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Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model

We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature. Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single overpass without any ancillary information. This is possible since TES makes use of an empirical relationship that estimates the minimum emissivity ε-min from the emissivity spectral contrast captured over several channels, so-called maximum-minimum difference (MMD). In previous studies, the ε-min -MMD empirical relationship of TES was calibrated and validated for various sensor spectral configurations, where the proposed calibrations involved single or linearly mixed spectra of emissivity at the leaf or soil level. However, cavity effect should be taken into account at the vegetation canopy level, to avoid an underestimation of emissivity, especially for intermediate vegetation conditions between bare soil and full vegetation cover. The current study aimed to evaluate the performances of the TES method when applied to vegetation canopies with cavity effect. We used the SAIL-Thermique model to simulate a library of emissivity spectra for a wide range of soil and plant conditions, and we addressed the spectral configurations of recent and forthcoming sensors. We obtained good results for calibration and validation over the simulated library, except for full cover canopies because of the TES gray body problem. Consistent with previous studies, the calibration/validation results were better with more channels that capture emissivity spectral contrast more efficiently. Our TES calibrations provided larger ε-min values as compared to former studies, especially for intermediate vegetation cover. We explained this trend by the simulated spectral library that involved numerous vegetation canopies with cavity effect, thereby shifting up the ε-min -MMD empirical relationship. Consequently, our TES calibration provided larger (respectively lower) estimates of emissivity (respectively radiometric temperature) that were likely to be more realistic as compared to previous calibrations. Finally, SAIL-Thermique simulations permitted to show that increasing Leaf Area Index induced a displacement of the (ε-min, MMD) pairs along the empirical relationship. This was consistent with the TES underlying assumption, where any change in ε-min induces changes in MMD since ε-max is bounded on [0.98-1]. Further investigations should focus on validating the outcomes of the current study against ground-based measurements, and on assessing TES performances when accounting for instrumental and atmospheric perturbations.

Introduction

Land surface temperature is a key environmental variable that drives several land surface processes, including radiation budget [START_REF] Hulley | Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research[END_REF][START_REF] Ogawa | Estimation of land surface window (8-12 μm) emissivity from multi-spectral thermal infrared remote sensinga case study in a part of Sahara Desert[END_REF], heat and water exchanges within surface boundary layer [START_REF] Chehbouni | Using remotely sensed data to estimate area-averaged daily surface fluxes over a semi-arid mixed agricultural land[END_REF][START_REF] Schröder | Geostatistical analysis of data on AIR temperature and plant phenology from Baden-Württemberg (GERMANY) as a basis for regional scaled models of climate change[END_REF][START_REF] Vinukollu | Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches[END_REF], soil water depletion though evaporation and transpiration [START_REF] Anderson | Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources[END_REF][START_REF] Er-Raki | Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET[END_REF][START_REF] Galleguillos | Mapping daily evapotranspiration over a Mediterranean vineyard watershed[END_REF][START_REF] Kalma | Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data[END_REF][START_REF] Olioso | Estimation of heat and mass fluxes from IR brightness temperature[END_REF][START_REF] Pardo | SEBS validation in a Spanish rotating crop[END_REF], vegetation photosynthesis and soil respiration [START_REF] Inoue | Dynamic change of CO 2 flux over bare soil field and its relationship with remotely sensed surface temperature[END_REF][START_REF] Olioso | Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models[END_REF], pollutant degradation [START_REF] Louchart | Aging effects on the availability of herbicides to runoff transfer[END_REF], or pathogen dissemination [START_REF] Courault | Influence of agricultural practices on micrometerological spatial variations at local and regional scales[END_REF]. Given the implications for the related environmental issues, multi-decadal monitoring of land surface temperature has been recognized as a priority specification for recent satellite missions devoted to Earth observation [START_REF] Green | The HyspIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-spectral Thermal Measurements[END_REF][START_REF] Lagouarde | The MISTIGRI thermal infrared project: scientificobjectives and mission specifications[END_REF][START_REF] Malenovský | Sentinels for science: potential of sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land[END_REF][START_REF] Murphy | The NPOESS preparatory project[END_REF][START_REF] Roy | Landsat-8: science and product vision for terrestrial global change research[END_REF][START_REF] Schmit | Introducing the next-generation advanced baseline imager on GOES-R. Bull[END_REF].

Various difficulties have to be overcome when recovering land surface temperature from remote sensing data collected over the thermal infrared (TIR) spectral domain [START_REF] Dash | Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends[END_REF][START_REF] Jacob | Modeling and inversion in thermal infrared remote sensing over vegetated land surfaces[END_REF][START_REF] Jacob | Mapping biophysical variables from solar and thermal infrared remote sensing: focus on agricultural landscapes with spatial heterogeneity[END_REF][START_REF] Li | Satellitederived land surface temperature: current status and perspectives[END_REF]. One challenging task is to separate land surface emissivity and radiometric temperature by solving an undetermined problem with N equations (N waveband measurements) and N + 1 unknowns (N waveband emissivities and one radiometric temperature). Besides, solving this undetermined problem requires accounting for the coupling of atmospheric emission with land surface reflectance, the latter being often assumed equal to 1emissivity.

Various methods have been proposed to separate land surface emissivity and radiometric temperature [START_REF] Dash | Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends[END_REF][START_REF] Jacob | Modeling and inversion in thermal infrared remote sensing over vegetated land surfaces[END_REF][START_REF] Li | Land surface emissivity retrieval from satellite data[END_REF]. They rely on using the spectral, angular and temporal information collected from remotely sensed data, and may require prior atmospheric corrections or not. The first group of methods consists of combining data from one or two TIR channels along with data from visible and near infrared channels [START_REF] Jiménez-Muñoz | Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data[END_REF]. The second group of methods consists of combining the spectral, angular and temporal information collected over the TIR domain and optionally over the middle infrared domain [START_REF] Petitcolin | Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data[END_REF][START_REF] Wan | A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[END_REF]. The third group of methods consists of using the spectral information captured with TIR multispectral/hyperspectral data [START_REF] Barducci | Temperature and emissivity retrieval from remotely sensed images using the "grey body emissivity" method[END_REF][START_REF] Payan | Analysis of temperature emissivity separation (TES) algorithm applicability and sensitivity[END_REF][START_REF] Schmugge | Temperature and emissivity separation from multispectral thermal infrared observations[END_REF]. As compared to the methods belonging to the first two groups, those of the third group use single overpasses only while minimizing the dependency upon ancillary information, which is interesting over land surfaces that depict temporal dynamics in temperature and spatial heterogeneities.

Separating emissivity and temperature from TIR multispectral data consists of estimating waveband emissivity for a given channel to next retrieve all the waveband emissivities and the radiometric temperature. Normalized emissivity method (NEM) aims to accurately quantify emissivity variations, by arbitrarily setting the maximum emissivity [START_REF] Coll | Temperature and emissivity extracted from airborne multi-channel data in the ReSe-DA experiment[END_REF], whereas adjusted NEM (ANEM) makes use of vegetation cover fraction to improve the setting of maximum emissivity [START_REF] Coll | Adjusted normalized emissivity method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data[END_REF]. The temperature emissivity separation (TES) approach consists of estimating minimum emissivity from the emissivity spectral contrast captured with multispectral measurements [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF][START_REF] Schmugge | Recovering surface temperature and emissivity from thermal infrared multispectral data[END_REF]. As compared to NEM and ANEM, TES does not rely neither on arbitrary setting of emissivity nor on ancillary information, but on an empirical relationship between minimum emissivity ε-min and emissivity spectral contrast. The latter is estimated as the ratio of emissivity range to emissivity mean value, the so-called maximum -minimum difference (MMD).

Many studies investigated the retrieval performances of TES, by focusing either on calibration [START_REF] Grigsby | Improved surface temperature estimates with MASTER/AVIRIS sensor fusion[END_REF][START_REF] Hulley | HyspIRI Level-2 Thermal Infrared (TIR) Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document[END_REF]Hulley et al., 2014;[START_REF] Hulley | Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research[END_REF][START_REF] Jimenez-Munoz | Temperature and emissivity separation from MSG/SEVIRI data[END_REF][START_REF] Payan | Analysis of temperature emissivity separation (TES) algorithm applicability and sensitivity[END_REF][START_REF] Sobrino | Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future missions[END_REF] or on retrieval accuracies [START_REF] French | Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities[END_REF][START_REF] Gillespie | Residual errors in ASTER temperature and emissivity standard products AST08 and AST05[END_REF][START_REF] Göttsche | Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region[END_REF]Hulley et al., 2012b;[START_REF] Jacob | Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors[END_REF][START_REF] Jiménez-Muñoz | Improved land surface emissivities over agricultural areas using ASTER NDVI[END_REF][START_REF] Jimenez-Munoz | Temperature and emissivity separation from MSG/SEVIRI data[END_REF][START_REF] Mira | Comparison of thermal infrared emissivities retrieved with the two-lid box and the TES methods with laboratory spectra[END_REF][START_REF] Mira | Analysis of ASTER emissivity product over an arid area in Southern New Mexico, USA[END_REF][START_REF] Sabol | Field validation of the ASTER temperature-emissivity separation algorithm[END_REF][START_REF] Sobrino | Accuracy of ASTER level-2 thermal-infrared standard products of an agricultural area in Spain[END_REF]. These studies addressed several issues among which (1) the calibration of the ε-min -MMD relationship for different sensor spectral configurations, (2) the robustness of the ε-min -MMD relationship and the TES retrieval performances with regards to emissivity variations depicted by land surfaces, and (3) the impact of experimental errors (e.g., instrumental and atmospheric perturbations) on the accuracy of TES emissivity/temperature retrievals. All calibration studies relied on emissivity spectra derived from single or linearly mixed samples of soil/leaf spectra, without accounting for the characteristics of radiative transfer within vegetation canopy.

The use of single or linearly mixed samples of soil/leaf spectra induces an underestimation of land surface emissivity in a large range of situations [START_REF] Olioso | SAIL-Thermique: a model for land surface spectral emissivity in the thermal infrared. Evaluation and reassessment of the temperature-emissivity separation (TES) algorithm in presence of vegetation canopies[END_REF]. This underestimation is explained by the cavity effect that results from radiation trapping within vegetation canopy: multiple scattering combined with large leaf absorptance induce larger emissivity for vegetation canopy as compared to single leaf [START_REF] Anton | Emissivity of a vegetation-soil system[END_REF][START_REF] Chen | Definition of component effective emissivity for heterogeneous and non-isothermal surfaces and its approximate calculation[END_REF][START_REF] Francois | Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements[END_REF][START_REF] Guillevic | Thermal infrared radiative transfer within three-dimensional vegetation covers[END_REF][START_REF] Merlin | Different approaches in estimating heat flux using dual angle observations of radiative surface temperature[END_REF][START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF][START_REF] Olioso | Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation[END_REF]. In most cases, land surface emissivity increases as the amount of aboveground vegetation increases (e.g., [START_REF] Van De Griend | On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[END_REF]. In case of low leaf emissivity due to leaf dryness, land surface emissivity can decrease as the amount of aboveground vegetation increases, but it is still larger than leaf emissivity [START_REF] Olioso | Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation[END_REF]. The cavity effect is neither constant nor proportional to the vegetation amount. At low vegetation cover, canopy emissivity increases rapidly with vegetation amount and next follows an asymptotic behavior towards the highest level of cavity effect. This induces the classical non-linear relationship between normalized difference vegetation index (NDVI) and land surface emissivity (e.g., [START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF][START_REF] Van De Griend | On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[END_REF]. Vegetation leaves depict large emissivity values (N 0.9), so that saturation effect occurs at intermediate leaf area index (around 3-4) that correspond to intermediate NDVI values (around 0.6-0.7). Therefore, the calibration of the ε-min -MMD empirical relationship may be critical when using single or linearly mixed samples of soil/leaf spectra, because of cavity effect within canopy, especially for intermediate vegetation cover.

The current study aimed to evaluate the performances of the TES method when applied to vegetation canopies with cavity effect. We addressed the canopy level without any consideration of atmospheric or instrumental perturbations. Since emissivity spectra for land surfaces including plant canopies were not available in the existing spectral libraries, we used the SAIL-Thermique model [START_REF] Olioso | Simulation deséchanges d'énergie et de masse d'un couvert végétal dans le but de relier la transpiration et la photosynthèse aux mesures de réflectance et de température de surface[END_REF][START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF] to simulate emissivity spectra for a wide range of soil and plant canopy conditions. We investigated two critical issues applying TES over vegetation canopies. We first addressed the calibration/validation of the ε-min -MMD relationship over the library of simulated spectra, by addressing the spectral configurations of recent and forthcoming sensors. Then, we evaluated the interest of using the SAIL-Thermique simulated dataset of emissivity spectra, by comparing the corresponding calibration/validation results with those obtained in former studies based on single or linearly mixed samples of soil/leaf spectra.

Section 2 presents the TES concept. Section 3 presents the methodological strategy, including the set-up of an emissivity spectral library by using the SAIL-Thermique model (Section 3.1), the set-up of a library of surface outgoing radiance (Section 3.2), the computation of the waveband quantities for different spectral configurations corresponding to various sensors (Section 3.3), as well as the calibration of the εmin -MMD relationship and the validation of TES retrievals against original prescriptions (Section 3.4). Section 4 reports the results, including the calibration of the ε-min -MMD relationship (Section 4.1), the validation of the TES retrievals (Section 4.2), and the interest of using SAIL-Thermique simulations of emissivity spectra as compared to the use of single or linearly mixed samples of soil/leaf spectra (Section 4.3). Section 5 discusses the results in the light of former studies. Finally, concluding remarks highlight the main outcomes, the current investigations and the future challenges.

2. The TES concept: linking minimum emissivity and emissivity spectral contrast

We give here an overview of the TES method, by focusing on the key points that are relevant for the current study. Detailed descriptions can be found in [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF]; [START_REF] Schmugge | Recovering surface temperature and emissivity from thermal infrared multispectral data[END_REF] and [START_REF] Schmugge | Temperature and emissivity separation from multispectral thermal infrared observations[END_REF]. Hereafter, emissivity and radiance values correspond to waveband values over channels.

TES was originally designed to make use of the emissivity spectral contrast captured from multispectral remote sensing data over the TIR spectral domain. The undetermined problem related to the recovering of N + 1 unknowns (N emissivities and radiometric temperature) from N equations (measurements of surface outgoing radiance over N channels) is solved by empirically relating the minimum emissivity εmin to the emissivity spectral contrast captured over the N channels. In order to reduce experimental noises that stem from instrumental and atmospheric perturbations, emissivity spectral contrast is characterized using the maximum minimum difference (MMD). MMD is the ratio of the emissivity range over the channels (difference between the maximum and minimum emissivity values, ε-maxε-min) to the mean emissivity value ε-mean [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF]. Once ε-min is estimated, emissivity for any channel can be retrieved along with radiometric temperature. This relies on the calculation of surface outgoing radiance as the sum of (1) the emission component driven by surface emissivity and radiometric temperature and (2) the reflection component driven by atmospheric downwelling irradiance and surface reflectance (assumed equal to 1-emissivity).

The empirical relationship between minimum emissivity and MMD is a power function: ε-min = A + B × MMD C . Given the importance of estimating ε-min that is the first step for retrieving N emissivities and radiometric temperature, a special attention has been paid to the calibration of this empirical relationship. [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF] first proposed a calibration for earth observation system (EOS)/advanced spaceborne thermal emission and reflection radiometer (ASTER) using five channels. Several studies have subsequently proposed calibrations for the spectral configurations of various sensors such as EOS/moderate resolution imaging spectroradiometer (MODIS) with three channels (Hulley et al., 2014;[START_REF] Hulley | Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research[END_REF][START_REF] Jimenez-Munoz | Temperature and emissivity separation from MSG/SEVIRI data[END_REF], EOS/ASTER with three channels close to the MODIS ones [START_REF] Hulley | Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research[END_REF], hyperspectral infrared imager (HyspIRI) with six channels [START_REF] Hulley | HyspIRI Level-2 Thermal Infrared (TIR) Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document[END_REF], MODIS/ASTER simulator (MASTER) with five channels close to HyspIRI ones [START_REF] Grigsby | Improved surface temperature estimates with MASTER/AVIRIS sensor fusion[END_REF], or Meteosat second generation (MSG)/spinning enhanced visible and infrared image (SEVIRI) with three channels [START_REF] Jimenez-Munoz | Temperature and emissivity separation from MSG/SEVIRI data[END_REF]. Overall, calibrated coefficients vary greatly from one sensor to another, with relative changes in A, B and C values up to 15-20% relative, and with subsequent changes in ε-min value up to 0.015 (respectively 0.025) for a MMD value of 0.1 (respectively 0.3).

Applying TES over vegetation canopies by using radiative transfer modeling

To simulate emissivity spectra of vegetation canopies for a wide range of soil and plant conditions, we used the SAIL-Thermique model that mimics radiative transfer within the canopy by accounting for radiation trapping and subsequent cavity effect. We next calculated spectra of surface outgoing radiance from (1) the emissivity spectra simulated with SAIL-Thermique, (2) prescribed values of radiometric temperature, and (3) spectra of atmospheric downwelling irradiance. We finally calculated waveband values of emissivity, atmospheric downwelling irradiance and surface outgoing radiance, by convolving the corresponding spectra with the channel filters of existing and forthcoming sensors.

Prior to the calculation of radiance/irradiance spectra and of waveband values, the library of emissivity spectra was split into two equal parts. The first part, referred to as calibration dataset hereafter, was used to calibrate the TES empirical relationship, i.e. to adjust the (A, B, C) coefficients of the ε-min -MMD relationship. The second part, referred to as validation dataset hereafter, was used to (1) apply TES on waveband values of surface outgoing radiance, and (2) compare TES retrievals of radiometric temperature and emissivities against original prescriptions. The robustness of the coefficient estimation by means of randomization was a posteriori confirmed, since the variability of the calibrated coefficients was about 1-2% relative when repeating the procedure 100 times.

We detail hereafter the different methodological steps, where emissivity and radiance values correspond to waveband values for given channels, except when indicated for a specific wavelength. Fig. 1 displays a flowchart of the procedure.

Setting up a library of emissivity spectra with radiative transfer modeling

Conducting simulations with the SAIL-Thermique model, presented in Section 3.1.1, required the gathering of the model inputs (Section 3.1.2), the design of the model simulations (Section 3.1.3), and the filtering of simulated emissivity spectra to avoid redundancies in spectral behavior (Section 3.1.4). We did not add any noise to the simulations, since we addressed the canopy level without any consideration of atmospheric or instrumental perturbations that impact at-sensor radiance.

The SAIL-Thermique radiative transfer model

The scattering by arbitrarily inclined leaves (SAIL) model was originally developed by [START_REF] Verhoef | Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model[END_REF][START_REF] Verhoef | Earth observation modeling based on layer scattering matrices[END_REF] to simulate land surface reflectance over the solar domain. SAIL describes any land surface as a turbid medium that includes a soil substrate beneath a homogeneous vegetation layer, possibly extended to a stack of vegetation layers. SAIL describes vegetation canopy thanks to leaf optical properties and prescribed canopy structure (i.e., LAI for leaf area index and LIDF for leaf inclination distribution function). The radiative transfer equations on which SAIL relies account for successive radiation scattering (reflection, transmission, absorption) within the canopy and between the canopy and the soil.

The SAIL-Thermique model was adapted from the original SAIL model by [START_REF] Olioso | Simulation deséchanges d'énergie et de masse d'un couvert végétal dans le but de relier la transpiration et la photosynthèse aux mesures de réflectance et de température de surface[END_REF] and [START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF] to simulate vegetated land surface emissivities using the SAIL underlying physics. SAIL-Thermique permits to simulate radiative transfer over the TIR domain and thus to compute emissivity or directional brightness temperature. The simulation of land surface emissivity between 8 and 14 μm was demonstrated by [START_REF] Olioso | Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation[END_REF] and [START_REF] Olioso | SAIL-Thermique: a model for land surface spectral emissivity in the thermal infrared. Evaluation and reassessment of the temperature-emissivity separation (TES) algorithm in presence of vegetation canopies[END_REF]. [START_REF] Verhoef | Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies[END_REF] also favorably compared SAIL-Thermique against the 4SAIL model.

SAIL-Thermique considers the Kirchhoff's law at the thermodynamical equilibrium. It assumes that surface emissivity in any direction can be calculated as surface absorptance for the radiation originating from this direction. Then, the spectral emissivity ε λ is computed from the simulated directional-hemispherical reflectance ϱ λ : ε λ =1ϱ λ ,thus corresponding to directional r-emissivity [START_REF] Norman | Terminology in thermal infrared remote sensing of natural surfaces[END_REF].

To compute directional-hemispherical reflectance, SAIL-Thermique requires information about (1) the optical properties of the canopy components: soil reflectance spectra, leaf reflectance spectra and leaf transmittance spectra; (2) vegetation structure: LAI and LIDF for each vegetation layer, and (3) view zenith angle for the considered sensor. We explain in the next section how this information was obtained.

SAIL-Thermique inputs: spectral libraries of soil and leaf optical properties

Only few leaf data including reflectance and transmittance spectra were available. We used data from five soil spectral libraries and one leaf spectral library. These spectra were obtained from laboratory measurements over soil and leaf samples, using TIR spectrometry combined with an integrating sphere. All reflectance and transmittance values to be considered hereafter are directional-hemispherical quantities.

For soil samples, we used several spectral libraries, to be listed below. Since we focused on vegetation canopies, we excluded spectra collected over rock samples.

1. The ASTER spectral library version 2 was set up in the context of the EOS/ASTER mission [START_REF] Baldridge | The ASTER spectral library version 2.0[END_REF]. It included 41 reflectance spectra over the [0.4-14] μm spectral interval.

2. The MODIS University of California Santa Barbara (UCSB) spectral library was set up in the context of the EOS/MODIS mission [START_REF] Zhang | MODIS UCSB Emissivity Library[END_REF]. It included 69 reflectance spectra over the [3][4][5][6][7][8][9][10][11][12][13][14] μm spectral interval. 3. The soil spectral library from the hydrologic atmospheric pilot experiment in the Sahel (HAPEX-Sahel) program included nine reflectance spectra over the [7-14] μm spectral interval [START_REF] Nerry | Infrared spectro-radiometry[END_REF]. 4. The soil spectral library collected in the context of the JORNada EXperiment (JORNEX) program included four reflectance spectra over the [2-14] μm spectral interval [START_REF] Schmugge | Temperature and emissivity separation from multispectral thermal infrared observations[END_REF]. 5. The soil spectral library of French Space Lab (ONERA) was set up using soil samples collected in southern France [START_REF] Lesaignoux | Influence of soil moisture content on spectral reflectance of bare soils in the 0.4-14 μm domain[END_REF]. It included 190 reflectance spectra over the [3-14] μm spectral interval, measured over 32 soil samples with five to seven soil moisture levels.

For leaf samples, we found one spectral library only. It was jointly acquired by the French Space Lab and the United States Geological Survey (USGS) Reston, VA, USA [START_REF] Gerber | Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μmt o5. 7μm with the PROSPECT-VISIR model[END_REF]. The spectral library included 64 spectra of leaf transmittance/reflectance over the [0.4-14] μm spectral interval, for 26 plant species at different leaf moisture levels.

Overall, 313 spectra of soil directional-hemispherical reflectance and 64 spectra of leaf directional-hemispherical transmittance/reflectance were available for conducting the SAIL-Thermique simulations. All spectra were resampled to the spectral resolution of the SAIL-Thermique simulations that is indicated in the next Section.

SAIL-Thermique simulations

To account for a wide range of soil and plant conditions, we considered large intervals of LAI and LIDF values (Table 1), by referring to [START_REF] Weiss | Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data[END_REF]. In order to consider intermediate values for vegetation cover fraction between bare soil and full cover, we set LAI values between 0 (bare soil) and 7 (high vegetation cover), with narrower LAI intervals at low LAI values so that we accounted for the larger influence of LAI at these low values [START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF]. LIDF was computed by using an ellipsoidal function [START_REF] Campbell | Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions[END_REF], and we set the average leaf angle (ALA) between 15°and 75°in order to account for a wide range of leaf inclination conditions, i.e., from planophile to erectophile species [START_REF] Weiss | Review of methods for in situ leaf area index (LAI) determination: part II. Estimation of LAI, errors and sampling[END_REF].

For the view zenith angle, we set the observation direction to nadir only. Indeed, former simulation studies showed that angular variation of canopy emissivity are low between nadir and 40° [START_REF] Guillevic | Thermal infrared radiative transfer within three-dimensional vegetation covers[END_REF][START_REF] Labed | Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils[END_REF][START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF][START_REF] Ren | Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images[END_REF]. The spectral interval and resolution of the SAIL-Thermique simulations were set to [7.5-13.5] μm and 10 -3 μm, respectively. To consider a wide range of plant and soil conditions, we set up the simulations by mixing each spectrum for leaf and soil along with each LAI and ALA value.

Filtering of emissivity spectra and resulting database

To minimize redundancies in the library of simulated emissivity spectra, we filtered the SAIL-Thermique input and output spectra by removing those that depicted similarities in spectral behavior. We used the spectral angle mapper (SAM) algorithm that calculates the similarity between two spectra [START_REF] Girouard | Validated spectral angle mapper algorithm for geological mapping: comparative study between QuickBird and Landsat-TM[END_REF]. SAM measures the angle γ between two spectra, treating them as vectors in a v-dimensional space (v being the number of spectral values). We implemented the SAM procedure as following. Each spectrum was used as a reference and compared to the other ones. In case any of the latter was similar to the reference spectrum, it was removed from the library. Two spectra were considered similar when angle γ between both was lower than 1°.

The SAM based filtering was firstly applied to SAIL-Thermique input spectra. Among the 313 soil spectra and 64 leaf spectra to be filtered separately, SAM selected 65 spectra of soil reflectance/transmittance and 35 spectra of leaf reflectance. When combined with the LAI and ALA values, we simulated 63,700 canopy emissivity spectra (65 soil spectra × 35 leaf spectra × 7 LAI values × 4 ALA values) using SAIL-Thermique. The SAM based filtering was secondly applied to SAIL-Thermique output spectra, which led to the selection of 271 simulated emissivity spectra. The database of 271 emissivity spectra was split into two equal parts: a calibration data set with 136 spectra, and a validation dataset with 135 spectra.

Setting up a library of surface outgoing radiance to apply and validate TES

As explained in Section 2, TES is applied to TIR remote sensing measurements at the surface level, i.e. over a set of waveband values of surface outgoing radiance within the channels of the considered sensor. The surface outgoing radiance is the sum of the emission component that involves surface emissivity and radiometric temperature, and of the reflection component that involves atmospheric downwelling irradiance and surface reflectance, the latter being assumed equal to 1emissivity [START_REF] Schmugge | Recovering surface temperature and emissivity from thermal infrared multispectral data[END_REF].

We computed the emission component from the emissivity spectra and the prescribed values of surface radiometric temperature. We used the 135 emissivity spectra from the validation dataset. For each spectrum, 10 radiometric temperature values were randomly drawn (uniform distribution) within the [270-340] K range, with a maximum value of 305 K for LAI larger than 4, so that radiometric temperature is consistent with vegetation cover at satellite overpass around solar noon, for a large range of soil, plant and atmospheric conditions [START_REF] Chávez | ET mapping with high-resolution airborne remote sensing data in an advective semiarid environment[END_REF].

We computed the reflection component from both emissivity spectra and spectra of atmospheric downwelling irradiance. We used the same emissivity spectra as selected when computing the emission component. We simulated the spectra of atmospheric downwelling irradiance using the MATISSE-V2 (Acronym for French label meaning "earth advance modeling for imagery and simulation of scenes and their environments") atmospheric radiative transfer model [START_REF] Labarre | An Overview of MATISSE-v2[END_REF][START_REF] Labarre | MATISSE-v2.0: New Functionalities and Comparison With MODIS Satellite Images[END_REF]. We used atmospheric profiles from the Air Force Research Laboratory (AFRL) dataset [START_REF] Simoneau | MATISSE: Version 1.4 and Future Developments[END_REF] as inputs for MATISSE-V2. We selected three atmospheric profiles ("US standard 1976", "tropical" and "mid-latitude winter") that represented a large range of atmospheric conditions, from dry to humid atmospheres and from cold to warm atmospheres. The MATISSE simulations were conducted over the [740-1335] cm -1 spectral interval, with a 1 cm -1 spectral resolution that corresponds to 0.005 μmat7.5μm and to 0.02 μmat 13.5 μm. The spectra of atmospheric downwelling irradiance were then resampled to the spectral resolution of the SAIL-Thermique simulations, by using a linear interpolation.

We combined each of the 135 emissivity spectra from the validation dataset with the 10 prescribed values of radiometric temperature and the three spectra of atmospheric downwelling irradiance. Among the resulting 4050 spectra of surface outgoing radiance, we selected those for which the surface -air temperature gradient ranged between -10 K and +30 K, where air temperature is the temperature value at the first atmospheric profile level [START_REF] Du | A practical split-window algorithm for estimating land surface temperature from Landsat 8 data[END_REF][START_REF] Sobrino | Land surface temperature retrieval from MSG1-SEVIRI data[END_REF]. The goal was to select realistic surfaceair temperature gradients for a large range of soil, plant and atmospheric conditions. The final dataset subsequently included 2157 spectra of surface outgoing radiance.

Computing waveband emissivity and radiances from simulated spectra

Calibrating and applying TES requires accounting for the sensor spectral configuration. We considered those of three existing sensors: ASTER [START_REF] Yamaguchi | Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[END_REF], MODIS [START_REF] Justice | The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research[END_REF]andMAS-TER [START_REF] Hook | The MODIS/ASTER airborne simulator (MASTER) -a new instrument for earth science studies[END_REF]. We also considered the spectral configurations of two sensors under study: HyspIRI [START_REF] Green | The HyspIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-spectral Thermal Measurements[END_REF]andMISTIGRI [START_REF] Lagouarde | The MISTIGRI thermal infrared project: scientificobjectives and mission specifications[END_REF]. Overall, considering a panel of different sensors permitted to address the impact of channel number on the TES performances, where TES aims to capture the emissivity spectral contrast from multispectral observations. The characteristics of the channel filters are given in Fig. 2.T h e y were obtained from dedicated web sites for ASTER (https://asterweb. jpl.nasa.gov/characteristics.asp), TERRA/MODIS (ftp://mcst.ssaihq.com/ permanent/MCST/PFM_L1B_LUT_4-30-99/L1B_RSR_LUT/) and MASTER (https://asapdata.arc.nasa.gov/Master/srf/May_01/). The spectral configurations of MODIS, ASTER and MASTER included three, five and 10 channels, respectively. Although including MASTER band 41 @ 7.85 μm was questionable because of atmospheric perturbations, we included all the MASTER channels since it permitted to address a configuration with a large number of channels. At the time of the study, the design of the HyspIRI and MISTIGRI spectral configurations were in progress, and we set up their configurations according to the available information. By following [START_REF] Hulley | HyspIRI Level-2 Thermal Infrared (TIR) Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document[END_REF], we considered the five ASTER channels along with the MODIS channel located at 12 μm for HyspIRI. For MISTIGRI, we followed the specifications from the A-phase of the MISTIGRI mission [START_REF] Lagouarde | The MISTIGRI thermal infrared project: scientificobjectives and mission specifications[END_REF], and we set-up two configurations: one with three channels and the other one with four channels. The corresponding channel filters were provided by the French space agency (CNES). For MISTIGRI, larger bandwidths aimed to reduce instrumental noise induced by the use of micro-bolometer detectors [START_REF] Lagouarde | The MISTIGRI thermal infrared project: scientificobjectives and mission specifications[END_REF].

The channel filters were interpolated to the spectral resolution of the SAIL-Thermique simulations (10 -3 μm). Finally, we computed the waveband quantities in each channel by convolving the spectra (e.g., emissivity, surface outgoing radiance and atmospheric downwelling irradiance) with the corresponding filter.

Calibrating and validating the TES method

The ε-min -MMD empirical relationship of the TES method was calibrated for each sensor spectral configuration. We used the waveband values derived from the 136 emissivity spectra of the calibration dataset. Coefficients A, B and C were calibrated over the dataset of (εmin, MMD) pairs, by minimizing the quadratic difference between actual and predicted values. We used the R "Optim" function that relies on the Newton's method (R Development Core Team, 2011), and we obtained the same calibration results regardless of initial guess. The resulting root mean square error (RMSE) was calculated as the calibration residual error. Additionally, we evaluated the calibrated ε-min -MMD relationship against the 135 emissivity spectra from the validation dataset.

For each sensor spectral configuration, we used the calibrated coefficients to apply TES over the waveband values of surface outgoing radiance along with the waveband values of atmospheric downwelling irradiance. Then, TES retrievals of waveband emissivity and radiometric temperature were compared against the original prescriptions used to calculate surface outgoing radiance (Section 3.2). The quadratic differences were expressed in terms of RMSE values.

Results

We first report the results obtained when calibrating the ε-min -MMD relationship (Section 4.1), and when validating the TES retrievals of emissivity and radiometric temperature (Section 4.2). We then compare the SAIL-Thermique based results for TES calibration/validation against those reported in former studies that relied on single or linearly mixed samples of soil/leaf spectra (Section 4.3).

Calibration of the TES empirical relationship

Fig. 3 displays a typical example of the calibration results for the εmin -MMD relationship when considering the MASTER sensor. We obtained similar results with the other sensor spectral configurations. Indeed, the calibrated relationships were rather similar for low MMD values, with differences in ε-min value around 0.007 for a MMD value of 0.1, and they could be quite different for large emissivity spectral contrasts, with differences in ε-min value up to 0.02 for MMD values of 0.3. Also, the channel number impacted the MMD range, up to 0.05 MMD units for large MMD values.

Table 2 displays the results we obtained when calibrating the ε-min -MMD relationship for each sensor spectral configuration, as well as when comparing the ε-min estimates against those derived from the validation dataset. The A, B, C coefficients were different from one configuration to another, but they were similar when channel numbers were close (e.g., MODIS versus MISTIGRI with 3 channels, ASTER versus MISTIGRI with 4 channels, or ASTER versus HyspIRI). The calibration er-rorsdecreasedby25-30% when the channel number increased from 3 to 10, and it remained lower than 0.0065. Similar results were obtained when comparing ε-min estimates against those derived from the validation dataset, with errors lower than 0.007.

Validation of the TES retrievals of emissivity and radiometric temperature

Fig. 4 displays a typical example of the results obtained when comparing TES retrievals of waveband emissivity against prescribed values from the validation dataset. Prescribed values were waveband emissivities derived from the emissivity spectra used to compute waveband surface outgoing radiance over which was apply TES (see Fig. 1). This typical example corresponded to the ASTER spectral configuration, and we obtained similar results with the other sensor spectral configurations. It is shown that the emissivity spectra were well retrieved by TES. For a given spectrum, the retrievals of waveband emissivity were closer to the prescribed values at larger wavelengths that usually corresponded to flatter portions of the emissivity spectra (10 to 12 μm).

Fig. 5 displays the comparison of the TES retrievals of waveband emissivity against the prescribed values derived from reference spectra of the validation dataset, when considering the MISTIGRI spectral configuration with four channels. We obtained similar results with the other sensors. Regardless of channel, we noted larger discrepancies around the 1:1 line for large emissivity values. Besides, retrievals of waveband emissivity agreed better with prescribed values for larger wavelengths (10 to 12 μm) that corresponded to flatter portions of emissivity spectra (Fig. 4). This was observed for all sensor spectral configurations, with RMSE values decreasing from 0.01 to 0.005, apart from the MASTER channel at 7.8 μm(Fig. 6). Fig. 7 displays the comparison of TES retrievals of radiometric temperature against the prescribed values when considering HyspIRI. We obtained similar results with the other sensors, with RMSE values of 0.47 K for MISTIGRI with 3 channels, 0.44 K for MODIS, 0.38 K for MISTIGRI with 4 channels, 0.35 K for ASTER, 0.34 K for HyspIRI, and 0.28 K for MASTER. The results were consistent with those obtained when validating emissivity retrievals: we noted better agreements between retrieved and prescribed values of radiometric temperature for sensors with more channels, the RMSE value being twice lower when using 10 channels rather than 3.

Impact of cavity effect on TES calibration and retrievals

For the spectral configurations of ASTER and MODIS, we compared our TES calibration/validation results against those reported in former studies [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF]Hulley et al., 2012a;[START_REF] Jimenez-Munoz | Temperature and emissivity separation from MSG/SEVIRI data[END_REF]. We could not compare the calibrated coefficients for MASTER and HyspIRI, because of differences in channel selections [START_REF] Grigsby | Improved surface temperature estimates with MASTER/AVIRIS sensor fusion[END_REF][START_REF] Hulley | HyspIRI Level-2 Thermal Infrared (TIR) Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document[END_REF].

Table 3 displays the various coefficients of the ε-min -MMD relationship proposed for MODIS and ASTER by the current study and by former studies. The resulting ε-min estimates differed by 0.015 on average, and up to 0.025 for MMD larger than 0.1. Further, the ε-min predictions derived from our calibration were systematically larger than those derived from former calibrations. As an example, Fig. 8 displays the εmin -MMD relationship when considering the newly fitted calibration we proposed in the current study and that proposed by [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF] for the ASTER spectral configuration. We obtained similar results when dealing with MODIS. Fig. 8 shows that both calibrations provided different ε-min predictions, and that the ε-min predictions derived from our calibration were systematically larger than those derived from the Gillespie's calibration, mostly for intermediate MMD values. The bias between predictions and actual values from our calibration dataset was obviously close to zero for our calibration, while it was about 0.006 for the Gillespie's one. As compared to the residual error we obtained with our calibration (RMSE value of 0.0055, Table 2), the quadratic difference between actual values from our calibration dataset and predictions from the Gillespie's calibration was twice larger (RMSE of 0.0095).

We quantified the impact of differences in ε-min predictions by comparing the Gillespie's calibration for ASTER against our validation dataset. The comparisons of TES retrievals against prescribed values are displayed in Figs. 9 and 10. It is shown that lower estimates of εmin induced (1) lower estimates of waveband emissivity for all ASTER channels, with bias values ranging from 0.007 to 0.009, and (2) larger estimates of radiometric temperature, of about 0.4 K. Resulting errors on waveband emissivity and radiometric temperature were almost twice larger than those obtained when validating our calibration. Indeed, RMSE ranged from 0.011 to 0.015 for emissivity and it was 0.6 K for radiometric temperature with the Gillespie's calibration (Figs. 9 and 10), to be compared to RMSE ranging from 0.005 to 0.008 for emissivity and RMSE of 0.35 K for radiometric temperature with our calibration (Fig. 6 and Section 4.2).

We finally quantified the impact of cavity effect by comparing the calibration obtained from SAIL-Thermique simulations against that obtained if selecting soil and leaf spectra only. In order to minimize other driver effects and to focus on cavity effect, we selected only the soil and leaf spectra involved in the SAIL-Thermique simulations. Soil emissivity ε s was assumed equal to absorptance, and computed from reflectance ϱ s (i.e., ε s =1ϱ s ). Leaf emissivity ε l was assumed equal to absorptance, and computed from leaf reflectance ϱ l and transmittance τ l (ε l =1ϱ lτ l ). The results are displayed in Fig. 11. It is shown that the calibration from soil and leaf spectra only provided lower εmin estimates as compared to the calibration from SAIL-Thermique simulations. The bias was similar to that obtained with the Gillespie's calibration (Fig. 8), with a slightly lower value (0.004 versus 0.0055). The lowest ε-min estimates were observed for intermediate MMD values that correspond to intermediate vegetation cover.

Discussion

The calibration/validation results for emissivity and temperature retrievals were good. This underlines the relevance of the TES empirical relationship, especially when (1) using emissivity spectra simulations that account for radiative transfer within the canopy with subsequent cavity effect and (2) considering a range of soil and plant conditions, from bare soil to full vegetation cover. However, the absolute RMSE values found in this study should be considered with caution for two reasons. First, we addressed the land surface level without any consideration of atmospheric or instrumental perturbations. Second, the calibration and validation datasets were not fully independent since they were derived from the same model, which partly explains the similar RMSE values we observed for calibration and validation.

The calibration/validation results were better for sensor spectral configurations with more channels that permitted to capture emissivity spectral contrast more efficiently, which is in agreement with previous studies. For a given spectral configuration, emissivity retrievals were worse at lower wavelengths, because of sharp changes in emissivity between 8 and 10 μm, as compared to flatter spectra portions between 10 and 12 μm(Fig. 4). The worst emissivity retrievals for the MASTER channel located at 7.8 μm was ascribed to large atmospheric irradiance below 8 μm. Thus, it may be better excluding this channel, even at the ground level, although TES retrievals of radiometric temperature were good. Apart from channels below 8 μm, obtaining better accuracies on emissivity retrievals at lower wavelengths may require finer channels to capture sharp changes in emissivity. However, this issue must be addressed by accounting for atmospheric and instrumental perturbations that may affect the signal quality in a larger extent with finer channels. Finally, the observed discrepancies around the 1:1 line for large emissivity values (Figs. 5 and9) were ascribed to the gray body problem. The latter corresponds to low retrieval performances for TES over land surfaces that depicted low emissivity spectral contrasts, usually for large vegetation covers [START_REF] Coll | Temperature and emissivity separation from ASTER data for low spectral contrast surfaces[END_REF][START_REF] Jacob | Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors[END_REF]Ogawa et al., 2008).

For the ASTER and MODIS spectral configurations, it was shown that ε-min estimates from our calibration were systematically larger than εmin estimates from former calibrations, especially for intermediate MMD values that mostly corresponded to intermediate vegetation covers. The resulting differences on emissivity and radiometric temperature retrievals could reach up to 0.025 (0.015 on average, Fig. 9) and 2 K (0.6 K on average, Fig. 10). The larger ε-min estimates obtained with our calibrations were due to the difference in the samples used to fittheε-min -MMD relationship. First, we excluded soil spectra corresponding to mineral samples that tended to shift downward the εmin -MMD relationship, as shown by [START_REF] Schmugge | Recovering surface temperature and emissivity from thermal infrared multispectral data[END_REF]. Second, our calibration dataset included more vegetation surfaces as compared to former studies, since we focused on plant canopies with LAI between 0 and 7. Third, introducing spectra with cavity effect tended to shift upward the ε-min -MMD relationship [START_REF] Anton | Emissivity of a vegetation-soil system[END_REF][START_REF] Chen | Definition of component effective emissivity for heterogeneous and non-isothermal surfaces and its approximate calculation[END_REF][START_REF] Merlin | Different approaches in estimating heat flux using dual angle observations of radiative surface temperature[END_REF][START_REF] Olioso | Simulating the relationship between thermal emissivity and the normalized difference vegetation index[END_REF]. This was confirmed when comparing the calibration from SAIL-Thermique simulations against that from soil and leaf spectra only (Fig. 11). Former calibration results were different from one study to another (Section 2). Differences were also observed in the current study that relied on a new type of spectral library, where the latter accounted for cavity effect while including a wide range of soil and plant conditions. Overall, the variability we observed on calibration results questioned the relevance and representativeness of any dataset to be used for calibration, and it underlined how the choice of the spectral library is a crucial step. An appropriate set up would require accounting for sample occurrences at the worldwide scale.

The use of a radiative transfer model for the calibration of the ε-min -MMD relationship permitted to account for radiative transfer within vegetation canopy and subsequent cavity effect while considering a wide range of soil and plant conditions. This gave us the opportunity to study the variation of the (ε-min -MMD) pairs as a function of the vegetation cover. 

Concluding remarks

The current study focused on evaluating the TES performances over various vegetation canopies, from bare soil to full vegetation cover. This research is based on the use of the SAIL radiative transfer model to account for cavity effect within vegetation canopy. As compared to previous studies based on the use of leaf and soil spectra only, differences occurred mainly for intermediate vegetation cover, with non-negligible consequences on the TES retrievals of emissivity and radiometric temperature. This raises the question of the representativeness of the calibration dataset, in relation to the considered type of land surface. To a lesser extent, the TES performances were in agreement with those reported in former studies: retrieval performances are better when considering more channels, the emissivity is better estimated for spectral intervals with flatter emissivity spectra, and it is less well estimated for large emissivity values because of the gray body problem.

The current study relied on a synthetic dataset. Although comparative results permitted to underline the impact of cavity effect for a large range of soil and plant conditions, it is necessary to confront these outcomes against ground-based measurements, given (1) measurement methods were recently proposed for reflectance spectra (Neinavaz et al., 2016a;Neinavaz et al., 2016b;[START_REF] Rock | Plant species discrimination using emissive thermal infrared imaging spectroscopy[END_REF] and (2) multispectral measurements have been conducted over large spectral bands [START_REF] Olioso | SAIL-Thermique: a model for land surface spectral emissivity in the thermal infrared. Evaluation and reassessment of the temperature-emissivity separation (TES) algorithm in presence of vegetation canopies[END_REF][START_REF] Olioso | Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation[END_REF]. Besides, the current study focused on land surface level, without any consideration of instrumental and atmospheric perturbations, whereas the latter can have significant consequences (e.g., Hulley et al., 2012b;[START_REF] Jacob | Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors[END_REF]. In the context of forthcoming space missions such as HyspIRI [START_REF] Green | The HyspIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-spectral Thermal Measurements[END_REF], MISTIGRI [START_REF] Lagouarde | The MISTIGRI thermal infrared project: scientificobjectives and mission specifications[END_REF], or THIRSTY [START_REF] Crebassol | Thirsty thermal infrared spatial system[END_REF], ongoing investigations address the combined effects of emissivity spectral contrast, spectral variations of atmospheric perturbations, and instrumental effects that depend upon bandwidths. Thus, a preliminary study suggested to merge the two MISTIGRI channels at 8.6 and 9.1 μm, in order to reduce the instrumental noise induced by the use of micro-bolometer detectors [START_REF] Lagouarde | The MISTIGRI thermal infrared project: scientificobjectives and mission specifications[END_REF]. 
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 1 Fig.1. Flowchart of the procedure we implemented to assess the TES performances over vegetation canopies. SAM was the algorithm used for filtering out the emissivity spectra that were similar. S (λ) stands for the calculation of waveband quantities. Others variables are defined in Sections 2 and 3. SAIL stands for SAIL-Thermique.

Fig. 2 .

 2 Fig.2. Characteristics of the spectral configuration for each of the sensors we considered (black lines), along with a typical example of atmospheric transmittance (gray lines). MISTIGRI-N stands for the MISTIGRI configurations that involve N channels. The configurations are ranked according to a growing number of channels.

Fig. 3 .

 3 Fig. 3. Calibration of the ε-min -MMD relationship for the spectral configuration of the MASTER sensor. Dots correspond to the samples used for the calibration, and continuous line is the calibrated relation. The RMSE value indicates the calibration residual error. The n value indicates the sampling number.
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 4 Fig. 4. Comparison of TES retrievals of waveband emissivity (labeled ε TES1 and ε TES2 ) against reference emissivity spectra (labeled ε obs1 and ε obs2 ) when considering two typical emissivity spectra from the validation dataset simulated with SAIL-Thermique. The results are given for the ASTER spectral configuration. Gray areas indicate the ASTER channel filters.

Fig. 5 .

 5 Fig. 5. Comparison of TES retrievals of waveband emissivity against waveband values derived from our validation dataset of emissivity spectra. The results are given for the MISTIGRI spectral configuration that included four channels. Dashed line is the 1:1 line.
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 67 Fig. 6. Averaged RMSE values obtained for each sensor channel when comparing TES retrievals of emissivity against waveband values derived from our validation dataset of emissivity spectra. MIS-N stands for the spectral configurations of the MISTIGRI sensor with N channels.

Fig. 8 .

 8 Fig. 8. Comparison between the calibration obtained in the current study with SAIL-Thermique simulations for ASTER (labeled New-ER for new fitting of empirical relationship) and that proposed by Gillespie et al. (1998) for the same sensor (labeled Old-ER for old empirical relationship). Scatterplots are the (ε-min, MMD) pairs we used the in current study.

  Fig. 12 displays changes in canopy emissivity spectra as LAI increases for a given set of soil and leaf spectra (top), along with the resulting changes in (ε-min -MMD) pairs (bottom). It is shown that emissivity spectra become flat with values closer to unity as LAI increases, as empirically reported by Neinavaz et al. (2016a), which induces a displacement of the (ε-min -MMD) pairs along the ε-min -MMD empirical relationship. Thus, increasing LAI with SAIL-Thermique induced similar trends than using single or linearly mixed samples of soil/leaf spectra, i.e. the displacement of the (ε-min -MMD) pairs along the empirical relationship. This is explained by the underlying TES assumption, where any change in ε-min induces change in MMD because ε-max is bounded on [0.98-1].

Fig. 9 .

 9 Fig. 9. Comparison of waveband emissivity retrieved with TES when using the calibration proposed by Gillespie et al. (1998) for ASTER against waveband values derived from our validation dataset of emissivity spectra. Dashed line is the 1:1 line.

Fig. 10 .

 10 Fig. 10. Comparison of radiometric temperature retrieved with TES when using the calibration proposed by Gillespie et al. (1998) for ASTER against the prescribed values.

Fig. 11 .

 11 Fig. 11. Comparison between the calibration obtained in the current study with SAIL-Thermique simulations (labeled New-ER for new fitting of empirical relationship) and that obtained if selecting soil and leaf spectra only (labeled SL-ER). Scatterplots are the (ε-min, MMD) pairs used for the calibrations, in black for soil and leaf spectra only, and in gray for the SAIL-Thermique simulations. The results are given for the ASTER spectral configuration.

Fig. 12 .

 12 Fig. 12. (Top) Change in emissivity spectra as simulated with SAIL-Thermique for increasing LAI. (Bottom) Change in (ε-min, MMD) pairs as simulated with SAIL-Thermique when LAI increases. Results are given for the ASTER spectral configuration. The continuous line is the empirical relationship calibration we obtained when using our simulated dataset.

Table 1

 1 SAIL-Thermique inputs used for the simulations.

	Input parameter	Values
	LAI	0, 0.25, 0.5, 1, 2, 4, 7
	ALA	15°, 35°, 55°, 75°V
	iew zenith angle	Nadir

Table 2

 2 Results of the ε-min -MMD relationship calibration (ε-min = A + B × MMD C )foreachof the six sensors we considered. The results are ranked according to a growing number of channels. Calibration dataset included 136 emissivity spectra, and validation dataset included 135 emissivity spectra.

	Sensor	Number of	Calibrated coefficients RMSE	RMSE
		channels	AB	C	(calibration dataset)	(validation dataset)
	MISTIGRI 3	0.987 -0.688 0.821 0.0065	0.0069
	MODIS	3	0.989 -0.674 0.815 0.0064	0.0065
	MISTIGRI 4	0.987 -0.722 0.850 0.0056	0.0057
	ASTER	5	0.989 -0.737 0.834 0.0055	0.0052
	HyspIRI	6	0.989 -0.738 0.860 0.0052	0.0051
	MASTER 10	0.994 -0.740 0.836 0.0048	0.0049

Table 3

 3 Existing calibrations for the ε-min -MMD relationship, displayed as values of the coefficients A, B and C, when dealing with the MODIS and ASTER sensors. Last column indicates the corresponding literature references.

	Sensor Number of	Calibrated coefficients Reference
	channels	AB	C
	MODIS 3	0.985 -0.750 0.832 (Hulley et al., 2012a)
	MODIS 3	0.998 -0.654 0.736 (Jimenez-Munoz et al.,
			2014)
	MODIS 3	0.989 -0.674 0.815 The current study
	ASTER 5	0.994 -0.687 0.737 (Gillespie et al., 1998)
	ASTER 5	0.989 -0.737 0.834 The current study
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