and continuous
line is the calibrated relation. The RMSE value indicates the calibration residual error.
The n value indicates the sampling number.

Table 2

Results of the ε-min - MMD relationship calibration (ε-min=A+ B ×MMDC) for each of
the six sensors we considered. The results are ranked according to a growing number of
channels. Calibration dataset included 136 emissivity spectra, and validation dataset in-
cluded 135 emissivity spectra.

Sensor Number of
channels

Calibrated coefficients RMSE
(calibration
dataset)

RMSE
(validation
dataset)

A B C

MISTIGRI 3 0.987 −0.688 0.821 0.0065 0.0069
MODIS 3 0.989 −0.674 0.815 0.0064 0.0065
MISTIGRI 4 0.987 −0.722 0.850 0.0056 0.0057
ASTER 5 0.989 −0.737 0.834 0.0055 0.0052
HyspIRI 6 0.989 −0.738 0.860 0.0052 0.0051
MASTER 10 0.994 −0.740 0.836 0.0048 0.0049

Fig. 4. Comparison of TES retrievals of waveband emissivity (labeled εTES1 and εTES2)
against reference emissivity spectra (labeled εobs1 and εobs2) when considering two
typical emissivity spectra from the validation dataset simulated with SAIL-Thermique.
The results are given for the ASTER spectral configuration. Gray areas indicate the ASTER
channel filters.
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0.006 for the Gillespie's one. As compared to the residual error we ob-
tained with our calibration (RMSE value of 0.0055, Table 2), the qua-
dratic difference between actual values from our calibration dataset
and predictions from the Gillespie's calibration was twice larger
(RMSE of 0.0095).

We quantified the impact of differences in ε-min predictions by
comparing the Gillespie's calibration for ASTER against our validation
dataset. The comparisons of TES retrievals against prescribed values
are displayed in Figs. 9 and 10. It is shown that lower estimates of ε-
min induced (1) lower estimates of waveband emissivity for all ASTER
channels, with bias values ranging from 0.007 to 0.009, and (2) larger
estimates of radiometric temperature, of about 0.4 K. Resulting errors
on waveband emissivity and radiometric temperature were almost
twice larger than those obtained when validating our calibration. In-
deed, RMSE ranged from 0.011 to 0.015 for emissivity and it was 0.6 K
for radiometric temperature with the Gillespie's calibration (Figs. 9
and 10), to be compared to RMSE ranging from 0.005 to 0.008 for emis-
sivity and RMSE of 0.35 K for radiometric temperature with our calibra-
tion (Fig. 6 and Section 4.2).

We finally quantified the impact of cavity effect by comparing the
calibration obtained from SAIL-Thermique simulations against that ob-
tained if selecting soil and leaf spectra only. In order to minimize
other driver effects and to focus on cavity effect, we selected only the
soil and leaf spectra involved in the SAIL-Thermique simulations. Soil
emissivity εswas assumed equal to absorptance, and computed from re-
flectance ϱs (i.e., εs = 1− ϱs). Leaf emissivity εl was assumed equal to
absorptance, and computed from leaf reflectance ϱl and transmittance
τl (εl = 1 − ϱl − τl). The results are displayed in Fig. 11. It is shown
that the calibration from soil and leaf spectra only provided lower ε-
min estimates as compared to the calibration from SAIL-Thermique

simulations. The bias was similar to that obtained with the Gillespie's
calibration (Fig. 8), with a slightly lower value (0.004 versus 0.0055).
The lowest ε-min estimates were observed for intermediate MMD
values that correspond to intermediate vegetation cover.

5. Discussion

The calibration/validation results for emissivity and temperature re-
trievals were good. This underlines the relevance of the TES empirical
relationship, especially when (1) using emissivity spectra simulations
that account for radiative transfer within the canopy with subsequent
cavity effect and (2) considering a range of soil and plant conditions,
from bare soil to full vegetation cover. However, the absolute RMSE
values found in this study should be considered with caution for two
reasons. First, we addressed the land surface levelwithout any consider-
ation of atmospheric or instrumental perturbations. Second, the calibra-
tion and validation datasets were not fully independent since theywere
derived from the same model, which partly explains the similar RMSE
values we observed for calibration and validation.

The calibration/validation results were better for sensor spectral
configurationswithmore channels that permitted to capture emissivity
spectral contrast more efficiently, which is in agreement with previous
studies. For a given spectral configuration, emissivity retrievals were
worse at lower wavelengths, because of sharp changes in emissivity be-
tween 8 and 10 μm, as compared to flatter spectra portions between 10
and 12 μm(Fig. 4). Theworst emissivity retrievals for theMASTER chan-
nel located at 7.8 μm was ascribed to large atmospheric irradiance
below 8 μm. Thus, it may be better excluding this channel, even at the
ground level, although TES retrievals of radiometric temperature were
good. Apart from channels below 8 μm, obtaining better accuracies on

Fig. 5. Comparison of TES retrievals of waveband emissivity against waveband values derived from our validation dataset of emissivity spectra. The results are given for the MISTIGRI
spectral configuration that included four channels. Dashed line is the 1:1 line.
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emissivity retrievals at lowerwavelengthsmay require finer channels to
capture sharp changes in emissivity. However, this issue must be ad-
dressed by accounting for atmospheric and instrumental perturbations
that may affect the signal quality in a larger extent with finer channels.
Finally, the observed discrepancies around the 1:1 line for large emissiv-
ity values (Figs. 5 and 9) were ascribed to the gray body problem. The
latter corresponds to low retrieval performances for TES over land

surfaces that depicted low emissivity spectral contrasts, usually for
large vegetation covers (Coll et al., 2007; Jacob et al., 2004; Ogawa et
al., 2008).

For the ASTER andMODIS spectral configurations, it was shown that
ε-min estimates from our calibration were systematically larger than ε-
min estimates from former calibrations, especially for intermediate
MMD values that mostly corresponded to intermediate vegetation
covers. The resulting differences on emissivity and radiometric temper-
ature retrievals could reach up to 0.025 (0.015 on average, Fig. 9) and
2 K (0.6 K on average, Fig. 10). The larger ε-min estimates obtained
with our calibrations were due to the difference in the samples used
to fit the ε-min - MMD relationship. First, we excluded soil spectra cor-
responding to mineral samples that tended to shift downward the ε-
min - MMD relationship, as shown by Schmugge et al. (1998). Second,
our calibration dataset included more vegetation surfaces as compared
to former studies, since we focused on plant canopies with LAI between
0 and 7. Third, introducing spectra with cavity effect tended to shift up-
ward the ε-min - MMD relationship (Anton and Ross, 1990; Chen et al.,
2004; Merlin and Chehbouni, 2004; Olioso, 1995). This was confirmed
when comparing the calibration from SAIL-Thermique simulations
against that from soil and leaf spectra only (Fig. 11).

Fig. 6. Averaged RMSE values obtained for each sensor channel when comparing TES
retrievals of emissivity against waveband values derived from our validation dataset of
emissivity spectra. MIS-N stands for the spectral configurations of the MISTIGRI sensor
with N channels.

Fig. 7. Comparison of TES retrievals of radiometric temperature against prescribed values.
The results are given for the HyspIRI spectral configuration that included six channels.

Table 3

Existing calibrations for the ε-min - MMD relationship, displayed as values of the coeffi-
cients A, B and C, when dealing with theMODIS and ASTER sensors. Last column indicates
the corresponding literature references.

Sensor Number of
channels

Calibrated coefficients Reference

A B C

MODIS 3 0.985 −0.750 0.832 (Hulley et al., 2012a)
MODIS 3 0.998 −0.654 0.736 (Jimenez-Munoz et al.,

2014)
MODIS 3 0.989 −0.674 0.815 The current study
ASTER 5 0.994 −0.687 0.737 (Gillespie et al., 1998)
ASTER 5 0.989 −0.737 0.834 The current study

Fig. 8. Comparison between the calibration obtained in the current study with SAIL-
Thermique simulations for ASTER (labeled New-ER for new fitting of empirical
relationship) and that proposed by Gillespie et al. (1998) for the same sensor (labeled
Old-ER for old empirical relationship). Scatterplots are the (ε-min, MMD) pairs we used
the in current study.
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Former calibration results were different from one study to another
(Section 2). Differences were also observed in the current study that re-
lied on a new type of spectral library,where the latter accounted for cav-
ity effect while including a wide range of soil and plant conditions.
Overall, the variability we observed on calibration results questioned
the relevance and representativeness of any dataset to be used for cali-
bration, and it underlined how the choice of the spectral library is a cru-
cial step. An appropriate set up would require accounting for sample
occurrences at the worldwide scale.

The use of a radiative transfermodel for the calibration of the ε-min -
MMD relationship permitted to account for radiative transfer within
vegetation canopy and subsequent cavity effect while considering a
wide range of soil and plant conditions. This gave us the opportunity
to study the variation of the (ε-min - MMD) pairs as a function of the
vegetation cover. Fig. 12 displays changes in canopy emissivity spectra
as LAI increases for a given set of soil and leaf spectra (top), along
with the resulting changes in (ε-min - MMD) pairs (bottom). It is

shown that emissivity spectra become flat with values closer to unity
as LAI increases, as empirically reported by Neinavaz et al. (2016a),
which induces a displacement of the (ε-min - MMD) pairs along the
ε-min - MMD empirical relationship. Thus, increasing LAI with SAIL-
Thermique induced similar trends than using single or linearly mixed
samples of soil/leaf spectra, i.e. the displacement of the (ε-min -
MMD) pairs along the empirical relationship. This is explained by the
underlying TES assumption,where any change in ε-min induces change
in MMD because ε-max is bounded on [0.98–1].

6. Concluding remarks

The current study focused on evaluating the TES performances over
various vegetation canopies, from bare soil to full vegetation cover. This
research is based on the use of the SAIL radiative transfer model to ac-
count for cavity effect within vegetation canopy. As compared to previ-
ous studies based on the use of leaf and soil spectra only, differences

Fig. 9. Comparison of waveband emissivity retrieved with TES when using the calibration proposed by Gillespie et al. (1998) for ASTER against waveband values derived from our
validation dataset of emissivity spectra. Dashed line is the 1:1 line.
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occurred mainly for intermediate vegetation cover, with non-negligible
consequences on the TES retrievals of emissivity and radiometric tem-
perature. This raises the question of the representativeness of the cali-
bration dataset, in relation to the considered type of land surface. To a
lesser extent, the TES performances were in agreement with those re-
ported in former studies: retrieval performances are better when con-
sidering more channels, the emissivity is better estimated for spectral
intervals with flatter emissivity spectra, and it is less well estimated
for large emissivity values because of the gray body problem.

The current study relied on a synthetic dataset. Although compara-
tive results permitted to underline the impact of cavity effect for a

large range of soil and plant conditions, it is necessary to confront
these outcomes against ground-based measurements, given (1) mea-
surement methods were recently proposed for reflectance spectra
(Neinavaz et al., 2016a; Neinavaz et al., 2016b; Rock et al., 2016) and
(2) multispectral measurements have been conducted over large spec-
tral bands (Olioso et al., 2014; Olioso et al., 2007). Besides, the current
study focused on land surface level, without any consideration of instru-
mental and atmospheric perturbations, whereas the latter can have sig-
nificant consequences (e.g., Hulley et al., 2012b; Jacob et al., 2004). In
the context of forthcoming space missions such as HyspIRI (Green et
al., 2012), MISTIGRI (Lagouarde et al., 2013), or THIRSTY (Crebassol et
al., 2014), ongoing investigations address the combined effects of emis-
sivity spectral contrast, spectral variations of atmospheric perturba-
tions, and instrumental effects that depend upon bandwidths. Thus, a
preliminary study suggested to merge the two MISTIGRI channels at
8.6 and 9.1 μm, in order to reduce the instrumental noise induced by
the use of micro-bolometer detectors (Lagouarde et al., 2013).
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Fig. 10. Comparison of radiometric temperature retrieved with TES when using the
calibration proposed by Gillespie et al. (1998) for ASTER against the prescribed values.

Fig. 11. Comparison between the calibration obtained in the current study with SAIL-
Thermique simulations (labeled New-ER for new fitting of empirical relationship) and
that obtained if selecting soil and leaf spectra only (labeled SL-ER). Scatterplots are the
(ε-min, MMD) pairs used for the calibrations, in black for soil and leaf spectra only, and
in gray for the SAIL-Thermique simulations. The results are given for the ASTER spectral
configuration.

Fig. 12. (Top) Change in emissivity spectra as simulated with SAIL-Thermique for
increasing LAI. (Bottom) Change in (ε-min, MMD) pairs as simulated with SAIL-
Thermique when LAI increases. Results are given for the ASTER spectral configuration.
The continuous line is the empirical relationship calibration we obtained when using
our simulated dataset.
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