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On N onlinear Vibrations of Systems with Many Degrees of Freedom 

Bv R. M. ROSENBERG 

DepaYtment of Mechanical Engineering, Division of Applied Mechanics, University of 
CalifMnia, Be,-keley, California 

I. INTRODUCTION 

The study of the vibrations of nonlinear systems with many degrees of 
freedom is concerned with the search for some or all periodic solutions of 
systems of nonlinear differential equations, and to deduce as many properties 
of these solutions as the state of the applicable mathematical knowledge 
permits. Unfortunately, this body of knowledge is limited and not unified; 
in consequence, many and varied disciplines within mathematics are com­
monly used to deduce partial results. In a general way, these results fall 
into two broad categories: those which apply to systems that are "weakly 
nonlinear,"* and those which apply when the systems are Hstrongly non­
linear." 

The results in the first category contain a good deal of detailed informa­
tion, and they resemble in many ways those familiar from linear theory. 
Those in the latter category usually contain fewer details, being more con­
cerned with general questions of existence, uniqueness, boundedness and 
stability of solutions. 

The task of presenting a meaningful survey of the methods and results 
concerning the vibrations of nonlinear multi-degree-of-freedom systems is 
too ambitious for this relatively brief contribution. Moreover, several survey 
articles and books, foremost among then1 the recent, admirable work by 
Minorski [I] have served this purpose. Here, it is intended to display cer­
tain geometrical methods, and to summarize the results stemming from their 
application. 

The only systems considered are those whose mechanical models can be 
constructed of masses and "massless" springs. One, several, or all masses 
may also be acted on by time-dependent, periodic "exciting forces." The 
nonlinearities of these systems are those arising from ~~nonlinear springs." 
Within these restrictions, the system may be linear, "weakly" or "strongly'' 
nonlinear, or "nonlinearizable.n In the geometrical methods used here, 
••weak" nonlinearity is of no advantage, and results for strongly nonlinear 

• All terms in quotation marks are defined precisely in the text. 
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or nonlinearizable systems are frequently as easy to deduce as those of 
almost linear systems. 

It is plausible that g~neral solutions (i.e. the class of all possible motions) 
cannot be deduced for such nonlinear systems. However, if the class of 
desired solutions is suitably restricted, one can frequently gain a great deal 
of detailed knowledge regarding them, no matter how strongly nonlinear 
the system. However, to be meaningful for the physical scientist, this 
restricted class of desired solutions must be such as to explain and/or predict 
the incidence of physically important phenomena. In linear systems, these 
physically interesting solutions are the so-called "natural free vibrations," 
and the steady-state forced vibrations. It is precisely these types of motion 
that are treated here for nonlinear systems. 

The methods used to deduce these motions are not conventional (in the 
sense of conventional present-day research in nonlinear vibrations), but they 
are classical in the sense of theoretical mechanics that originated with 
Hamilton, J acobi and their contemporaries and that was described and ex­
tended relatively recently in a beautiful paper by Synge [2]. These methods 
are especially useful in the search for "free vibrations in normal modes" 
when the systems are strongly nonlinear. However, the concept of "normal 
modes" and of eigenvalues is well defined only in linear systems. In fact, the 
demonstration of the existence of eigenvalues has its roots in the theory of 
quadratic forms, and its application to vibration problems requires that the 
potential energy be a quadratic form. But, it is the very essence of non­
linearity, as defined here, that the potential energy is not a quadratic form. 
Hence, the question of existence of normal-mode vibrations cannot be decided 
in the conventional way of finding eigenvalues, and of attaching to each an 
eigenfunction. Therefore, new definitions and methods are required when the 
problems are nonlinear. 

The usefulness of the concept of normal-mode vibration is, of course, 
greatly impaired in nonlinear problems because the principle of superposition 
fails. Nevertheless, the normal-mode vibration retains, even in nonlinear 
systems, a position of central importance because, as will be shown, resonance 
occurs in the neighborhood of normal-mode vibrations, whether the system is 
linear or nonlinear. Hence, when the amplitude of the forcing function is 
small, the solution of the normal-mode vibration problem furnishes the 
"zero'th order" solution of the problem of steady-state forced vibration, as 
demonstrated by Rauscher [3], for instance. As in the Duffing problem [4], 
it is also necessary in problems with many degrees of freedom to examine the 
stability of the solutions; this is done in the last section. 

Although examples are given, the question of application has not been 
treated in a general way. Suffice it to say that in our model a displacement 
of any one mass has ~~an influence in depth"; i.e., its effect is not only felt 
by the neighboring masses, but by all of them. Hence, it is likely that the 
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systems discussed here are applicable to crystal and molecule vibrations. 
It is also quite possible that one can discuss, by the methods described here, 
the mechanism of pulsating stars [o]. At any rate, these methods have been 
examined in detail [6] by an astronomer having this purpose in mind. 

No attempt has been made to cite in the bibliography all recent litera­
ture dealing with vibrations of nonlinear systems having many degrees of 
freedom; it is, in fact, restricted to the material which was used in this 
contribution. 

II. ADMISSIBLE SYSTEMS AND MoTIONs 

1. The General System 

The general system considered here may be modelled on a great variety of 
mechanical, electrical, or other devices, and its configuration may be deter­
mined by many different types of physical measurements. One such model 
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FIG. 1. Mechanical model of spring-mass system. 

Un 

is Figure 1. It consists of a chain of n + 1 mass points Pi ,(i = 0, ... ,n) 
and of s springs, n ~ s ~ n(n + 1 )/2. 

The mass of P, is m,. (0< m,~ oo). Any m,= oo is a fixed point in 
inertial space. We require that at least one of the mass points have infinitely 
large mass, e.g. m0 = oo. 

The term "spring" is used to describe a massless one-dimensional device 
that changes its length under the action of a force. In physical terms, a 
spring is assumed to shorten under a compressive force of given magnitude 
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precisely by the same amount as it lengthens under a tensile force of the 
same magnitude, and it is capable of storing, but not of creating or destroying 
energy. These conditions are fulfilled when 

(2.1) 0,1(w} = 0 11(1wl), 
and when 

(2.2) 

where 0 .,(w) is the negative of the potential energy vii stored in the spring 
S,1 terminating on the ith and fth mass points, w is the length change of 
S11 , and Fii is the force which has produced the length change. Evidently, 
combining {2.1) and (2.2), one has 

(2.3) F,1(w) = - Fi;(- w). 

Each mass point is connected to one, several, or all other mass points 
by a spring; hence, the maximum number of springs is n(n + 1)/2. If one 
extremity of a spring terminates on an infinitely large mass point it is called 
an anchor spring; all others are coupling springs. It is not essential that all 
n(n + 1)/2 springs be present in the system. However, it is required that, 
in the absence of additional constraints, no mass point can be displaced 
without giving rise to an elastic force acting on every mass point. For in­
stance if 

(2.4) ( i = 0, ... ,r - 1), 

the rth ntass would be decoupled from all its neighbors on the left, and the 
r 

system of n + 1 mass points would be separated in to two spring-mass 
systems with no elastic coupling between them. Such a separation into 
several mutually uncoupled systems is excluded. In consequence the mini­
mum number of springs is n. 

Each mass point has a single degree of translational freedom ui in the 
direction of the chain. In view of m0 = oo, one has u0 = 0; hence, the 
system cannot accelerate in the rigid body mode. 

Each mass point may be acted upon by a time-dependent force, called 
an exciting force and denoted by f1(t). Exciting forces act in the direction 
of the chain of mass points. It is assumed that the spring forces F,1 and the 
exciting forces fi are the only forces acting on the mass points. 

2. Admissible Systems 

In order to fit into the framework of vibrations, linear or nonlinear, 
systems must have certain properties whose physical description is: 

(i) in the absence of exciting forces, the system must possess a single 
equilibrium configuration, and it can execute "free vibrations, about that 
equilibrium configuration; 
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(ii) in the presence of exciting forces, the system can execute so-called 
"steady-state forced vibrations." 

Some of these conditions can be insured by endowing the potential 
function of the entire system with certain properties. This potential 
function is, evidently, 

n-1 n 

(2.5) 0 = ~ ~ O,;(u;- U;) 
i-o i-i+t 

where Uj- Ui is the length change in the spring Sti· 

We shall assume that, on any domain where it exists. 0 is smooth and 
its first partial derivatives with respect to the u; are, at least, piecewise 
smooth. The second partial derivatives of 0 are thus assumed to exist 
everywhere except possibly at isolated points of discontinuity of the oO / ou,. 
These assumptions are consistent with the physical properties of springs 
in that they provide for the possibility of spring forces Hwith corners"; 
yet they assure the existence of unique solutions under specified initial 
conditions. 

In addition, we require that the potential function 0 be negative definite, or 

{ 

0(0, ... ,0) = 0, 
(2.6) 

O(u1, . •• ,u,.) < 0 when the u1, ..• ,u,. do not vanish simultaneously, 

and the jiYst parlial duivatives of 0 vanish at the oYigin only, or 

(2. 7) 
a a 

-
8 

O(o, .. . ,o) = ... = ~ O(o, ... ,o) = o. 
Ul uUn 

Finally, as a consequence of (2.1) and (2.5), 0 is symmetric with respect to 
the oYigin of the u11 ••• ,u,.-space, or 

(2.8) 

Equations (2.6) and (2. 7) insure that there exists a unique equilibrium 
configuration, and the origin of the u, has been so chosen that every u, 
vanishes in the equilibrium configuration. Equation (2.8) is a direct con­
sequence of the symmetry properties of the individual springs, described 
in (2.3). 

A potential function 0 which satisfies all of the above properties will 
be called admissible. Moreover, when 0 is admissible, the autonomous system 
is admissible. 
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Exciting forces f.(t) are required to be at least piecewise continuous, 
and bounded for all t. In addition, they must satisfy 

(2.9) (i = l, ... ,n), 

as well as 

T 

(2.10) ~ f /.{-r)d-r: = 0, 
0 

where T is a constant. Equation (2.9) says that the exciting forces are 
periodic and, if there is more than one such force, they all have the san1e 
period T. 

Exciting forces f.(t) which satisfy the above conditions are called ad­
missible. Moreover, when both, 0 and the li(t) are admissible, the nonauto­
nomous system is said to be admissible. 

Among admissible systems, autonomous or not, we distinguish between 
those that are linearizable, nonlinearizable, and weakly, or strongly non­
linear. In our system, these properties are associated with the spring forces; 
hence, it may be best to define them in terms of these forces; i.e., in terms 
of the partial derivatives of 0. 

Because of the admissibility conditions on 0, these derivatives may 
be written in the form 

(2.11) 

where the functions P. vanish at the origin and are of degree higher than I 
and, because of (2.8), 

(2.12) 

Let the determinant of the a"i be defined by 

(2.13) 

Then, a system is said to be linearizable if ii -=1= 0, and nonlinearizable if 
a = 0. A system is said to be weakly nonlinear if 

(2.14) (i = 1, .. . ,n) 

where every je,j « jaj where a is defined in (2.13) and every Q, is bounded. 
If (2.13) is not satisfied, the system is said to be strongly nonlinear. 

6



3. Admissible Motions 

From the definition of admissible systems, it is evident that these may 
be strongly nonlinear, or even nonlinearizable. In consequence, it is not 
likely that one can find the general solutions of the equations of motion or, 
the class of all motions of which the system is capable. However, it is 
possible to deduce certain types of motion and, in particular, the motions 
which are the most important from the point of view of technical application. 
These are the motions which, in linear systems, are called the "natural free 
vibratiqns in normal modes" if the system is autonomous, and the "steady­
state forced vibrations" if the system is nonautonomous. The latter include 
the phenomena of ~~resonance" and of the tuned dynamic vibration absorber. 

Both, the free vibrations in normal modes, and the steady-state forced 
vibrations are so-called "vibrations-in-unison". An admissible system is 
said to execute a vibration-in.unison if its motion satisfies all of the fol­
lowing properties [7] : 

(i) There exists a T = constant such that 

(2.15) (i=l, ... ,n). 

In words, the motions of all masses are equiperiodic. 
(ii) If t" is any instant of time, there exists a single t0 in 

t, ~ t ~ t" + T /2 

such that 

(2.16) (i = 1, ... ,n). 

In words, during any time interval of a half period, the system passes 
precisely once through its equilibrium configuration. 

(ill) There exists a single 1t =I= t0 in 

t, ~ t ~ t,. + T /2 

such that 

(2.17) U.(~) = 0. 

In words, during any time interval of a half period, the velocities of all 
masses vanish precisely once or, all masses attain their maximum displace· 
ment (in absolute value) precisely once during any interval of a half 
period. 

(iv) Let ., (fixed) be any one of the i = 1,. . . , n. Then every u;(t) and 
u,(t) may be written, for all t, in the form 

(2.18) 
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in which t is a parameter. It is now required that every u,(u,) be single­
valued. In other words, the displacement of any one mass at any instant 
of time determines uniquely that of every other mass at the same instant 
of time. 

These are well-known properties of normal-mode vibrations, and of 
steady-state forced vibrations, of the linear system. We shall show that 
these same types of motion also exist in admissible nonlinea, systems. Any 
motion of an admissible system which satisfies (2.15) to (2.18) is said to 
be an admissible motion. 

Among admissible motions, it is necessary to distinguish between those 
which are "similar, and those which are not. An admissible motion is said 
to be similar [8] if 

(2.19) 

This terminology corresponds to common usage because, when (2.19) is 
satisfied by an admissible motion, the wave-shapes of the time-displacement 
curves are all geometrically similar. When (2.19) is not satisfied by an 
admissible motion, that motion is said to be nonsimila,. 

The normal-mode motions of linea., systems, and their steady-state 
forced vibrations under simple harmonic excitation are of the form 

(2.20) u, = Qi cos wt, (i = 1, ... ,n) 

where the Q;, are constants. Hence, these motions satisfy (2.19); i.e., they 
are similar. We shall show that the linear system is not the only one having 
similar vibrations-in-unison. In fact, there exist strongly nonlinear, and 
nonlinearizable systems whose vibrations-in-unison are also similar. 

Ill. THE TRAJECTORIES IN CoNFIGURATION SPACE 

1. Tfansformation and Trajectories 

The equations of motion of the physical system are 

(3.1) miui = ~i O(u1, •• . ,u,.) + /i(t), (i=l, ... ,n) 

where dots denote differentiation with respect to time. It is now convenient 
to introduce the transformations 

(3.2) (i=l, ... ,n). 

Then the system (3.1) transforms into the system 

(3.3) (i = 1, ... ,n) 
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where 

0 ( 
x1 x,. ) 

U(xl~·. ·~x,.) = ~~·. ·~vm,. , 
ft(t) = h(t) !V m,, 

and the subscript xi denotes partial differentiation with respect to x,. 

But (3.3) may be regarded as the equations of motion of a mass point 
having unit mass that moves in the n-dimensional space of cartesian co­
ordinates x,,(i = 1, ... ,n) ~ called the configuration space. This unit mass 
point is being accelerated by two forces: One is the conservative force whose 
components in the xrdirections are the U -'i ~ and the other is a time-dependent 
force whose components in the xrdirections are the /1(t). The unit mass 
point and the forces acting on it constitute what may be called the pseudo­
system [9]. 

When moving in the configuration space, the unit mass point traces out 
a trajectory. Here, we derive the equations of this trajectory. The solutions 
of (3.3) are of the form 

(3.4) (i=l, ... ,n). 

If one eliminates the parameter t between them, one obtains the equation 
of the trajectory in the form 

(3.5) (j = 2, ... ,n) 

where x,. = x1 has been arbitrarily chosen as the independent variable in 
accordance with (2.18). One finds from (3.5) by direct differentiation 

(3.6) 

where primes denote differentiation with respect to x1• Moreover, if one 
regards the velocities as functions of the displacement, the equations of 
motion H become 

(3.7) (i = 1, .. . ,n). 

Now, in view of (2.7), every x, takes on its extreme value X 1 at t = t1• More­
over, in view of the continuity and differentiability of strictly* Newtonian 

• A system is said to be "strictly Newtonian" if the forces, and hence the 
accelerations, are bounded for every t. Thus, infinite forces of bounded impulse 
and discontinuities in velocities do not arise in them. 
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systems, there always exists some domain [xs,Xi], (i = 1, .. . ,n). of the 
configuration space in which every x1{t) has an inverse 

(3.8) t = t,(x;). 

Hence, summing the equations (3. 7) over n, and integrating them once over 
the domain [x,,Xj] one finds 

(3.9) 

where h is a constant of integration, and 

(3.10) 

.¥· 
1 

F;(%;,X;) = I /;(t;(%,)}d%;o 

xi 

It is evident that (3.9) is an equation of the energy balance of the system* 
and the quantities F 1(x,,X.), (i = 1, ... ,n) represent the work done on the 
unit mass point by the force components /1(t) in a displacement [x,,X1]. 

When these forces vanish identically, (3.9) reduces to the energy integral 
of the autonomous system. The idea of utilizing the inversions (3.8) is also 
employed in Rauscher's method [3]. 

The substitution of the first of (3.6) in (3.9) results in an equation in 
i 12 which may be explicitly solved for that quantity. That equation together 
with the system H and the second of (3.6) is sufficient ·to eliminate the 
parameter t. Hence, the resulting equation is that of the trajectory of the 
unit mass point. It turns out to be 

M: 2 [ U(%1, o o 0 ·"") + h + i-
1 
F,(x.,X,) J "( 

" + ~ x4'2{x;'[U2:l + ft(t(x1))]- [U%f + ft(t(x;))]} = 0, 
j-l 

(i = 2, ... ,n) 

(3.11) 

where we have omitted the self-evident subscripts on the t. The corresponding 
equation for the autonomous system is 

.. 
M: 2[U(x1,. .. ,x,.) + h]xl' + ~ Xt'2 [x;'U.¥.- U%.] = 0, 

l-1 1 
(i = 2, ... ,n). 

(3.12) 

The equation (3.12), but restricted to two degrees of freedom, was 
probably first given by Kauderer [10]. An equation, equivalent to (3.12} 
has been given earlier [11] ; in it, the arc length s was used as a parameter. 
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The elimination of s which has resulted in the compact forms (3.11) and 
(3.12) was first given by Kinney [12]. 

The systems of equations (3.11) and (3.12) are denoted as the systems M 
because they are derivable from a principle akin to the principle of Mau­
pertuis, given below. Similarly, the notation H in (3.3) may recall Hamilton's 
principle. 

2. The Restricted Principle of Least Action 

It can be readily shown that the system M of the autonomous system; 
i.e., (3.12) constitutes the Euler-Lagrange equations of the variational 
principle 

(3.13) 8A=0 

where the action 

•• 
(3.14) A = I VU (x1, • •• ,x.) + Is tls, 

'• 
and 

" (3.15) ds 8 = ~ dx/~< 
j-1 

is the square of the line element in the configuration space. Hence, equa­
tions (3.12) follow directly from the principle of Maupertuis. 

Now, it is well known that the principle of Maupertuis is only applicable 
to scleronomous conservative systems. However, if one defines an action 

,. 
(3.16) U(x1·, ••• ,x,.) + h + ~ F.(x;,X,) ds ·-1 . 
one can show that {3.11) is immediately obtained from the variational 
principle 

(3.17) 6A=O 

and from (3.10). Thus one has the [13]. 
Restricted Principle of Least Action: The natural motion of any system 

with equations of motion (3.3), on any interval [x,,Xi], (i = 1, .•. ,n) in which 
the inversions {3.8) exist, is such that the action A. defined in (3.16), is 
a mtntmum. 
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While it has only been shown here that the action is stationary, the· 
usual proof that the stationary value is minimum also succeeds here. 

The above principle is restricted to the domain [xi,Xi] where the in­
versions (3.8) exist. In problems of dynamics in general, this domain is 
not known a priori. However, because of (2.16), (2.17) and (2.18), that 
domain is, for admissible motions, sufficiently large to contain at least the 
closed intervals lying between the maximum amplitudes and the equilibrium 
position, and the corresponding time interval is sufficiently large to cover 
at least one quarter period. Since the systems M are used directly in the 
methods to be presented, the restricted principle of least action is of con· 
siderable usefulness in problems where admissible motions of admissible 
systems are examined. 

IV. GENERAL DESCRIPTION OF THE GEOMETRICAL METHOD 

The problem in hand has now found a dynamical representation by means 
of the system H of equations of motion (3.3), and a geometrical one by 
means of the system M of equations of the trajectories (3.11) and (3.12). 
It was shown by Darboux [14 ], for instance, that the correspondence between 
these for corresponding initial conditions is one-to-one. The essentials of 
the methods to be used here consist in utilizing the system M to deduce the 
trajectories and, subsequently, to utilize these trajectories in order to deduce 
the beha vior of the system in the time-displacement domain. This is called 
"the geometrical method", a term borrowed from Synge's paper [2]. 

It is interesting to note that the equations M of the trajectory are 
intrinsically nonlinear, even when the springs are linear. In fact, there 
exist no admissible systems, autonomous or not, for which the equations of 
the trajectory become linear. The assumption of linear springs implies 
merely that all U z; are of the form 

(4.1) (i= l, ... ,n) 

where the a1; are either constants or functions oft. Under it, equations (3.3) be­
come linear while (3.11) and (3.12) remain nonlinear. The intrinsic nonlinearity 
of the system M will perhaps be better appreciated if on recalls that its 
integrals are Lissajous curves. These may have many points of self-crossing 
and may even be compact on some domain of the configuration space. One 
may conclude that admissible systems with linear springs are more easily 
examined by means of the system H of equations of motion than by M. 
The fortunate circumstance that the superposition theorem holds in this 
case can, then, always be utilized to find the general motions and, if one 
wants to work very hard, their trajectories in the configuration space [15]. 
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While linearity of the physical system has no essential simplifying ef· 
fects on the system M, nonlinearity has no fearful, complicating effects 
on M, either. Hence, if these equations can be used to deduce solutions 
of the physically linear problem, they 'can frequently be used with equal 
ease to deduce those of physically nonlinear problems [16]. 

Now, it is quite possible that a system of very difficult, nonlinear dif· 
ferential equations have certain simple integrals. In fact, we shall demon­
strate that the trajectories of admissible motions are such simple integrals. 
They are of the form 

(4.2) (i = 2, .. . ,n), (p = 1,2, ... ) 

where the index p denotes the mode of vibration. Say, the trajectory 
corresponding to the mth mode of admissible motion is given by the functions 

(4.3) {i = 2, ... ,n) 

that satisfy the system M, and which are supposedly known. Then, their 
substitution in the first equation of the system H, for instance, results in 

(4.4) 

an equation in x1 only. 
If the system is autonomous, f1(t) = 0, and (4.4) is of the form 

(4.5) 

Then, for initial conditions (for instance) 

(4.6) 

and with the definition 

(4.7) 

... ! g(u)tlu = G(x1,X1). 

x~ 

the integral of {4.4) becomes 

*1 

(4.8) t(xt) = 1 {2 [G(v,X1) - G(X1,X1) ]} - 112d'IJ, 

xl 

and the period of the motion is 

0 

(4.9) T .. = 4 J {2[G(v,X1)- G(X1,X1)J}-t/2tlv. 

X a 
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If the system is nonautonomous, and the amplitude of the forcing function 
is small; i.e., 

(4.10) lel small, 

the steady-state forced vibration problem can be shown to become a pertur­
bation problem on that of free vibrations in admissible motion. It is evident, 
then, that the central task in either problem (autonomous, or forced) 
consists in determining the trajectories of admissible motions of autonomous, 
admissible systems. 

V. TRAJECTORIES OF ADMISSIBLE MOTION 

l. General Properties 

We shall assume that, after formal reduction to a first-order system. 
the right-hand side of (3.3) satisfy a Lipschitz condition. Trajectories then 
exist and all are continuous. Because of (2.16), every admissible trajectory 
passes through the origin of the configuration space. In view of (2.17), the 
equation (3.9) reduces at t = t1 to 

(5.1) 
n 

U(x1, ••. ,xn) + h + ~ Fi(x,,X;) = 0. 
i= 1 

This equation defines a surface in configuration space called the L-surface, 
or the bounding surface. Then, it follows from (2.16) that every admissible 
trajectory intercepts the L-surface. The equation (2.18) states that the xi(x,) 
are single-valued for every i and any r. Hence, for instance, x,.(x1) is single­
valued, and the same is true for its inverse x1(xk)· But this requires that 
eac;h be monotonic. vVe denote this property by saying that every admissible 
trafectory is strictly monotonic. Finally, since trajectories satisfy the Euler­
Lagrange equations of (3.17), existence of real trajectories requires that 
the quantity under the square root of (3.16) be non-negative. But, it is 
seen from (5.1), that this quantity vanishes on the L-surface. Then, it 
follows from the properties of U and the F, that no admissible trafectory 
can pierce the L-surface. These properties are summarized in 

Theorem V -I: Every continuous, strictly monotonic curve, defined by 
solutions of (3.11) or (3.12), which passes through the origin of the configuration 
space and which terminates on the L-surjace (5.1) is that of a vibration-in­
unison as defined in (2.15) to (2.18). 

From the preceding remarks it follows that the unit mass point of the 
pseudo-system oscillates back and forth along this trajectory, and the 
period of this oscillation is the same as that of the vibration-in-unison of 
the physical system. 
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If the vibrations-in-unison are similar as defined in (2.19), the correspon­
ding trajectories are defined by 

(5.2) (i = 2, ... ,n) 

where the eH are constants. In that case, (3.11) reduces to 

(5.3) (i = 2, ... ,n) 

because 

But, (5.3) may be recast in the form 

(5.4) 
dx1 dx,. 

u~l + ft(t(xl)) = ... = u~,. + f,.(t(x,.)) . 

It follows that the differential equations of similar vibrations-in-unison 
satisfy the system (5.3) or (5.4). 

All properties of admissible trajectories, given above, hold whether the 
system· is autonomous or not. Additional properties of admissible trajec­
tories can be deduced when the system is autonomous. 

2. Admissible Trajectories of Autonomous Systems 

The equations of autonomous systems are obtained from those above 
by putting 

(5.5) (i=l, ... ,n). 

In that case, the energy integral 

(5.6) 

is seen from (3.9) to exist where 

(5.7) 

is the kinetic energy of the pseudo-system, and h ~ 0 is the energy level 
of a given motion. The system M of the autonomous case is given in (3.12), 
and the corresponding action integral is (3.14). 

For this case, the bounding surface is defined by 

(5.8) U(x1, .•. ,x,.) + h = 0, 
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and this is also the maximum equipotential surface because (5.8) coincides 
with (5.6) when the kinetic energy vanishes. In order to call attention to 
the fact that (5.8) defines the bounding surface when the system is auto­
nomous, it will be denoted as the La-surface. 

From (2.5), (2.6), (2.7), and (5.8} it follows that: 

(i) the La-surface is a closed, smooth surface surrounding the origin 
of the configuration space, and star-shaped with respect to it [9]. 

From (2.8) one sees that 

(ii) the La-surface is symmetric with respect to the origin of the configura­
tion space. 

From the admissibility condition (2.6) and (5.8) it is evident that 

(iii) the quantity U + h > 0 at the origin of the configuration space. 
This quantity does not change sign in the open, finite domain D. bounded 
by the La-surface, it vanishes on L,., and it is negative (at least near the 
La-surface) in the infinite open domain bounded by the La-surface. 

These properties lead immediately to 

Theorem V-II: Every trajectory, admissible or not, defined by solutions 
xi(x1). (i = 2, ... ,n) of (3.12), lies in the closed, finite domain Da of the con­
/iguration space, bounded by the La-surface defined in (5.8). 

It is not necessary that all trajectories actually attain the La-surface. 
However, if they do, this occurs necessarily at an instant t1 when all i 1(t1) 

vanish. Trajectories which attain the La-surface will be called trajectories 
of motion with a rest point [19). Not all motions with a rest point need be 
admissible because the corresponding trajectories need not pass through 
the origin. However. all admissible motions are motions with a rest point. 

Next we state a property, first observed by Mawhin [6]. It is 

Theorem V-III: If I is any trajectory, admissible or not, of an admissible. 
autonomous system, the trajectory I'. symmetric to I with respect to the origin, 
is also a trajectory. 

The proof follows immediately from (2.8) and its consequence 

(5.9) 

Of importance to admissible trajectories is [8] the 

Corollary V-IV: Every trajectory, ad·missible or not, (of an admissible, 
autonomous system) which passes through the origin is symmetric with respect 
to it. 
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Finally, we have 

Theorem V-V: If a trajectory, admissible or not, of an admissible, auto­
nomous system attains the L.-surface, it intucepts that surface orthogonaUy. 
To prove it we observe that the system M of autonomous systems, given in 
(8.12), reduces on the L.-surface to 

(5.10) (i = 21' • • 1 n) 1 

and this may be cast in the form 

(5.11) 

But equations (5.11) are precisely the conditions for orthogonal intersec­
tion. 

Special additional properties hold for similar vibrations-in-unison of 
autonomous systems. They are given in [9]. 

Theorem V-VI: Evuy tra7'ectory of a similar vibration-in-unison of an 
admissible autonomous system intersects every equipotential surface ortho­
gonally, and [9] 

Theorem V-VII: If there exists a straight line which intersects every equi­
potential surface of an admissible, autonomous system orthogonally, it is a 
t1'ajectory. 

To prove these theorems, we observe that equipotential surfaces are 
defined by 

(6.12) U(x1, ••. ,x,.) + h* = 0, (0< h* ~h) 

and, in view of the properties of admissible potential functions, the equi­
potential surfaces are simple, closed, non-intersecting surfaces surrounding 
the origin, and compact on Da. 

It follows from (5.2) that, in the case of similar motion, 

(5.13) (i=2, ... ,n). 

Hence, the system (3.12) reduces throughout D. to (5.10) or (5.11). Now, 
the total differential of every equipotential surface d(U + h*) is independent 
of h* which proves the first of the theorems. It is clear that the second theo­
rem also holds because (5.11) is merely one way of writing the system M 
when equations (5.13) are satisfied. 
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VI. NORMAL-MODE VIBRATIONS OF NONLINEAR SYSTEMS 

1. A New Definition of Normal M odes 

It was observed in connection with the definition of admissible motions 
that the normal mode vibrations of linear, autonomous systems are in fact 
vibrations-in-unison. They are usually deduced from the dynamical system 
by means of eigenvalue theory, and in the proof of their existence the fact 
is utilized that the potential function U is a quadratic form [17]. Now, 
it is the very essence of nonlinearity (as defined here) that the potential 
function is not a quadratic form; hence, the application of conventional 
methods for deducing normal mode vibrations is difficult to generalize to 
nonlinear systems. 

We shall show that the normal mode vibrations of linear systems may 
be defined in terms of admissible trajectories, and that these are deducible 
from the system M, rather than H. In fact. the normal mode vibrations of 
autonomous systems are its only vibrations-in-unison. 

Furthermore. it will be demonstrated that nonlinear adn1issible systems 
also possess such vibrations-in-unison. The existence proof is given in the 
appendix. These observations permit a new definition of normal mode 
vibrations which is wide enough to include the well-known normal-mode 
vibrations of linear systems as a special case. 

Dej-inition I: Vibrations-in-unison of an admissible, autonomous system 
are the normal-·mode vibrations of that system. 

We shall also use 

Definition 11 : Trajectories in the configuration space corresponding to 
normal-mode vibrations of admissible, autonomous systems are called modal 
lines. 

Then, one sees from Theorem V-1 that modal lines are strictly monotonic 
curves passing through the origin, and terminating on the Lea-surface. 

2. Straight Modal Lines 

In (2.20). it was noted that the vibrations-in-unison of the linear, auto­
nomous system are similar or, that the modal lines of that system are 
straight. Since we wish to deduce these vibrations by the geometrical 
method, we derive first the conditions, necessary and sufficient for the 
existence of straight modal lines, and we demonstrate subsequently that 
the linear, autonomous, admissible system satisfies these conditions. The 
derivation of the n.a.s. conditions is conveniently done by transforming 
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from cartesian to spherical coordinates in n-space. These transformations 
are of the form [11] 

(6.1) (i=l, ... ,n) 

and, specifically, they are [9] 

(6.2) 
11- i 

x. = r sin 6,.+t-i f1 cos 6;, 
ir= 1 

011 = n/2, 

\Vhen the equation of the L 4-surface is transformed into spherical coordinates, 
it is of the form 

(6.3) 

Then, one has [9] the 

Theorem VI-I: The conditions, necessary and suflicient f0'1 the existence 
of at least one mode of similar normal-mode vibration of an admissible, auto­
nomous system are that every partial derivative of 0 with respect to the (Ji be 
of the form 

(i = 1, •.. ,n- 1), 

and that the equations 

(6.5) ( i = I, ... ,n - 1) 

have at least one system of real roots o.•. 
To sketch the proof, we observe that, in spherical coordinates, the equi­

potential surfaces are given by 

(6.6) 

Now, radius vectors r to points on equipotential surfaces having stationary 
distances from the origin with respect to neighboring points on these same 
surfaces satisfy 

(6.7) dr = 0, 

and these radius vectors intersect the equipotential surfaces orthogonally. 
From (6.3) 

(6.8) 

or in view of (6. 7) 

(6.9) 

tJ-1 

Ortir + l: O,_,Jfh = o, ·-1 
( i = 1, ... ,n - 1). 
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The locus of these points of stationary distance on the equipotential surfaces 
is a straight line if, and only if, the system (6.9) has roots independent of 
, which requires that the 0 e, be of the form (6.4). 

Theorem VI-I is useful not only because it may be used readily to test 
whether straight modallinescanexist, but the direction-cosines of the straight 
modal lines. if they exist, are furnished by the roots of (6.5). Hence, the 
theorem provides also a method for computing the straight modal lines. 

It can be shown that the new Definition I of normal mode vibrations 
yields only the normal modes, and all of the normal modes of admissible, 
autonomous, linear systems [6]. 

3. Interpretat-ion of Modal Lines [11] 

The modal lines have a very simple, geometrical significance which will 
be illustrated here by means of an admissible, autonomous system having 
the three degrees of freedom 

(6.10) x1 =X, X:a =y, x3 = z. 

z 
z 

modal 
line -surface 

y y 

X .X 

(a) (b) 

FIG. 2. Modal line of linear system with three degrees of freedon1. 

Suppose the system is linear. Then, the equipotential surfaces are given 
by the concentric three-dimensional ellipsoids (with center at the origin) 

(6.11) 

and the vibration in the pth nonnal mode is given by 

(6.12) x = Xp cos w,t, y = Y p cos wpt, z = Z 11 cos w.,t 

where X11, Yp, Zp are constants. 
It follows from these equations that the pth normal mode satisfies 

(6.13) 
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Then, the modal line in the pth mode is the intersection of the planes 

{6.14) - p J- CyxX, 

Evidently, this intersection is a straight line passing through the origin. 
From- the known geometric properties of ellipsoids and from Theorem V-VII 
it follows that there exist three such modal lines, and they are the principal 

z 

z=~(x) 

X 

(a) 

modal 
line 

y 

z 

X 

(b) 

modal 
line 

L -surface 

------ y 

FIG. 3. Modal line of nonlinear system with three degrees of freedom. 

axes of the ellipsoid. The construction of a modal line, and its location 
inside the bounding ellipsoid is shown in Figures 2(a) and (b). 

If the problem is nonlinear, but the nonnal mode vibrations are similar, 
equations (6.14) still apply, but, in that case, the bounding ovaloid is no 
longer an ellipsoid. 

If the problem is nonlinear, and the nonnal-mode vibrations are non­
similar, equations {6.14} are replaced by equations of the fonn 

(6.15) y = q;(x), 

where cp and~ are nonlinear, monotonic functions of x. Each is a cylinder 
in xyz-space containing the origin, as shown in Figure 3(a). Their intersection 
is a modal line, and this modal line inside the bounding ovaloid is shown 
in Figure 3(b). 

VII. PROPERTIES oF MoTIONs WITH A REsT PoiNT [19, 24] 

l. The Transversals (or P-curves) 

Motions with a rest point have been defined as those in which there 
exists a time t1 at which the velocity of all mass points of the physical system 
vanishes. If the system is autonomous, the trajectories corresponding to 
motions with a rest point are those which attain the L11-surface, and ad-
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missible motions belong to this class. The equipotential surfaces of these 
systems are given by (5.12), and the transversals are defined in terms of 
these equipotential surfaces. Transversals, or P-curves, are the lines ortho­
gonal to the equipotential surfaces. From their definition, one has imme­
diately 

Theorem VII-I: At a point (x1, ••• ,x") of the configuration space where 
the slope of a transversal is well-defined, it coincides with the direction of the 
force which acts, at that point, on the unit mass point of any admissible, auto­
nomous pseudo-system. 

Hence, the P-curves have an important dynamical significance, and it 
is of interest to determine their properties. One observes that, when n > 1, 
the transversals constitute a family of curves which pass through the origin 
of the n-space, which are compact on Da, and which are nonintersecting, 
except at the origin. It would be interesting to determine their geometrical 
properties in the entire domain D a· However, this is a difficult task when 
the number of degrees of freedom exceeds two; therefore, our attention will 
be restricted to the case n = 2. 

Consider an admissible, autonomous system having the degrees of freedom 

(7 .1) u2 = v. 

We admit linearizable and certain nonlinearizable systems by writing 

a au O(u,v) = - au•- ~v" + P(u,v), 

(7.2) 

iJ -Tv" O(u,v) = - cu"- av" + Q(u,v) 

where k is a positive, odd integer, and P and Q are of degree higher thank. 
The determinant 

a o 
(7.3) c i1 =F 0. 

With these definitions, the system is linearizable if k = 1, and nonlinear­
izable if k > 1. 

The equations of motion of the physical system are 

(7.4) 
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those of the pseudo-system are 

(7.5) 
x = U,.(x,y), 

y = U1(x,y), 

and the equation of the trajectories is 

(7.6) 2[U(x,y) + h]y" + (1 + y'1) [y'Us(x,y)- U1(x,y)] = 0 

where prirpes denote differentiation with respect to x. 
The system possesses the energy integral 

(7.7) T(x,y) - U(x,y) = h. 

The bounding surface (here a curve) is the locus of the points P(X, Y) for 
which the kinetic energy vanishes when the energy level of the motion is h, 
and the equation of the L11-curve is 

(7.8) U(X,Y) + h = 0. 

The equipotential curves are the functions 

(7.9) y = <p(x) 

which satisfy the equation 

(7.10) U(X,fP) + h* = 0, 

and they will be called E-curoes. By differentiating (7 .10), one finds that 
E-curves satisfy the differential equation 

(7 .11) 

It follows that the transversals, or P-curves, are the functions 

(7.12) 

which satisfy the differential equation 

(7.13) 
d(J Ue(x,8) 
dx = Us(x,8) · 

We observe that (7.13) is singular only at the origin, and the equation 
of the trajectories (7.6) is singular only on the L.-curve. Consequently, we 
define as f'egular points of the xy-plane all points, except the origin, which 
lie in the open, finite domain D. bounded by the L11-curve. 
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To begin with, we prove 

Theorem VII-II: The origin is always a 1Wde for the P-curoes of admissible, 
autonomous systems having two degrees of freedom. 

Suppose the system is linearizable [19], or k = 1 in (7 .2). Then, in the 
neighborhood of the origin, 

U ~ = xU u(O,O) + yU %)'(0,0) + ... , 
(7.14) 

U y = xU $)'(0,0) + yU yy(O,O) + ... . 

The substitution of these in the equation (7.11) of the E-curves results in 

(7.15) 
dtp - xUu- tpU~"' + .. . 
dx = xU~fJ + tpU,. + .. . 

where the partial derivatives are evaluated at the origin. But, the integrals 
of (7.11), and hence (7.15), are known; they are £-curves and they form a 
continuum of simple, closed, nonintersecting curves surrounding the origin. 
Then, it follows that the origin is a center for the E-curves and this requires, 
by the Poincare theory of singular points [1], that 

(7 .16) 2 UuUtpfp- U~q> > 0. 

The substitution of (7.14) in the equation (7.13) of the P-curves results 
tn 

(7 .17) 
d() · xU~o + OUH + .. . 
dx = xUu + OU ze + .. . · 

Application of the Poincare theory to this equation has as immediate con­
sequences 

u •• + ufHI =1= o, 
(7 .18) 

(Uu- UH)1 + 4U~ > 0. 

These are two of the three conditions which are necessary for the origin to 
be a node. But, in view of (7 .16), 

(7.19) 

This is the third necessary condition, and (7.18) and (7.19) are also sufficient. 
Hence, Theorem VII-11 is satisfied in _the linearizable cas~. 
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To prove the theorem for nonlinearizable systems [21], we note that, 
in the neigbborhood of the origin, the potential function of the pseudo­
system is 

(7.20) 

a ( x )~ +1 c ( y )A +1 
U(x,y) = - k + 1 V~nt - k + 1 ym; 

b ( X y )i+1 
- k + 1 Vmt- Vma + ... 

where a,b,c > 0 are constants. 
The derivatives of this function (with y replaced by 8) are now sub­

stituted in the equation of the P-curves (7.13), and the transformations 

(7 .21) xf~ = E, yflfm; =fl 

are introduced in the resulting equation. Then, one finds, instead of (7.17) 
in the neighborhood of the origin 

(7.22) 
drJ - er/'+ b(E - tJ)" + ... 
dE = - aE~c - b( E - 'YJ )• + . . . . 

The singularity at the origin of this equation may be discussed by the method 
of Argemi and Sideriades [22, 23]. These authors consider the equation 

(7.23) 
dy Y(x,y) 
dx = X(x,y) 

where X and Y are homogeneous functions in x and y of the same degree 
k. They introduce a transformation 

(7.24) y = xA.(x) 

under which the functions go over into 

(7.25) X = x"f(l), Y = x"g(A) 

and the differential equation (7 .23) becomes 

(7.26) 
dl h(l) 
dx = xf(A) 

where h(A) = g(l) - l/(A). Now, this last equation has simple singular 
points on the A.-axis at the zeros l• of h{l), and their discussion is accessible 
to the Poincare theory. Expansion of the numerator and denominator 
of the right-hand side of (7 .26) near the singular points gives 
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(7.27) 
dl h'(l.)l + .. . 
dx = /(J...)x + .. . · 

The authors show that only saddles and nodes can occur, and one has 

a node if 
(7.28) 

a saddle if 

f()~i)h'(~) > 0, 

/(~)h'{~) < 0. 

The quantity /(lt)h'(lt) does not vanish, in general, because the zeros of 
/(A.) do not coincide with those of h(A.) when X =I= Y, and h' (A.) does not 
vanish at the zeros of h(A.) . rtforeover, when the A.i are ordered, according 

y 

( 0) (b) 

FIG. 4. Saddles and nodes in XA-plane and mapping on configuration space. 

to their magnitudes (in ascending or descending order), nodes and saddles 
occur alternately. Clearly, the inverse of the transformation (7.24) maps 
all. singular points of (7.27) into the origin of the xy-plane, and the zeros 
A., of h(A.) are the slopes of the trajectories at the origin. This proves The­
orem VII-11 for the case of nonlinearizable systems. 

It may be interesting to follow the construction in greater detail, as 
done in Figure 4. Let A.1,A.a, ... give the nodes in the xA.-plane, and A.s,A.,, •.. 
the saddles. Next, construct the straight lines that pass through the origin 
with slopes A.t,{i = 1,2, ... ) and assume that A,.> 0; i.e., the line having 
this slope lies in the first and third quadrants. Next consider the trajectories 
lying in the sector enclosed by the lines of slopes A.1 and A. (starting in the 
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first quadrant and proceeding in a counterclockwise di-rection). This sector 
contains a continuum of trajectories that pass with slope At through the 
origin, and they tend to lines parallel to the line of slope At· The latter is 
a degenerate trajectory of this class. The trajectories in the next sector 
between the lines of slopes ~and As pass through the origin with slope la 
and tend to lines parallel to the line of slope A,, that line being also a degener­
ate trajectory of this class. This process is continued until the xy-plane 
is filled in the neighborhood of the origin with trajectories. ln ·Figure 4(a), 
the trajectories and singular points of the xl-plane are shown, and in Figure 
4(b), the corresponding picture in the xy-plane is shown. 

Suppose, as a special example, that k = 3 in (7.20) and (7.22). Then, 
[24] a simple computation shows that 

(7 .29) 

where 

(7 .30) 

/(A.) = - b [(2 - P) + (I - A.)8], 

h{l) = - b[).4 - <Xl8 + p;.- 1] 

c 
<X=2--. 

b 

a 
.8=2--. 

b 

It is now necessary to determine first the zeros ~ of h(l) and, next, .the 
sign of the product fh' at these zeros. Writing h{l) = 0 in the form 

(7 .31) 

one sees that the left-hand side is even in ). and has two real zeros at ). = ± 1, 
and the right-hand side is odd and has one or three real zeros. Hence, these 
two functions have always at least two real intersections, or h(A.) has always 
at least two real zeros. One may assume without loss of generality• 
that c ~a. Now, it follows from the second of (7.29) and from the assump .. 
tions on a, b, and c, that 

(7.32) 

h( oo) = h(- oo) = - oo, 

h(O) = b, 

h(l) = - b(- <X+ P) = - (c - a) ~ 0, 

h(- 1) = - h(l) = c - a~ 0. 

• If, on the contrary c < a, we simply denote the displacement of m1 by v and 
that of m1 by u which restores the assumed relation. 
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Hence, h(A) looks as shown in Figure 5 (where no attention is to be paid to 
the location of the maximum). It follows from (7.32) and Figure 5 that 

~(e-a) 

FIG. 5. The curve h(A). 

one root, say At· is positive and lies in the interval 0 < l 1 < 1, and As is 
negative. Moreover, the slopes are 

(7.33) 
h'(lt) < 0, 

h'(Aa) > 0. 

Next, we examine f(l). It follows from the first of (7.29) that 

(7.34:) 
/( oo) = oo, 

f(- oo) = - oo, 

and that /(1) has only a single real zero at 1 = 1 - ~2 - p. To evaluate 
the /(A;), it is convenient to return to the physical constants, so that 

(7.36) /(l) = - b [ : + (1 - A)•] . 

Since b > 0, afb > 0, and 0 < At< 1, and since A,a < 0, one has from (7.35) 

(7.36) 

Combining (7.38) and (7.86), 

(7.37} 

/(lt)< 0, 

/(~< 0. 

/{At)h'(~) > 0, 

/{~h' (As)< 0. 
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Hence, the .xA.-plane has, at least, two singular points on the .A.-axis. One 
lies on the positive branch between 0 and 1, and it is a node. The other 
lies on the negative branch, and it is a saddle. 

We shall assume that A.1,2 are the only zeros• of h(A.). Under this assump­
tion we have now demonstrated 

Theorem VII-II: When k = 1,3 and h(A.) has only two zeros, all t,-ans­
versals of admissible, autonomous systems pass through the origin of the .xy­
plane with common slope 00'. 

To determine the properties of P-curves not near the origin, we determine 
the locus of their inflection points, if any. By differentiating (7.13), one has 

(7.38) (J
, _ Ud(U/·- Ue2}- UsUe(Uu- UBt~). 

- 3 Us 

This locus will be called the F -curve : 

(7.39} F(.x,y) = Usy(Us2 - Uy2)- UsUy(Uss- Uy1) =0. 

It follows from (7.39) that F-curves pass through, and are symmetric with 
respect to, the origin. 

Next we determine the locus of points such that the tangents to P­
curves at these points pass through the origin. Evidently, these are the 
points for which 

(7.40) 

Hence, the locus of these points, called the G-curve, is given by 

{7 .41) G(x,y) = yUs- .xU, = 0. 

G-curves also pass through the origin and are symmetric with respect to it. 
Obviously, F and G-curves have the slope 00' at the origin. 

Now, transversals are seen from (7.13) to be themselves symmetric with 
respect to the origin. Hence, the field of transversals looks as shown in Figure 6. 
In that diagram, P 0(X0, Y 0) is the point where the straight line, passing 
with slope 00' through the origin, intersects the La-curve. P 1(X1, Y1) is that 
where the G-curve intersect the La-curve, and P 1(X1, Y 1) is that where the 
F -curve intersects the La-curve. 

We show now, that at least one .F-~urve and G-curve always exist and 
intersect the La-curve. Since every equipotential curve has, in the first 
quadrant for instance, always at least one point of stationary distance 

• It can happen that h().) has four real roots when k = 3. This has been shown 
to be an exceptional case and is not treated here. [16]. 
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from the origin, that quadrant contains at least one G-curve. Consider 
now the transversal issuing from P1• It points initially towards the origin. 
If P0 and P 1 do not coincide, this particular transversal must have an 
inflection point prior to its arrival at the origin with slope ()0'. In that 
case, the transversal issuing from P0 points initially above the origin, and 

y 

FIG. 6. The directed transversals in nonlinear system with two degree of freedom. 

it must also have a point of inflection before arriving with slope 00' at the 
origin. Hence, in general, there exist transversals with points of inflection, 
and there exists at least one F-curve in the first quadrant. The transversals 
will be endowed with a sense of direction by considering the points P(X, Y) 
which compose the L.-curve as their points of issue. These directed trans­
versals in Figure 6 are supplied with arrow heads pointing toward the origin. 
In this way, the transversals give not only the direction, but also the sense, 
of the forces acting on the unit mass point of the pseudo-system. 

2. The T-curoes [19] 

The trajectories corresponding to motions (at energy level h) of admissible, 
autonomous systems fall into two general classes: those which attain the 
L.-surface, and those which do not. By definition, T-curoes are those integral 
curves of (3.12) which do intercept the L.-surface. Hence, the T -curves 
constitute the class of all trajectories which correspond to motion with a 
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rest-point of admissible, autonomous systems. Note that T-curves need 
not be admissible in the sense of Section V. 

We shall establish here certain general properties of T -curves of systems 
having two degrees of freedom. All T-curves intercept the L.-curve, and 
all P-curves intersect it. The P-curve which issues from the same point 
P(X, Y) from which aT-curve issues will be called ''the transversal associated 
with that T-curve," or simply the associated P-curve. 

Some of the properties of T -curves are easily established by means of 
the equation of the trajectories (7 .6), written in the form 

(7 .42) Y" = - (1 + y'l) u (y' - (J'). 
2(U +h) " ' 

it results immediately from a substitution of (7 .13) in (7 .6). 
Because of the definition of P-curves and T -curves and Theorem V-V, 

one has: 
Property l: Every T-curve is tangent to its associated P-curve on the 

L41-curve. 
Less obvious is: 
Property 2: The curvature Kr(X, Y) of a T-curve at P(X, Y) has the 

same sign, but is less in magnitude than the curvature Kp(X, Y) of its asso­
ciated P-curve. 

To prove it, one observes that the second derivative y" in (7.6) is in­
determinate on the L.-curve. Evaluating it by !'Hospital's rule 

(7 .43) y"(X,Y) = _!_ [U"" + y'(U,,- Uu- y'U",)] 
3 U" X,Y 

But, by Property l and (7 .13), 

(7 .44) y'(X, Y) = (J'(X, Y) = U ,(X, Y)/U .(X, Y). 

Consequently, 

(7.45) y"(X,Y) = ! [Us,(Us
1

- U,
1
); ~sU1(Uu- U,,)] • 

" X,Y 

and, comparing (7 .38) and (7 .46) 

(7 .46) ~er(X,Y) = fKp(X,Y), 

which proves Property 2. 
Next, we have: 
Property 3: A T -curve which is not a straight line cannot coincide 

everywhere with its associated P-curve. 
The proof is evident from (7 .42). From that equation, one can also 

deduce immediately: 
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P,ope1ty 4: If any trajectory (and, hence, any T-curve) is tangent to 
a P-curve at any regular point, the trajectory has zero curvature at that 
point. 

This property of trajectories was earlier noted by Kauderer [10]. 
PJ'operly 5: At any regular point, every curved trajectory presents 

its convex side to the incoming, directed P-curves. 
This property is a consequence of Theorem VII-I. It merely states that 

the trajectory of the unit mass point is being turned, by the forces acting 
on it, in such a direction as to yield to these forces. 

p,operly 6: Every T -curve that intersects its associated P-curve at a 
regular point Q(x,y), must have passed through a point of zero curvature 
on the arc between P(X, Y) and the point of intersection Q(.\t,y). This prop­
erty follows from the observation that the P-curves constitute a regular 
field, and the T -curves are smooth. Hence, there exists a point on the arc 
lying between P(X, Y) and Q(x,y) where the T-curve is tangent to some 
P-curve. By Property 4, this is a point of zero curvature of the T-curve. 

Finally, we have: 
PJ'operly 7: Every trajectory (and, hence, every T-curve) either passes 

through the origin of the %y-plane or, else it must have at least one point 
of tangency with at least one E-curve (see the appendix). 

To prove it, we observe that the E-curves constitute a regular field of 
simple, closed curves surrounding the origin. :Moreover, trajectories are 
smooth, and by Theorem V-II. they are confined to the closed domain D,. 
It follows from these observations that Property 7 is true. 

It is clear that one may consider the origin as the (degenerate) equi­
potentialline of zero energy. In that case, Property 7 might be interpreted 
as stating that every T-curve is tangent at least once to an E-curve, and 
T -curves which are tangent to the E-curve of zero energy are necessarily 
simple trajectories and, perhaps, modal lines. 

It seems probable, that the above properties of T-curves could also be 
established for systems whose number of degrees of freedom exceeds two. 

VIII. SPECIAL AUTONOMOUS SYSTEMS 

1. Smooth Systems 

It is evident from the ·equations of motion (3.3) of the pseudo-system 
that all differences between given, autonomous systems consist in differences 
between their potential functions. 

An autonomous system is said to be smooth if its potential function is 
of the fonn 

(8.1) 
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where the ai:) are constants. Then, the spring force of a spring St; between 
the masses m, and m7 is 

(8.2) 

, .. . , 
~ aWw" 

k .... l,S, •.. 

where 

(8.3} w = ui- u; 

is the length-change. Hence, all derivatives of every spring force with 
respect to the length-change exist, which is the reason for the terminol­
ogy "smooth". V.'hile all spring forces of smooth systems are assumed to be 
finite polynomials, it is not required that these polynomials be all of the 
same degree. Thus, while the restriction to smooth systems may appear 
severe from the mathematical point ·of view, it is mild from the standpoint 
of physics. 

2. Uniform Systems [9] 

A system is said to be uniform if its potential function is of the form [9] 

, 
(8.4) U=- ~ 

m= 1,3, ... 

One sees from (8.4) that uniform systems are those in which all springs are 
equal, and all masses are equal (in which case one may, without loss of 
generality, put the masses equal to unity). 

For uniform systems, one can readily demonstrate an interesting and 
useful property. Let us denote as the potential function of the associated, 
linear system that whose potential function is [9] 

(8.5) 

where the values of a<1) are the same in (8.4) and (8.5). Then, one has 

Theorem VIII-I: The modal lines of an autonomous, unif01'm system are 
straight. Their directions coincide with those of the associated linear system. 

One proof of this theorem is due to Mawhin [6] who shows that the modal 
lines of (8.4) are straight, and that their direction is independent of m. 
The importance of this theorem is evident. The modal lines, when U = 0, 
are the principal axes of the n-dimensional ellipsoids 

(8.6) 0 + h* = 0, (0< h* ~h) 
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and the directions of these axes are readily found by means of linear eigen­
value theory. The time-history of the motions can, then, be found subsequently 
by simple quadratures. 

The geometrical interpretation of this result is that the equations 

(8.7) u +h* =0, (0< h* ~h) 

are ovaloids which are "distorted ellipsoids." However, these distortions 
are such that the ovaloids have the same symmetries with respect to the 
modal lines as the ellipsoids of (8.6). 

3. Sequential Anchored Systems 

With Haughton [27], we call a system sequential if it consists of a chain 
of n finite masses in which each mass is coupled by a "smooth .. spring (as 
above) to only its neighbors. It is said to be anchored if the first and nth 
masses are also coupled to a fixed point by "smooth" springs. This is in 
fact, the model that is usually employed in the theory of linear vibrations 
of multi-degree-of-freedom systems. The potential function of anchored, 
sequential systems is of the form 

(8.8) 

where i = i + 1. 
Haughton [27], using methods similar to those of Mawhin [6] proves the 

following remarkable 

Theorem Vlll-11: 1/ an admissible, anchored, sequentt:al system has straight 
modal lines, their directions are the same as those of the associated, linear 
system of potential function 

0 {
a1(2) ( u1 )2 a"'(

2
) ( u,. )I "'-1 a~~) ( ui u1 )a}· 

=--- +-- + ~- ---- (j=i+l). 
2 }'m;" 2 V m,. i= 1 2 V m• V m; ' 

(8.9) 

If, in an anchored, sequential system, all masses are equal and all springs 
are equal it is said to be anchored, sequential and uniform. In that case, 
one can readily show that straight modal lines do, indeed, exist; the prob­
lem of normal mode vibrations can, then, be completely solved by con­
sidering a linear system and by performing one additional quadrature. 

34



4. Homogeneous Systems [28] 

An admissible, autonomous system is said to be homogmeous if its po­
tential function is of the form 

• ta (A) A +1 
O= _ ~ ~ a# x, _ ~ 

s=l ; -;+t k + 1 ym, Vm1 
(8.10) 

where k is a real number in 0 < k < oo. It derives its name from the fact 
that the potential function is homogeneous in the x, of degree k + 1. 

It is interesting to fom1 the expression for the spring forces. These 
forces are given by 

(8.11) (i = 1, ..• ,n). 

This equation shows that the spring forces are odd functions, and proportional 
to the kth power. of the length-changes. Clearly, when one puts k = l, 
one recovers the linear system. 

Physically, neither masses nor springs need be equal in homogeneous 
systems. Instead, the springs are nonlinear "in the same way"; i.e., all 
obey the same simple power law. 

It is not difficult to construct a physical system for which k = 3 [21]. 
Consider an arrangement of masses and springs as in Figure 1. However. in 
the present case, the translations u, are not in the direction of the chain, 
but normal to it. Moreover, every spring is assumed lifWU' and its fru 
length is exactly equal to the distance between the masses interconnected 
by that spring when the system is in the equilibrium configuration. Clearly, 
the spring forces are always restoring, or a is negative, definite; moreover, 
the spring forces reverse sign when the displacements do, or 0 is symmetric 
with respect to the origin. However, infinitesimal displacements u, which 
are small of the first order produce length-changes in the springs which 
are small of the second order. Hence, for sufficiently small displacements, 
k = 3. 

By applying the criterion (6.3) one can readily prove [9] 

Theorem VIII-III: The modal lines of admissible, autonomous, Jwmo­
gensous systems are straight. Their direction is defined, by the systems of l'oots 
of the tYanscendental equations (6.4). 

o. Symmetric Systems 

With Mawhin [6] we call a system symmetric if its potential function is 
of the form 
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n 'a " 'a (m) a=- ~ ~ ao(m) x;'"+l- ~ ~ all+l .x;•+• 
; = t ,. = 1 ,s,. . . m + 1 i = 1 ,. = t,s, .•. m + 1 

(8.12) 
" • "c (M) 

~ ~ ~ a;; (x;- x;)"'+t. 
• = 1 ; = ; + 1 ,. = t,s, ... m + 1 

The physical properties of symmetric systems are the following: All masses 
are equal (hence, assumed equal to unity, without loss of generality), all 
spring forces are smooth (in the above sense), all anchor springs are equal, 
and the spring forces in all coupling springs are polynomials of thesamedegree. 
This is a generalization of the "symmetric two-degree-of-freedom system" 
[29] which was called Hsymmetric" because the system had literally physical 
symmetry about its centerline. (It should be noted that Mawhin denotes 
the spring between m0 and m1 as 50, that between m0 and m; as S1, and 
that between mo and m" as s".) 

If a symmetric system has only two degrees of freedom, one can readily 
show [29] that straight modal lines exist, and they have the same inclination 
as those of the associated linear system. 

IX. THE ATEB-FUNCTIONS [20] 

I. Thei, Origin and Impo,tance 

As the name indicates, the ateb-functions are inversions of certain beta 
functions, much in the same way as elliptic functions are inversions of 
elliptic integrals. Similar to elliptic functions which satisfy the autonomous 
Duffing equation, the ateb-functions solve the problem of nonnal~mode 
vibrations q.f homogeneous systems. In common with elliptic functions, 
the ateb-functions depend on a parameter n as well as an argument. It is 
interesting to note that Gauss [30] was the first to invert a beta­
function for the case n = 2. His problem arose in the rectification of the 
lemniscate, and his lemniscate functions were, in fact, the first functions 
to be defined by the inversion of an integral. Later. Legendre showed [30] 
that the period of the lemniscate functions was expressible in terms of 
gamma functions-an observation that has been repeated independently 
by many authors in recent times [31, 32, 10, 33]. 

We have shown that the modal lines of homogeneous systems are straight. 
Hence, they are expressible in the fonn 

(9.1) Xi = CipX1, (i = 2, ... ,n; p = 1, ... ,m) 

where m is the number of modal lines. If one substitutes (9.1) into the 
first of the equations of motion 

(B.2) x, = - 1~1 V! (v~- v~) V;,.- V~ ·-· (O< k< oc) 
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of a homogeneous system, one finds 

(9.3) (p = 1, ... ,m) 

where 

!Ji1 = m;lfnt· 

We shall show that (9.3) has periodic solutions of period Tp, and it follows 
from (9.1) that, then all .x,;(t), (i = 2, ... ,n) are also periodic of the same 
·period. Hence, the resulting motion is a normal mode vibration. 

We shall integrate (9.3) for the Cases I and II where, for 

Case I and 11: .i1 = 0 when .x1 = X1 > 0, 

(9.5) Case I: .x1 = 0 when t = 0, 

Case II: .x1 = X1 when t = 0. 

The conditions for Case 11 are initial conditions because .x1 and .t1 are speci­
fied at the same instant of time. However, in Case I the velocity and dis­
placement are prescribed at different instants of time. Hence, in Case I, 
it must be shown a poste1i01i that, if x1(0} = 0, then there exists an %1(0) 
such that .x1 (t0) = X 1, (X 1,t0 > 0). 

First, we change (9.3) into the canonical form by means of the trans­
formations [20] 

(9.6) n = (k + 1)/2 

and, because of the definition of n and the bounds on k, 

(9.7) n = 1 when k = 1 ; 1/2< n< oo. 

Under (9.6), the equation (9.3) goes over into 

(9.8) E'' + nEIEI2(11-l) = o. ('= !) 
and equations (9.5) become for 

Case I and II : E' = o when E= 1, 

(9.9) Case I: E=O when T=O, 

Case II: ~=1 when T=O. 
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A first integral of (9.8) satisfying the first of (9.9) is 

(9.10) E' = ± (1 - IEI211P'2 

and a second integral becomes, for Case I 

f 

(9.11) T = ± J (1 - lrlllfl)- 1/lldr, 

and for Case II 

l f 1 

T = ± J (l - lrlllfl) -1/ldf' = ± {J (l - lrl.,l - 1~r - J (l - lrl""l- 11lldr} , 
1 0 0 

(9.12) 

with 0 ~ E ~ 1. The sign ambiguities in (9.11) and (9.12) are readily re­
solved with the result that the + sign must be chosen in (9.11) and the 
- sign in (9.12) [20]. 

The question whether there exists a real -r0 > 0 such that E(T0) = 1 
is now easily answered by observing that (9.11) exists when E = 1. In 
fact, as observed by many authors [31, 32, 10, 33] under the change of 
variable 

(9.13) ,~ = s 

the integral (9.11) with upper limit ~ = 1 becomes 

1 

(9.14) 1 f 1 ( 1 •) -r(l) =- s<l-hl/lft(l- s)- 111ds =-B -,-
2n 2n . 2n 2 

0 

where B(l/(2n),l) is the complete beta function B(p,q) of parameters p = l/2n, 
q = l · Similarly, 

(9.15) 1 ( 1 1) -r(E)=-B,. -,-, 
2n 2n 2 

where Be.(P,q) is the incomplete beta functiont of argument E* and par­
ameters p = l/2n, q = t· 

t We use here Pearson's notation [If]. 
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2. Tlu I 1JfJef'SiMJS 

From the above results it follows that the solutions of (9.8) are, for 
Case I 

(9.16) 1 . ( 1 1) 
or = 2n B ,. 2n '2 ' 

and for Case 11 

(9.17) T = __!__ [B (_!_, _!_) - B,. (_.!_, .!..)] 
2n 2n 2 2n 2 

with 

(9.18) 

But, if ~(T) is periodic, the solutions (9.16) and (9.17) cannot be single­
valued on an interval exceeding one·half period. Hence, it is desirable to 
invert these solutions. The definitions used in the inversions, and the trans· 
formations are summarized in the table below. Cumbersome sign distinction 
are avoided if un is regarded to behave like an odd integer." This phrase 
means that negative quantities, raised to the power n + p, where pis either 
zero or an even integer, remain negative, and negative quantities, raised 
to the power n + q where q is an odd integer, become positive. The 
absolute values of these powers are given by 

(9.19) 

with a similar expression for powers n + q. 

Case I 

tl 

"' = J (1 - lrl.,l-1/ltlr = F 1 (E1) 

0 

9>1 

~ = J sinll- .. ,,.. 61l6 = G1 (cpJ 
0 

9'1 = amp tJu1 

E1 = sin1/tt (amp fl~) = sam (nt~t) 

Case II 

'· 
"t =-J (1 -lrl!oo)-1/ltlr = F 1(E.l 

1 

'= cos11•6 

•• 
nu. = J cosll-•11• 6d8 = G1(9't) 

0 

9'• = amp '"'a 

E1 = cos1'• (amp nu.) = cam (nu.) 
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It is seen that the inversions lead to four ateb-functions: Those called 
amp nu1,2 are inversions of G1.2(fP1.t), where G1•1 are beta functions, and 
those called sam (nu1) and cam (nu1) are respectively the inversions of 
F1.2(E1,1) which are also beta functions. 

A certain number of properties of ateb-functions have been determined 
[20] and are summarized below. 

3. The Amp-Functions 

The amp-functions are odd, or 

(9.20) amp - nu1•2 = - amp nu1,2• 

When n = 1, 

(9.21) 

Particular values are given by 

(9.22) 

where 

(9.23) 

amp nu• = n/2. 

ampO = 0, 

They satisfy the relation (also satisfied by the elliptic am-function) 

(9.24:) 
n 

ampn(pu* ± Ut.t) = P2 ±amp fltlt.t 

where '/> is a positive odd integer. 

Their first derivatives are 

(9.25) 

d 
~(amp nu1) = n cam" -t {nu.). 
rtU1 
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Special values of these derivatives are 

d 
when -(amp"t} =0 n > 1, 

d"t 

=1 when n = 1, for t~t=O 

== 00 when n < 1, 

d 
d~ (amp nUt) = n, for Ut =t~t·· 

(9.26) 

d 
du. (amp nu.) = 0, for ut= 0, 

d 
when -(amp n"t} = 0 "> 1, 

du1 

=I when ff= 1, for u.=u.· 

= 00 when ff < 1. 

(9.27) 

"amp" -functions look as shown in Figure 7(a) and {b). 

amp nu1 amp nu2 

lT 
2 

f 
1 u2 

( Q) (b) 

FIG. 7. The amp-functions. 
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4. The Sam- and Cam-Functions 

The sam- and cam-functions are periodic of the same period; i.e., 

(9.28) 
sam (nu1) = sam (nu1 + 4nu*), 

cam (nu2) =cam (nu1 + 4nu*), 

where u• is defined in (9.23). 

One is odd, the other even. or 

(9.29) 
sam (-nu,.) = - sam (nu,.), 

cam (- nut) = cam ( nu2). 

When n = 1, they become circular functions, and when n = 2, they become 
elliptic functions, or 

(9.30) 
cam (u1) = cos f4t, 

cam {2u1) = en (2- 1/2, u1). 

If u1° and u1° are those values of u1 and u1 for which amp nu1° =amp nu2°, 

(9.31) 

thus generalizing a well-known identity of trigonometric functions. The 
derivatives of these functions are 

(9.32) 

(9.33) 

tl2 
dut' [sam (nu1)] = - n sam2fl-t (nUt), 

tl' 
Tt [cam (nu1)] = - n cam2•-I (nf~a). 
~u, 

The sam- and cam-functions look as shown in Figure 8 and Figure 9 for 
a variety of values of n in i ~ n ~ oo. 
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FIG. 8. The sam~function. 
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For n = 1, the curves are the trigonometric sine and cosine curve, 
respectively. For n = !, they are parabolas, and for n = oo, they consist 
of segments of straight lines. 

N 
:::i 
~ 0,61-----+---~,.----~~ ........... ___.;:!~~--~"'r---+---~f--
e: 
c;:, 
~ 

0.2 0.4 0.6 0.8 1. 0 1.2 1.4 1.6 
Uz 

FIG. 9. The cam~function. 

1.8 2.0 

It is evident that the solutions of (9.8) are for Case I and 11, respectively, 

(9.34) 
I= sam (n-r), 

e =cam (n-r), 

as one can readily verify by direct substitutions, and by making use of (9.33). 
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X. NONSIMILAR NORMAL-MODE VIBRATIONS [8, 18) 

1. The Perturbation Potential 

The trajectories of nonsimilar normal-mode vibrations of autonomous, 
admissible systems are strictly homogeneous curves passing through the 
origin of the configuration space and intercepting the L4 -surface, and they 
are integral curves of the system M defined in (3.12). 

At present, there exists no hope of finding the integrals of M in the 
general case, considering the nonlinear character of the system (3.12). 
However, as shown above, there exist many strongly nonlinear systems 
whose modal lines are straight. Systems "neighboring on these" may have 
curved modal lines; hence, their normal-mode vibrations may be nonsimilar._ 
Here, we shall show how such modal lines may be found by perturb­
ation methods. The results, reported here, are due to Kuo [18]. They are 
generalizations of the results found earlier in the case of two degrees of 
freedom [8]. Let 

{10.1) 

be the admissible potential function of an autonomous system having at 
least one straight modal line, defined by 

{10.2) ""·*- C·X J\0. - s 1• (i=2, ... ,n). 

In (10.1), the m,, (i = 1, ... ,n) are the n masses and the a1, (j = 1, ... ,l) 
are parameters defining the properties of the springs. 

We shall examine systems whose potential function neighbors on U 0 ; 

hence, we call U0 the potential function of the parent system. 
We sh~ll say, ua system neighbors on the parent system" if its poten­

tial function is of the form 

(10.3) 0 = U0 + ero0, lel « IU0 j, 

where 0 is admissible; consequently, ro0 must also satisfy the admissibility 
conditions of potential functions. We call 0 the potential function of the 
perturbed system, and w0 the perturbation potential. It is evident from 
(10.1) that the m, and a1 are the only parameters subject to perturbations. 
Therefore, the most general fonn of the perturbation potential is 

" au ' au 
Wo = ~ tXi-

0 + ~ P;"-0 

i = 1 / omi i = 1 oa; 
(10.4) 

where the masses and spring parameters of the perturbed system are 

(10.5) 
m, = m, + ea., 

d; =a;+ etJ;, 

(i=1, ... ,n), 

(i = 1, ... ,l). 

While some of the a, and P; may be zero, all are fixed, once chosen. 

44



2. The Curved Modal Line 

Kuo [8] demonstrates 

Theorem X-I: If the parent system 

(10.6} (i = 1, .. .,n) 

possesses. at some energy level h, a straight modal line, then the perturbed system 

(10.7) (i = 1, ... ,n} 

moving at the same energy level h, possesses a unique modal line inane-neigh~ 
borhood of that of the parent system. 

The proof of this theorem. is lengthy and will not be reproduced here. 

In view of this theorem, the modal line of the perturbed system may be 
written as 

(i = 2, ... ,n) 

and this is valid everywhere except, possibly, on the L11-surface where the 
system M is singular. 

Then, substituting (10.8) in (3.12); i.e., in the system M, and expanding 
in powers of e, it turns out that EH must satisfy the system of linear, inhomo­
geneous, second-order equations 

(i = 2, ... ,n) 

where 

(10.10) 

and a similar notation is used for w0* and for the partial derivatives of 
these quantities. Moreover, it turns out that E21 must satisfy a system 
of equations in which the left-hand side is identical to (10.9) while the right­
hand side becomes a function the Eu· Consequently, one can find E11 if one 
can solve (10.9), and we need concern ourselves only with (10.9); i.e., with 
first-order perturbations. 
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3. Integ,abk Cases 

There exist certain cases in which the solutions of (10.9) is reducible 
to quadratures [8, 18]. Where this cannot be done, (10.9) must be integrated 
by numerical methods. 

One of the integrable cases is that of weak co·upling where the forces, 
exerted by the coupling springs under finite displacements, are of order e; 
i.e., 

(10.11) (i =I= f; i,f = 1, ... ,n). 

Under the assumption of weak coupling, the system (10.9) reduces to 

(10.12) (i = 2, ... ,n) 

where the subscript 1 on the ~.1 has been deleted. 
Defining the function 

(10.13) 

it can be shown that the system (10.12) becomes the self-adjoint system 

(10.14) (i = 2, ... ,n) 

where 

(10.15) (i = 2, ... ,n). 

The general solution of (10.14) is 

(10.16) 

where Ai and Bi are constants of integration. 
Inasmuch as the modal line of the perturbed system must pass through 

the origin, one can readily show that B, = 0, (i = 2, ... ,n). However, the 
only other condition on modal lines-that they intercept the L.-surface­
does not fix the values of the Ai. Nevertheless, it has been shown for systems 
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with two degrees of freedom [8], and by Kuo [18] for those with any finite 
number of degrees of freedom, that the A,= 0, (i = 2, ... ,n) as well, when 
coupling is weak. The arguments leading to this result are lengthy and 
not simple, even in systems with only two degrees of freedom, because the 
system of equations M is singular on the L.-surface. Therefore, we shall 
not reproduce them here. However, the result leads directly to 

Theo,-em X-II: The slope at the origin of the modal line of the perturbed 
system is the same as that of its weakly coupled parent system, on which it 
neighbors. 

It follows that the modal line of the perturbed system is given, to first 
order in e, by 

(10.17) (i = 2, ... ,n) 

where 

(10.18) 

and the· n. are defined in (10.15). 

It is evident that the modal line of the perturbed system is curved in 
the case considered here because the modal line of the perturbed system 
has, at the origin, the same slope as has the straight modal line of the parent 
system, but everywhere else, these modal lines do not coincide. Hence, 
the corresponding normal-mode vibration is nonsimilar. 

A number of examples, involving perturbations of mass· and/or spring 
parameters have been computed [8, 18]. In one of these [8], results of 
first-order perturbation theory have been compared with the actual behavior 
of the physical system. Even though, in that particular case, lel is much 
larger than contemplated in perturbation theory, the agreement is excellent. 

4. General Properties 

It was observed in Theorem V-VI that every modal line, straight or 
curved, intercepts the L.-surface orthogonally. One can also show readily 
by means of (3.12) that a curved modal line intersects no equipotential 
surface orthogonally, other than the L4 -surface. Moreover, Theorem V-V 
states that straight modal lines intersect every equipotential surface ortho­
gonally. From these observations it follows that a straight modal line 
is invariant under changes of energy level h, but a curved modal line is 
not. In other words, if the modal line in a given mode of motion is curved, 
a new modal line must be computed for each value of h. 
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Consider now (4.4) with ft(t) = 0; i.e., the equation determining the 
period of a normal-mode vibration. It is well known that the period T, 
given in (4.9), is independent of xl if (4.4) is linear, but it does depend 
on X1 if (4.4) is nonlinear. Summarizing these results leads to an interesting 
gradation of normal-mode vibrations. In it, we replace the words "modal 
lineH by "mode." 

{i) In linear systems. the normal-mode vibrations are always similar; 
the nonnal-mode coordinates decouple the equations of motion for arbitrary 
motions; mode and period of the normal-mode vibration are independent 
of the energy level of the motion. Linear combinations of solutions are also 
solutions. 

(ii) If the system is nonlinear, the normal-mode coordinates decouple 
the equations of motion for that mode only. If the normal-mode vibration 
is similar, the mode is independent of the energy level, but the period is 
not. Linear combinations of solutions are no longer solutions. 

(iii) If the system is nonlinear and the normal-mode vibration is non­
similar, mode as well as period depend on the energy level; otherwise. the 
conclusions are the same as in (ii) above. 

XI. EXACT SOLUTIONS TO STEADY-STATE FORCED VIBRATIONS [35] 

1. Introductory Remarks 

Steady-state forced vibrations can only arise in nonautonomous systems. 
They are periodic motions of certain physical systems that are acted upon 
by time-dependent, equiperiodic forces. \Ve employ 

Definition Ill : Steady-state forced vibrations of an admissible, nonautono­
mous system are vibrations-in-unison having as their least period that of the 
exciting forces. 

In all that follows, we shall assume (as is usually done in the linear 
problem) that only one of the masses, say m1, is subjected to an admissible 
forcing function. Hence, the system H is 

(11.1) 
%1 = U ~.(x1 •• .. ,x,.) + /1(t), 

x. = U ~.(x1 •..• ~x,.), (i = 2 ... "tn), 

and the system M is 

2 [U(x1, ..• ,x,.) + h + F 1 {x1,X 1) ]x;" 
(11.2) 

" + ~ X~t'2{x;' [U %, + f~(t(x1)) l - Us.} = 0, 
k.- 1 1 

where primes denote differentiation with respect to x1. 

(f = 2, ... ,n) 
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Among the systems represented by (11.1) and (11.2) there exists an 
entire class whose steady-state forced vibrations can be detennined without 
approximation. It is clear that the linear system, for instance, belongs to 
that class. We shall show that exact solutions of the steady-state forced 
vibration problem can be found for the entire class of homogeneous systems 
under suitable excitation; among them is the linear system under simple 
harmonic excitation. 

The technically most interesting information regarding steady-state 
forced vibrations is contained in the so-called "resonance curves" well known 
from linear theory. These are the families of curves in the frequency­
amplitude planes which relate, for prescribed amplitudes of the forcing 
functions, the amplitudes Xi of the motions in the various degrees of freedom 
to the frequency w of the exciting force. In the steady-state vibrations 
of nonUnear systems these response curves X,(ro), (i = l, .. . ,n) play a 
similar role. We shall show that these curves are integrals of equations 
of the form [35] 

(11.3) 
dX, P,(x.,w) 
dw = Q,(X,,w) ' 

(i=l, ... ,n), 

and that the Xiw-planes contain certain singular points. The number, 
location, and character of the singular points of (11.3) can then be used to 
determine the geometrical character of the response curves. In particular, 
one can ascertain where (if at all) resonance occurs, and at what frequencies 
(if at all) the phenomenon of "tuned dynamic vibration absorption" takes 
place. 

2. Homogeneous Systems 

The steady-state response of the linear system to periodic excitation 
is normally discussed for the case when the excitation is simple harmonic 
[36, 37]. In fact, the response curves cease to have meaning under general 
periodic excitation. Since the steady-state response of the linear system 
to simple harmonic excitation is, again, simple harmonic, it turns out that 
in that case, 

(11.4) x,(t)ff(t) = const., (i=l, ... ,n). 

We shall show that the linear system under simple harmonic excitation 
is merely a special case of the homogeneous system under the excitation 
rf1 (t) ]• where 

(11.5) ft(t) = P0 cam (nnt), 
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and the steady-state response of this class is of the form 

(11.6) (i = 1, ... ,n); 

hence, ( 11.5) and (11.6) are such that (11.4) is satisfied for all k in 1 ~ k < oo 
(or 1 ~ n < oo) . We shall make this demonstration only for a system having 
two degrees of freedom [35], but we indicate the results of generalizing 
to any number of degrees of freedom [12]. 

Let the degrees of freedom be 

(11.7) Ut= U, 

and write the forcing function in the form 

(11.8) 

where 

(11.9) D = (cX)k- 1, 

and c is a constant. Form (11.8) has a certain advantage over (11.5). In 
(11.8) , the quantity A. plays a role similar to that of the circular frequency 
of simple harmonic excitation, but it is not the frequency of excitation when 
k > 1. Hence, A. will be called the generalized circular frequency . 

Then, the equations of motion of the physical system are 

(11.10) 
m1u + a1uk + a<!(u- v)k = P0 camk (n V(DA.2/n) t), 

m2v + a3vk- a2(u- v)k = 0, 

those of the pseudo-system are 

(11.11) 

Y+~ _L - ~ ~- _1!__ =0 
( )

k ( )k 
Vm2 Vm2 Vm2 Vmt Vm2 ' 

and the equation of the trajectories is 

{ 
1 [ (X )k+l ( y )k+l (X y )k+l] 

2 - k + l at V ml + aa V ms + a2 V ml - V m2 
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(11.12) 

Simple substitution of 

(11.13) 
y=CX 

into (11.11) and (11.12) (and making use of the formulas (9.33) for the 
derivatives of cam-functions) shows that (11.13) are indeed the solutions, 
and the constant c in the second of (11.13) is the same as that in (11.9). 

But it follows from (11.13) that, in the case considered, x(t) and y(t) 
are cam-functions of the same argument. Hence, the steady-state vibrations 
are similar, or the trajectories satisfying (11.12) are straight lines. 

If we define 

(11.14) Y=cX, 

the equations (11.11) and (11.12), with (11.13) and (11.14:) substituted in 
them, are three equations in the three unknowns X,Y and c, and they can 
be solved explicitly for these quantities. 

One finds 

(11.15) 

where 

c = aall"f{al'" +(as- ms(k+l)/B).,I)lfA}, 

X" = { Pomlf2 [a, I!" + (as - ma<ll+IU£).,1)1/It]"}/R, 

yA = {Poa2mzkl2}fB 

R = al[t~tlfll +(as- n;<A+l)fl).l)lfA]j + t;(as + aa- maCA+l)f!J.I) 

_ (fna/m,_)(A-l)flm1(k+l)/lils(A-l)/A["tl/l + (CJa _ fnt(A+l)/!).1)1/A] _ a11. 

(11.16) 

If the system has more than two degrees of freedom, say m, the equations 
of motion of the pseudo-system are 
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x . = - a;o (___!L)k - f a;l (___!i_ - ___!!_)k 1 V m; V m; z = 1 V mi V m; V ml ' 
(f = 2, ... ,m), 

(11.17) 

and substitution shows that 

(11.18) 
(j=2, ... ,m) 

satisfy this system as well as the equations of the trajectory which are not 
reproduced here. Now, there are m quantities X1 and m - l quantities 
c1 which constitute the unknowns, and there a~e m equations of motion 
and m - 1 equations of the trajectory. Hence, the problem is determinate 
[12]. 

It is now advantageous, as done in the linear forced vibration problem, 
to introduce non-dimensional quantities as follows: 

{11.19} 

Vm1i = x/(P0/a1)", 

Vm2y = Y/(Pofat)k, 

Vm1X = Xj(P0/a1)", 

Vm2i" = Yf(Pofat)k, 

y = A_2J[a2/m2(k+l)/2] 

where it should be remembered that X and Y are nondimensional ampli­
tudes, and y is a nondimensional generalized frequency ratio. With the 
introduction of these quantities, (11.15) become 

(11.20) 

where 

(11.21) 

c = [G(y)]-1, 

Xk = [G(y)]11/H(y), 

Yll = [H(y)]-t 

G(y) = 1 + (~2 - y)lfk, 

H(y) = [G(y)] 11 + !Xu(l + tXs2- y) - rx:uY~~2G(y) - ~~· 
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One must now find the locus of the endpoints of the trajectories, i.e., 
the L-surface, which is, here, a curve. The L-curves are found as follows: 
the first of (11.20) is solved for i' as a function of c. This is substituted in 
the second, thus eliminating y, and resulting in an equation of the form 

(11.22) X 11 = O(c). 

If one substitutes in that equation 

(11.23) 

one finds an equation in X and f; this is the equation of one of the loci 
of end-points of the trajectories. The second locus is found by substituting 
-X for X; then, the equations of the two loci become [35] 

(11.24) X11 f + ~~(X - f)k( f + ,u~2X) - ~1oc321ti2XY11 :r: f = ·o. 

From these equations one ·can readily deduce the following properties of 
the L-curves: 

(i) they intersect the y-axis at y = 0 and at y = ± oci21
'

11
; 

(ii) they intersect the i-axis at the origin only; 

(iii) in the linear system (k = 1), they are hyperbolas; 

(iv) as lXI and I fj-..oo, Y /X-+ constants equal to the slope of the modal 
lines of the autonomous system [35] . 

The last property proves the following 

Theorem XI-I: As the generalized frequency ratio y -+ y1,2, where y1,2 

are the generalized frequency ratios of normal-mode vibrations of the autonomous 
system, the nondimensional amplitudes !X'!,I'f'l -+ oo. Hence, the system goes 
into resonance in the neighborhood of free normal-mode vibrations. 

The L-curves and trajectories of steady-state vibrations have been 
computed for the nonlinear problem 

(11.25) 2 
,Ut2 = 2, oc21 = 1/2, OCs2 = 3, k=3 

and for the associated linear problem in which all parameters have the 
values given in (11.25), except that k = I. The results in the iy-plane are 
shown for these two examples in Figures IO(a) and (b), respectively. 

For an understanding of the general theory, to be presented in the next 
section, it is helpful to interpret these diagrams. In general, the trajec­
tories of steady-state forced vibrations are, here, segments of straight lines 
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(b) 

112 2 a -.L tl2 : I 21- 2 

a32 = 3. k = t 

FIG. 10. Trajectory of steady-state forced vibration in (a) nonlinear and (b) corr~ 
sponding linear systems. 
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that pass through the origin and terminate on the L-curves. Their slope 
is a functjon of the frequency y and, in fact, their slope c(y) is given in the 
first of (11.20). 

Assume that y, i.e., essentially the frequency of excitation, is small, 
so that c is less than the slope of the modal line in the first and third quadrant 
(shown dotted). As y is increased, the trajectory begins to rotate in a counter­
clockwise direction and becomes longer, tending to infinity as the slope 
c(y) approaches that of the modal line. As y is further increased, the trajec­
tory continues to rotate, but it becomes now shorter until c = oo. This 
occurs where G(y) = 0 and, at this frequency, there is bounded y-motion, 
but no .X-rnotion. In other words, the £-motion vanishes identically because 
m2 acts as a tuned dynamic vibration absorber for m1. A further increase 
in y will further rotate the trajectory, and the motion becomes out-of-phase 
because the slope c < 0. At first, the trajectory will lengthen until the mo­
tion becomes, again, unbounded when y = y2• However, further increases 
in y will reduce the amplitudes of the steady-state forced response, and 
these amplitudes tend to zero as y - oo. 

3. The Response Curves [36] 

The differential equations, satisfied by the response curves, are found 
from the second and third of {11.20); they are 

dX XF(y) 
-= 

kG(y)H(y) ' 
( 11.26) 

dy 

d'f YH'(y) 
-=-
dy kH(y) 

where 

(11.27) F(y) = kG'(y)H(y) - G(y)H'(y), 

and G and H are defined in (11.21). 

Both of (11.26) are seen to have singular points on the y-axes at the 
zeros of H(y). The first of them has additional singular points on they-axis 
at the zeros of G(y). 

Now, the generalized frequency ratios of normal-mode vibrations of the 
autonomous system are, in general, functions of the amplitudes J( and "Y, 
and they tend to certain limits as the amplitudes tend to zero. It can be 
shown [12, 13] that their limiting values coincide with the zeros of H(y). 
In other words, the equation 

(11.28} H(y) = 0 
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can be shown to play the part of the so-called ,.frequency equationu of the 
autonomous system. Hence, both equations {11.26) have singular points 
at the natural frequencies of normal-mode vibrations at vanishingly small 
amplitudes. 

Denote the zeros of H(y) by y,.. Then expanding the first of (11.26) 
in the neighborhood of (X = 0, y = y,.) one finds 

(11.29) 

because 

(11.30) F(y,.) = - G(y,.)H'(y,.). 

Expanding the second of (11.26). one has directly 

(11.31) 
df f 
dy,. = - y,.k + .... 

The integrals of (11.29) and (11.31) are 

(11.32) Xy,.lc = const., Y y,." = const. 

These are equations of hyperbolas; hence, the singular points on the 
y-axes at the zeros of H(y) are for both (11.26) saddles. 

Let the zeros of G(y) be denoted by y,.. Then, expanding the first of 
(11.26) in the neighborhoods of (X = 0, y = y,..) one finds 

(11.33) 

because 

(11.34) F(y,..) = kG' (y,.)H (y,..). 

The integrals of (11.33) are the straight lines 

{11.35) Jlj-y,. = const. 

Hence, the singular points of the first of (11.26) on they-axis at the zeros 
of G(y) are star points (nodes). 

Now, it follows from the definition (11.21) that G(y) has only one real 
zero at 

(11.36) y,. = y* = 1 + IXst· 

Hence, we have [36 J 
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- -FIG. 11. Frequency-amplitude curves in (a) X)'-plane and {b) Y)'·plane. 

57



-I 

-4 

~.l-2 • * = T
1 

• ~ • l.., k :3 m1 t a.l 2 

Po sL5 !.L. : I / 
01 ' mz · / 

(Cl) 

/ 

' ' ' -4 

(b) 

FIG. 12. Frequency·amplitude curves in physical XO-plane (a) and YO-plane (b). 

Theorem XI-II: The system (11.11) is such that, for any kin 1 ~ k < oo, 

there exists a single nontUmensional generalized frequency ratio r• of the ex­
citing fo'ce such that the mass m1 acts as a tuned dynamic vibration absorber 
for the mass m1 that is being excited. 

Response curves in the Xy and l"y-planes for the values of the parameter 
given in (11.25) are shown in Figures ll(a) and (b), respectively. 

It remains to map the X y and Y y-planes on the Xn and YO-planes, 
where the frequency n of the forcing function is defined through (11.5). 
I~ follows from (9.23) and (11.19} that this mapping is given by [30] 

and by a similar formula involving r which is found by replacing X in 
(11.37) by "Y jc. The results of this mapping for the example of Figure 11 
is shown in Figures 12(a) and (b). 
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XII. STEADY-STATE FORCED VIBRATIONS BY APPROXIMATE METHODS 

1. Description of the Method [12] 

The problems of steady-state forced vibrations, considered here, are those 
of systems that neighbor on systems of known vibrations-in-unison. Two 
cases may arise: either the vibrations-in-unison of the unperturbed (parent) 
system are themselves steady-state forced vibrations of the parent system, 
or the vibrations-in-unison of the parent system are normal-mode vibrations 
of that system. It is clear that in the first case the amplitude of the forcing 
function need not~ small, but in the second case, that amplitude must be 
small in absolute value because the nonautonomous system now neighbors 
on the autonomous one. In either of these two cases, the problem of finding 
steady-state forced vibrations can be reduced to the perturbation problem 
discussed in the section on nonsimilar normal-mode vibrations. The results 
reported here are, largely, due to Kinney [12]. 

We consider a parent system of potential function 

(12.1) 

for which at least one vibration-in-unison is known. Let the trajectory in 
configuration space of this vibration-in-unison be given by the (known) 
functions 

(12.2) (j = 2, ... ,n). 

Now, the only vibrations-in-unison that have been deduced are either 
straight lines, or they are curved in the sense treated in the section on non­
similar vibrations. Hence, they are always given by 

(12.3) 

where leol is small, and when the trajectory is straight, the terms of order 
e0 are absent in (12.3). 

The time-history of x1 of the known vibration-in-unison is the (known) 
function 

(12.4) 

and the time-histories of the other x• are found by substituting (12.4) in 
(12.3).· Since the motion is a vibration-in-unison, (12.4) possesses on the 
interval l0,X1] (where X 1 is defi~ed by i 1(X1) = 0) the inverse 

(12.6) t = t*(x1). 

We shall, first, suppose that the parent system is nonautonomous, or 
the unit mass of the unperturbed pseudo-system is subjected to a force 
in the /1-direction given by 

(12.6) / 1 = j(t) = f(t + T) 
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where T is the only period of f. Hence, the circular frequency of the periodic 
force is 

(12.7) w = 2nJT. 

We consider a neighboring, or perturbed system of potential function 

(12.8) 

where t/J(x1, • .• ,x,.) is a gtven perturbation potential which satisfies the 
admissibility conditions, and 

(12.9) et/J = O(e) 

everywhere where t/J is defined. Then, the trajectories of the perturbed 
system are the x1(x1),{i = 2, ... ,n) which satisfy 

n 

2[U + e,P + F(.x11X1) + h]x;'' + ~ xk'9{x;'[U%, + E~s, + /('(x1))] 
k=1 

(12.10) 
(i = 2, ... ,n), 

and this equation is regular everywhere. Hence, one may construct the 
solutions 

(12.11) 

In a similar way, 

(12.12) 
t(x1) = t(x1,e) = t0(x1) + et1(.x1) + ... , 

t{x1,0) = t0{x1) = t*(x1); 

i.e., t•(x1) is the zeroth order approximation of t(x1). 

If one now uses an iteration scheme with respect to t(x1), combined 
with conventional perturbation techniques for the x1(x1), the problem 
of determining the steady-state forced vibrations reduces to that of (10.9), 
treated in the section on nonsimilar normal-mode vibrations. The procedure 
consists in replacing t(x1) by t0(x1) in (12.10) and then using conventional 
perturbation methods; these result in a linear nonhomogeneous system 
of equations which the E;(x1) must satisfy. Now, the solutions of that system 
are functions of t0(x1), and this will be indicated by using an appropriate 
superscript on the E1. Using the notation 

(12.13) 

for U and r/J and their partial derivatives~ and using the definition of F{x1,X1) 

given in (3.10), the equations of the E1 turn out to be 
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:rl 

2 [ u• + r /(t,(xtlldxl + h] E;(O)" + l*/' I { [ u:. + /(t,( xtlllE;(O)' 
X, 

(i = 2, ... ,n). 

(12.14) 

But, this system of equations is of the form (10.9), and questions of its 
integration are discussed in the section on nonsimilar normal-mode vibrations, 
and also by Kinney [12] for different examples. 

Once the integrals ~/0}(x1) have been found the functions (12.11) 

(12.15) 

are substituted in the first of the equations of motion; that equation can 
then be integrated by quadratures for the conditions 

(12.16) 
xl = xl when 

This results in a function 

(12.17) 

and its inverse 

(12.18) 

t = 0. 

This latter is the first approximation of t(x1) (as compared to the zeroth 
approximation), and it may now be substituted in (12.10), and the entire 
procedure is repeated. Kinney [12] shows that it is more convenient to 
introduce the transformation 

(12.19) T = wt, 

and he has computed a number of interesting examples, including that of 
the tuned dynamic vibration absorber of weakly nonlinear two-degree-of­
freedom systems. 

If the parent system is autonomous, one simply deletes the terms in 
(12.10) involving /(t(x1)) and F(x1,X1), and one replaces ifJ(x1, .•• ,x,.) by 
g(t(x1)) where g(t) is periodic of period T. In view of (12.9), this latter step 
implies that the forcing function has small amplitude, and the result will 
be that of steady-state forced vibrations in the neighborhood of the vibrations­
in-unison of the autonomous nonlinear system. It may be interesting to 
interpret the results of forced steady-state vibrations neighboring on the 
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vibrations-in-unison of a parent system. This interpretation will be made 
in terms of trajectories in the configuration space, and of response curves 
in the frequency-amplitude planes. As an example, we consider a parent 
system that is linearizable within the meaning of (2.11). 

Consider the n-space and an equipotential surface indicated in Figure 13 
together with the modal lines; in this diagram, the modal lines are sur­
rounded by e-tubes. Then, the desired trajectories of the steady-state 

n-SPACE 

FIG. 13. Trajectories of free and forced vibrations in nonlinear n-degree-of-freedom 
system. 

forced vibration pass through the origin and are monotone because they 
are those of a vibration-in-unison; moreover, they must lie wholly in the 
e-tubes because of (12.11). Consequently, the L-surface which is the locus 
of the endpoints of these trajectories, also lies inside the e-tube. 

The direction with which the trajectories pass through the origin is a 
function of the frequency w of the exciting force as explained in connection 
with Figure 10. If that frequency lies near that of a normal-mode vibration, 
the trajectory lies near a modal line and is long. If not, the trajectory is, 
generally, short, and the amplitudes of the forced vibration are of O(e). 
In this way, one understands readily the occurrence of resonance. 

It is also instructive to translate this information into the frequency­
amplitude planes, shown in Figure 14. The dotted lines, composed of the 
w-axes and the backbone curves [29, 38], are those of every vibration-in­
unison of the autonontous system. In other words, if the autonomous system 
doesnotmoveinnormal-modevibrations, it is at rest with respect to admissible 
motions. (Because of Definition I, every vibration-in-unison of the auto­
nomous system is a normal-mode vibration.) 

Hence, we may surround the w-axes and the backbone curves by e-tubes 
as shown in the diagram, and the forced steady-state vibrations of the non­
autonomous neighboring system must be represented by response curves 
lying inside these e-tubes. One such response curve, for a prescribed, small 
force-amplitude is shown. It is evident, then, that the intersections of 
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w-axes and backbone curves are saddle points. In addition to these, there 
may be star points as well, if the steady-state forced vibrations are similar. 
If they are not, one can easily show that the only singular points in the 

• 

w 

FIG. 14. Frequency-amplitude curves in nonlinear H-degree-of-freedom systems. 

frequency-amplitude planes occur at the intersection of backbone curves 
with the w-axes, and all are saddles. 

XIII. STABILITY 

1. Definitions 

Two definitions seem particularly useful in the examination of the 
stability of vibrations-in-unison: If stability in the sense of Liapunov," 
or L-stability and "stability in the sense of Poincare" or P-stability [39]. 
To define the former, let 

(13.1) 
Xi = X;*(t), } 

x;*(O) =X,, .i;*(O) = 0, 
(i=l, ... ,n), 
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denote the set of solutions of a vibration-in-unison, satisfying the system 
H. Further, let 

(13.2) x, = x,(t), (i = 1, ... ,n). 

denote any set of solutions of the system H. Then, the set xi•(t) is called 
L-stable if, for every e, with 0 < e <<X,, (i = 1, ... ,n), there exists a c5(e), 
with 0 < 6(e) ~ e, such that 

(13.3) 

whenever 

(13.4) lx,(O) - x,*(O)I < d(e). 

To define P-stability, let 

(13.5) 
x, = x•*(x1) '} 

x,(X1) = Xt, 
(i = 2, ... ,n), 

denote the set of solutions of a trajectory corresponding to a vibration-in­
unison, and satisfying the system M. Further, let 

(13.6) (i = 2, ... ,n) 

denote any set of solutions of the system M. Then, the set x,*(.x1) is called 
P-stable if, for every e with 0 < e <<Xi, (i = 1, ... ,n), there exists a c5(e) 
with 0 < l5(e) ~ e such that 

(13.7) 

whenever 

(13.8) 

The interpretations of these two definitions of stability are clear. Let 
the space having coordinates (x1, ••. ,x,.,t) be called the et'ent-space. Then 
x,*(t), (i = I, ... ,n) is a curve in the event-space. If any solution x,(t), 
having a single point inside an e-tube about x,*(t) remains within it every­
where, the solution is L-stable. Similarly, xi*(x1) is a curve in the con­
figuration space. If any solution .xlx1), having a single point inside an 
e-tube about xl(.x1) remains within it everywhere, the solution is P-stable. * 
It is evident, therefore, that every L-stable solution is also P-stable, but 
the converse need not be true. Moreover, every solution that is P-unstable, 
is also L-unstable but, again, the converse need not be true. 

• This type of stability is frequently called orbital stability [4]. 
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In both definitions of stability it is required that le I be small. Consequently 
it is sufficient to consider the equations of the first variation of H with 
respect to x,*(t); i.e., 

(13.9) (i = 1, ...• n). 

Clearly, this is a system of linear equations with periodic coefficients, and 
·stability in any sense requires that all characteristic exponents of (13.9) 
have real negative parts. Now, the number of characteristic exponents 
depends on whether the system H is an explicit function of t, or not; i.e., 
whether the system H is autonomous or not [26]. Hence, the two cases of 
normal-mode vibrations and of steady-state forced vibrations must be 
discussed separately. 

2. Stability of Normal-Mode Vibrations 

It is simple to deduce [21] 

Theorem XIII-I: If an admissible potential function U is not a quadratic 
form, the normal-mode vibrations are never L-stable. 

This result is an immediate consequence of the well-known fact that the 
periodic solutions (if they exist) of autonomous, nonlinear second-order 
equations are not isochronous. It follows from this theorem that nonnal­
mode vibrations of nonlinear systems are, at most, P-stable, and their 
stability properties depend in general, not only on the magnitudes of the 
mass and spring parameters, but on the energy level of the motion as well. 

The problem of discussing the behavior of the E. in (13.9) is greatly 
simplified when that system of coupled equations can be decoupled. If the 
system (13.9) is written in the matrix form 

.. 
(13.10) E + B(t)E = o 

it turns out that the matrix B(t) is of the form 

M 

(13.11) B(t) = B0 + ~ j.(t)B•, 
t=l 

where B0 and the Bi are square matrices with constant elements, and the 
/i(t) are periodic scalar functions of time. Then, if a transformation matrix 
T exists such that 

(13.12) T-1B(t)T = A(t) 
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where A(t) is a diagonal matrix, the transformed system (13.9) is decoupled. 
Hsu has shown [40] that the conditions, necessary and sufficient for the 
existence of such a transformation matrix T is, that the B,, (i = 0, ... ,m) 
be all commutative and th~t at least one of them have distinct eigenvalues. 

3. Homogeneous Systems 

It is simple to demonstrate [7] 

Theorem XIII-II: The system of variational equations of admissible, 
homogeneous systems with respect to any normal-mode vibration can always 
be decoupled. 

To prove it, one shows that, in homogeneous systems, (13.11) can always 
be reduced to 

m 

(13.13) B(t) = A ~ /i(t) •-t 
where A is a constant, square matrix. Thus, Hsu's criterion is trivially 
satisfied. 

The normal-mode vibrations of homogeneous systems have the further 
(unusual) property that their stability does not depend on the energy level 
of the motion. In this respect, they are similar to linear systems, the latter 
being stable at all amplitudes. If a normal-mode vibration of a homoge­
neous system is stable (unstable) at any one amplitude, it is stable (unstable) 
at all amplitudes [9]. Whether a given normal mode vibration of a given 
homogeneous system is stable or not depends only on the mass and spring 
parameters of the system, and on the particular normal mode examined, 
but not on the energy level. 

As an example, consider a homogeneous system having the degrees of 
freedom u and v. Then, the equations of motion may be written in the 
form suggested by Loude [41]: 

(13.14) 

where 

(13.15) 

fntU = - at/J(u) - At/J(u - v), 

msv = - bt/J(v) + Ae/J(u- v) 

t/J(w) = wfwl~-1. 
If the trajectory of a given normal mode is 

(13.16) v = cu; 
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i.e., 

(13.17) 
u = rp(t,X}, 

v = crp(t,X}, 

one can show that the variational equations have solutions that satisfy [41] 

(13.18) 

where B takes on one or the other of the two values 

(13.19) 
B1 =c. 

B1 = - m1fcm1. 

The variational equations reduce to 

(13.20) 

where D1,2 are constants defined by 

(13.21) 

It is easy to show that these equations are independent of the am­
plitude X. To do this, we note that the motion in normal modes is an 
ateb-function. (The arguments which follow are the same, whether we deal 
with sam- or cam-functions; thus, only one of these need be considered.) 
From (9.6) and (9.34), 

(13.22) 
x =X cam (nT), 

T = (cfn)112X"- 1t. 

But, the independent variable in {13.20) is t, not 't. Now, one has from 
(13.22) 

(13.23) 

where E is a constant not containing X, and from the definition (13.15) 
of the f/JMfunction together with (13.22), 

(13.24) t/J'(rp) = X"- 1t/l'(cam (nT)). 
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Hence. (13.20) in tenns of T, becomes 

(13.25) 

where D1.2 = D1,1fE. It follows that the two equations {13.25) do not 
contain the amplitude X. 

The discussion of the characteristic exponents of the equations (13.25) 
is difficult because they are Hill equations in which the periodic coefficients 
are cam-functions. The detailed stability properties of such Hill equations 
are not known. 

-I 0 1 2 3 4 

FIG. liS. Strutt chart. 

However, one can gain some insight into the stability of normal-mode 
vibrations of homogeneous systems by replacing the cam-function in (13.25) 
by a cosine-function. Proceeding in this manner is, in fact, equivalent to 
expanding the periodic coefficient into Fourier series and retaining only the 
first term of the expansion. This is usually done in examining the details 
of stability of vibratory motions of nonlinear systems [4]. It has the con­
sequence that equations (13.25) become Mathieu equations whose stability 
properties are well known [4, 42]. 
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One finds, in place of (13.25), two Mathieu equations of the form 

(13.26) 

and for stability of the normal-mode vibration, it is necessary, that both 
these equations uindicate stability." 

The stability study is carried out by means of the Strutt chart [4]. 
This chart consists of a set of curves in the e~-plane separating stable regions 
(shaded) from unstable ones; it is shown in Figure 15. If the values P1(t51,e1) 

and P 1{ ~2,e1) define two points P 1 and P 1 in the ed-plane which lie in the 
interior, or on the boundary, of a stable region, the motion is stable. If 
one or both of these points lie in the interior of an unstable region, the 
motion is unstable. It turns out that the values of the parameters e,~ in 
one of the equations (13.26) is such that one of the points P(e,t5) always 
lies on a boundary between stable and unstable regions. This is known to 
lead, at most, to P-stability [4], thus verifying Theorem XIII-I. The other 
point may lie anywhere in · the et5-plane. 

The results of the computation for 

(13.27) 

are given below for that one of the two Mathieu equations for which P(e,d) 
does not automatically lie on a boundary. 

That equation is 

(13.28) 

where [9] 

(13.29) 

E" + (d + e cos-r)E = 0 

B = a.i/4, 

69



For any given system parameters, the fonnulas (13.29) can be utilized to 
determine the location of P(£5,e). Similar results are found, when 

(13.30) 

In either case, it turns out that the point P(e,6) lies on a straight line in 
the e6-plane which passes through the origin, which lies always in the right 
half-plane, and whose slope is a function of k only. When k = 1, this slope 
is zero so that the point lies then on the (positive) 6-axis which consists 
entirely of stable points. Thus, linear systems are always stable. When 
k > 1, the slope of the straight line is positive, and when 0 < k < 1, the 
slope is negative. The location of P(6,e} on the straight line is a function 
of the system parameters [28]. 

4. Symmetric System with Two Degrees of Freedom [9] 

As a second example permitting decoupling of the variational equations, 
consider the symmetric two-degree-of-freedom system (not homogeneous) 
[9]. The equations of the pseudo-system are 

(13.31) 
X= Uz(x,y), 

Y = U 1(x,y), 

and the trajectories of the nonnal modes are 

(13.32) y = Yo*(x) = - x 

where the subscripts i and o indicate an in-phase mode and an out-of-phase 
mode, respectively. Using the notation 

(13.33) Q(x*(t),y*(t)) = Q* 

for U and its derivatives, it is easily shown that, in symmetric systems, 
one has always 

(13.34) • • Uss = Uyy 

for both, the i and o-modes. 
The coupled variational equations are 

.. * * E- UssE- Usif/ = 0, 

ij - u::~E - U~1J = 0. 
(13.35) 

Under the transformations 

(13.36) 
cl="~+ t 

Ca = 1J- E, 
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the equations (13.35) become, in virtue of (13.34), 

.. .,,.. . 
C1 - (u ss+ u.,)C1 = o, 

(13.37) 
•• • • c,- (U, + u.,)c. = o, 

and these are, evidently, decoupled. 
As a specific example, consider the system t 

(13.38) 

where 

(13.39) 

u = U<L) + U<N) 

U<L> = - ia1(x1 + y 2) - iA1(x- y)1, 

U(N) = - iaa(x• + y') - iA3(x - y)'. 

We now introduce the following notation, already indicated, in part, in 
(13.33): when U or its partial derivatives are evaluated along a modal 
line, that quantity is marked with •. When, its value along such a modal 
line is computed at the values X,y(X) = Y, the quantity is marked with ••. 
If the · modal line in question is that of the in-phase mode, the quantity is 
supplied with an i-subscript, if it is that of the out-of..:phase mode, the 
quantity has an o-subscript. If no subscript is supplied the quantity is the 
same in the two modes. 

With this notation we define: 

p(L) = j((U~i;>)•• + (lf,Ly>)**], 

(13.40) 
P(N)- 1 [(U(N)) ~ • + (U(N}) ~ *] 

•,0 - I" ss s,O yy s.O ' 

QtL) = (U~~)**, 

QCN) _ (U(Nl) ~ * 
t,O - ~~ s,O • 

Note that the quantities arising from the linear part of the potential function 
are the only ones independent of the mode. 

It will be remembered from the earlier example that the nonlinear 
vibrations x*(t)~y*(t) will be replaced, in the variational equations, by their 
zeroth approximation; i.e., by simple harmonic functions. It is entirely 
consistent with this approximation, to replace the frequencies of the nonnal­
mode vibrations by their Duffing approximations [4]. These are, in tenns 
of the quantities defined in (13.40) 

t The superscripts (L) and (N) indicate the terms in U which give rise, respectively, 
to linear and to nonlinear terms in the equations of motion. 
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(13.41) 

If one utilizes 

(13.42) 

m;'• = - (PCL) + QlL)) -i(P•(N) + QilN)), 

mol= - (PCL) - QCL)) - i(Po(N) - Qo<N)). 

cos1 Wi,rJ = l + l cos 2rui,ot, 

2w·-1 = T·o 
t,QI' '· ' 

the equations of the first variation become 

(13.43) 

where primes denote differentiation with respect to 7:;,0 , corresponding 
super- and subscripts must be used, and 

(13.44) 

i,O _ 1 [ 1 (P(N) ± Q(N))] 61,2 - - -2- -2 t,O i,O • 
4ro·o •• 

or, combining them, 

(13.45) 
·o l ·o 

~~,2 = - 2 ( p(L) ± Q<Ll) + ei.2· 
4ro·o •• 

In (13.44) and (13.45), the + signs are used with the subscript 1, and the 
- signs with the subscript 2. 

Evidently then, (13.43) represents four equations, those for two modes, 
and two equations for each mode. As in the earlier example, one of the 
two equations in each mode defines points in the Strutt chart which lie always 
on the boundary between stable and unstable regions of the ec5~plane. Hence, 
it is the other two equations which determine the stability; these are the 
combinations (l,o) and (2,i). 

In applying the foregoing fonnulas to the example of potential function 
(13.38) and (13.39), it is convenient to introduce the nondimensional quanti­
ties 

(13.46) .... I - ;., .I/"" · 
,, - LU'f -1' 

saa E·---X·1 · ·-. "~ ,, 
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In terms of these quantities, the parameters become,. for the i-mode, 

(13.47) 

~ . 1 + 2cxt . 
,.' = 4(1 + E,) + e,•, 

and a similar result in the o-mode. In both cases, the parameters e,6 depend 
on E; i.e., on the amplitude of the motion. 

UPPER 
HALF-PLANE a3 )Q 

I 
LOWER 
HALF -PLANE Q3 <0 

FtG. 16. Stability of in-phase mode of nonlinear, symmetric system with two 
degrees of freedom. 

The results for the i-mode are shown in Figure 16 and are as follows: 

(i) The point on the Strutt chart, deciding on the stability of the i­
mode lies on a straight line passing through the point (l,J), and intersecting 
the positive ~-axis at a point that depends on cxt only. This straight line 
is called a stability characteristic. 

(ii) The portion of the stability characteristic lying in the upper half­
plane applies ~hen a8 > 0, that in the lower half-plane when a8 < 0. 
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(ill) The location of the point on a stability characteristic is a function 
of the amplitude; it lies on the d-axis for zero amplitude, and its distance 
from the d-axis increases with amplitude. Hence, for small amplitudes, 
the point deciding on the stability lies in the neighborhood of the d-axis, 
and that neighborhood consists almost everywhere of stable points. One 
may conclude that, in general, normal mode vibrations of small amplitude 
are stable. 

UPPER 
HALF-PLANE 03>0 

t 
LOWER ~ 
HALF-PLANE o.l'-0 

FIG. 17. Stability of out-of-phase mode of nonlinear, symmetric system with two 
degrees of freedom. 

The results for the o-mode are shown in Figure 17. They differ in some 
respects from those for the i-mode. 

(i) There exist, again, straight stability characteristics. These terminate 
on a point lying on a straight line of unit slope, passing through the origin. 
The point on this line, at which the stability characteristics terminate, 
depends on exs only. Further, the stability characteristics intersect the 
positive d-axis at a point whose value depends on «1 only. Thus, know­
ledge of at1 and ata determines the stability characteristic and the amplitude 
of the motion determines the point on the stability characteristic. Items 
(ii) and (iii), listed above for the i-mode also apply to the o-mode. From 
these results, knowledge of oc1• oea. a3 and the amplitude of the motion permits 
the determination of its stability. 
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5. Nonsimi.lar Normal-Mode Vibrations [8]. 

We shall consider here the stability of a nonsimilar nonnal-mode vi­
bration of an autonomous system that neighbors on a parent system of 
potential function 

(13.48) 

of equations of motion 

(13.49) (i=l, ... ,n) 

and having a similar normal-mode vibration 

(13.50) (i = 1, ... ,n). 

Let the perturbed system have the admissible potential function 

(13.51) 0 = U{.x1,. •• ,x.) + ew(x1,. •• ,.x,.), (jel ~ IUI). 
The equations of motion of the perturbed system are 

(13.52) (i = I, ... ,n}, 

and it has been shown in a previous section that this system has a normal­
mode vibration (in general nonsimilar) of the fonn 

(13.53) .X,(t) = x•*(t) + sE;(t) + ... , (i == 1, ... ,n), 

Then, one can easily demonstrate [8]. 

Theorem XIII-III: The stability of the normal-mode vibration (13.53) 
of the perturbed system is the same as the stability of the similar normal-mode 
vibration (13.50) of the parent system. 

For the proof, one forms the equations of the first variation of (13.52) 
with respect to the solution (13.53). It turns out that these are precisely 
the same equations as those of the first variation of the equations of motion 
of the parent system with respect to the solutions (13.60). which proves the 
theorem. Hence. if the variational equations of the parent system can be 
decoupled. the stability problem of normal-mode vibrations of neighboring 
systems is solved. 

6. Forced Vibrations 

In general, the variational equations of the equations pf motion with 
respect to a vibration-in-unison cannot be decoupled, even when the tra­
jectories of the motion in configuration space are straight. In these cases, 
Hsu has developed criteria for determining the stability [43, 44]; his results 
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are based on the application of the method of Strubel [39] in a slightly 
modified form. A comprehensible summary of Hsu's methods and results 
is too lengthy to be reproduced here. However, we shall apply his method 
to a particular case of steady-state forced vibrations in which the variational 
equations cannot be decoupled; this example is due to Kinney [12]. 

We consider the nonautonomous, admissible system 

(13.54) 

where 

(13.M) 

and 

(13.56) 

(j = 2, ... ,n), 

0 = U(x., ...• x,.) + m/J(x., . .. ,x,.), 

is a negative quadratic form. In other words, the parent system is a linear 
admissible, nonautonomous system in which the mass "'' is subjected to 
periodic forcing of period 

(13.57) T= 2nfw. 

We tnqurre whether a vibration-in-unison of the perturbed system, 
given by 

(13.58) Xi= x•*(t), (i = I, ... ,n) 

is stable. 
The equations of the first variation of (13.54) with respect to (13.68) 

are 

(13.59) .. " [( a•u )* ( at,p )*] :, = ~ +e z;, 
~-t a~a~ ~~a~ 

(i=l, ... ,n), 

where use was made of notation (13.33) with respect to the second deriv­
atives of U and cp. Since .u is a quadratic form, the a1Ufax.ax~ are constants 
for all i and k. 

We write (13.59) in the matrix form 

(13.60) z + [B0 + sB(t)]: = 0 

where z is a column matrix, B0 is a constant square matrix, 

s 
(13.61) B(t) = ~ B, cos swt, 

·- 1.2 •. .• 

and the B, are constant square matrices. 
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It will be noticed that, here, we have not made the assumption that the 
solutions (13.58) are to be treated as simple harmonic for purposes of a 
stability analysis. In fact, that assumption is unnecessary here because the 
approach through Mathieu equations is not used. 

It is now supposed that B0 and the B, do not satisfy Hsu's criterion 
[40] and that, in consequence, (13.59) cannot be decoupled. 

We introduce the transformation 

{13.62) z= TE 

which is such that T is a constant matrix that diagonalizes B0• Under 
it, (13.60) goes over into a matrix equation of the form 

(13.63) E + (n + e ± Ds cos swt) E = 0 
•-1 

where n is a diagonal matrix with elements 

(13.64) 

and the 

(13.65) 

are constant matrices. 

(s = 1, ... ,S) 

Then, Hsu's results show that instability occurs when, and only when, 
the following inequalities are satisfied: 

(13.66) e1 (d~l) 2 
[sw- (2wk)] 2< -4 2 ' 

Wk 

e1 ar)a}~ 
[sw - {w;- w~)] 1 < -- 1 

• 
4 W~t.Wf 

Now, the functional relation between the frequency roof the exciting func­
tion and the amplitude X1 of x1•(t) is known. Hence, the inequalities (13.66) 
determine the amplitudes X1 (if any) for which the motion is unstable. 

Kinney [12] has applied this theory to the weakly nonlinear problem 
of the dynamic vibration absorber. The analysis is too detailed and tedious 
to be reproduced here because of the involved form of the matrix elements 
dW. His result for that problem is: 

The portions of the response curves (in the frequency-amplitude planes) 
which have negative slope correspond to unstable motion. AU other portions 
of these curves correspond to stable motion. 
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APPENDIX 

On the Existence of Simple Trajectories in Admissible n-Degree-of-Freedom 
Systems* 

In this appendix we employ 
Definition A-I: An integral of the autonomous system H (3.3) or of the 
system M (3.12) is said to be a simple trajectory in configuration space if 
and only if: 

(i) it passes through the origin ; 
(ii) it reaches the bounding, or maximum equipotential surface (5.8); 

(iii) it has no tangency with any equipotential surface (5.12) except at 
the origin and the bounding surface. 

The last restriction was not imposed by Kuo [18] who introduced the 
concept of the simple trajectory. But the lack of tangency with any equi­
potential surfaces U + h* = 0, 0 < h* < h is a property of modal lines. 
In fact, every modal line is a simple trajectory, and every simple trajectory 
which satisfies (i) to (iii) as well as 

dxt ~ O, (. 1 ) 
dxl ~ ~ = , , .. ,n 

for all x1, is a modal line. 

With the above definition we prove in this appendix the central 

Theorem A-1: Every admissible autonomous system possesses at least 
one simple trajectory. 

Before presenting the proof of this theorem it may be helpful to sketch 
its essential ideas; these are very similar to those used in the two-dimensional 
problem [19]. 

We consider trajectories in configuration space which p~ss through (or 
issue from) a point P 0 on the bounding surface; such trajectories are called 
T -curves. We then demonstrate that every T-curve passes through an 
infinity of isolated distinct points Qt(i = 1,2, ... )~ corresponding to con­
figurations of stationary potential energy with respect to neighboring 
points on T. The corresponding levels of potential energy are denoted by 
h; 1 and the transit times through the Q; by t1 . We show, further, that the 
t; and h; are uniquely determined by the initial point P 0 1 and both are 
differentiable with respect to P 0 • Next, we demonstrate that there exists 
at least one T = T*, issuing from a point P 0* for which the ordered 
Q,(i = 1,21 ... ) lie alternately at the origin and at P 0*. Finally, we show 
that T* satisfies condition (iii) above; this completes the proof. 

• This appendix is based in large part on work by J. K. Kuo [18] and by 
c. H. PAK. 
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We use the following notation: 

q = (q1, ... ,q,.) is an n-dimensional physical displacement vector; 

q = (q2, ••• ,q,.) is an n-dimensional physical velocity vector; 
.. 

K = l/2 .E m,q ,• is the kinetic energy of the physical system; 
s=t 

-a=- O(q) 

h=K-0 
• 

J?U = grad U 

is the potential energy stored in the springs; 

is the total energy of the physical system; 

is an n-dimensional vector. 

We assume that 0 satisfies the following conditions, called "admissibility 
conditions'': 

(i) O(q) = 0(- q) is of class ea; 

(ii) -0 is positive definite; 

(iii) ro = o only at q = 0. 

(iv) Trajectories are the vectors q(t) which satisfy the equations of 
motion, 

(A. I) ffl;ij; = ~~ O(q), (i = 1, ... ·") 

where the m, are real, positive constants. The equations of motion transform 
under 

(A.2) 

into 

or, in vector notation, 

(A.3) 

x. = aa U(x) = u,, 
Xi 

i =flU. 

With Kuo [18], we transform (A.3) into the system of 2" first-order equations 

(A.4) 

where 
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Since the system is admissible, the functions /i are of class C1• or the J acobian 
J is continuous, where 

(A.IS) ]= 
of~~ of~~ 
oy1 ay215 

In consequence, (A.4) has a unique solution under specified initial conditions: 
y = Y when t = T; that solution is 

(A.6) y = y(t,T, Y), - oo< t< + oo. 

Conversely, if the initial condition Y = y at T = t is given, one has uniquely 

(A.7) y = Y(T,t,y), - oo<T< + oo. 

Finally, since ] is of class C1, the functions y and Y in (A.6) and (A. 7) are 
once differentiable with respect to all arguments. If one regards (A.6) as 
a mapping which, for fixed t, maps the initial point Y onto y, and (A.7) 
as the inverse of this mapping, one notes that this mapping and its inverse 
are continuous, or (A.4) is a topological mapping in the phase space. Clearly, 
the energy integral of (A.4) exists and is 

(A.S) 

where !I 11 denotes the Euclidean distance function, h ~ 0 is the total 
energy of the system, and it is bounded. The configuration of maximum 
potential energy is 

(A.9) 

This is the maximum equipotential surface and it is the bounding surface 
for all possible trajectories of admissible systems (Theorem V-II). 

All trajectories satisfy 

Lemma A- I: No integral curve of (A.4) terminates at a point. 

Lemma A-Il: If an integral curve of (A.4) passes through (X,X) at t = 0 
and it reaches the bounding surface at t = t0 , then it passes through (X,- X) 
att=2t0 • 

The proofs of these lemmas are simple and will only be indicated. To 
prove the first, one supposes to the contrary that a trajectory does tenninate 
at a point x when t = To • Then, for all t > t:0 , i = x = . . . = 0. But, 
when i = 0, the configuration is that of maximum potential energy, and 
when i = 0, xis at the origin. Since the origin does not lie on the bounding 
surface under our admissibility condition, Lemma A-1 is true. 
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For proof of the second lemma one need only observe that trajectories 
which attain the bounding surface intercept that surface orthogonally 
(Theorem V-V). Hence, the initial conditions (position and slope) are 
defined; then, in view of the uniqueness of (A.6), the trajectory must retrace 
itself. 

It is now convenient to rewrite the energy integral in terms of the initial 
energy when the initial point is not on the bounding surface: 

(A.IO) - U(x) + tllxll 2 =- U(X) + liiXII' 
where x and x as functions of the initial values X and X are given in ·(A.6) 
because y and Y correspond, respectively. to (x,x) and (X,X). Differentia­
ting (A.IO) with respect to X and X, we have: 

ox1 ox,. ax1 ax,. 
--

au au --- ---ax1 ax1 ax1 ax1 ax1 ax1 

ax1 ox,. ax1 ax, au au -- ---ax,. ax. ax. ax,. 
(A.ll) 

ax1 ox,. ax1 oxn 
ax1 ax1 ax1 ax-; 

DXn ax,. 
-

x .. tl 1 

axt ax,. a.x1 ax,. 
ax" ax,. a;t,. ax" 

We shall denote by A(t) the 2n x 2n matrix on the left-hand side of (A.ll), or 

ax1 ax,. 
ax1 ax1 

(A.l2) A(t) = 
axl ax,. 

""ff. ax,. 
and we shall demonstrate the existence and regularity of A (t), because these 
are essential for the proof of the central theorem. For instance, the transpose 
A • may be found from 

(A.l3) dA *(t) = J(x)A •(t) 
dt 

with the initial condition A *(0) = I where I is the identity matrix. Since 
] is of class C1, the existence, uniqueness. and continuity of A(t) is assured. 
But J is a function of the configuration x; hence the solution of (A.l3) 
depends on the initial configuration X, and we write it as 
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(A.l4) A= A(t,X). 

Let us consider A as a mapping in the phase space which, for fixed t and X 
maps the point (- vu:x) onto the initial point (- 170 U,X) where 170U 
denotes grad U at X. Then, A has the important property, formulated in 

Lemma A-Ill: For fixed t and X, the mapping A is volume-preserving; 
i.e., the determinant of A is unity. Consequently, a unique inverse of A exists. 

To prove this lemma, we make use of the jacobi-Liouville formula 

t 

(A.l5) det lA *(t) I = exp f tr J(s) ds 
0 

where 1 is defined in (A.5), and tr 1 denotes the trace of 1· Now, the elements 
in the main diagonal of J are all zero. Therefore, det A is unity and the 
inverse A - 1 exists. Thus, we may write (A.ll) as 

(A.l6) [- VU] r- 170 U] i =A -l(t) ~ , 

and A - 1 is a one-to-one mapping in the phase space which maps the point 
(- 170 U,X), for fixed t and X, onto a point (- VU,i). 

In the following, we shall ouly consider trajectories originating from an 
initial point P0 lying on the bounding surface; i.e., at x = X, i = 0. These 
are called T-curves (see Section VII.2); they correspond to motions with 
a rest-point. We shall now prove 

Theorem A-ll: Along every T-curoe there is a countable infinity of 
isolated points Q1 ,Q2 , • •• , at which the configuration is one of stationary 
potential energy with respect to points on T neighboring on Q1 ,Q9 ,., • • 

The proof of this theorem is lengthy, and we shall only sketch it. At 
every Q; ,(f = 1,2, o o.) one has 

(A.l7) au = 0 at 

and the theorem holds if (Ao17) has a countable infinity of isolated t1 , 

(i = 1,2 •... ). 

First, we note that (A.l7) may be rewritten in the form 

(A.18) 
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which shows that the gradient flU is orthogonal to the velocity vector i 
at all Q1 or.- at the Q;, the velocity vector lies in a tangent plane {actually 
the intersection of the tangent surfaces) to an equipotential surface. 

Now, T-curves are either tangent to equipotential surfaces at finite times 
t1 or, if they are not, they tend to an equipotential surface as t -+ oc. To prove 
Theorem A-Il, we need only show that the latter cannot arise. We suppose 
that a trajectory (not necessarily a T-curve) lies in an equipotential surface. 
Such a trajectory either is a closed orbit, or it tends asymptotically and 
monotonically to a closed orbit. This latter is true because the transversals 
(see VII-I) are, by definition, orthogonal to the equipotential surfaces; 
thus, no trajectory, lying in an equipotential surface, can have curvature 
components in a tangent plane (as above) to that surface. 

Next, we observe that, if there exists a closed trajectory in an equi­
potential surface, it must lie in a two-dimensional plane which contains 
the origin. This is true because such an orbit must be symmetric with 
respect to the origin by virtue of Theorem V-III. Thus, if a T-curve tends 
to a closed orbit which lies in an equipotential surface it will, after a finite 
time, have a position and slope which differs from that of the closed orbit 
by as little as we please. Since that T-curve satisfies the system M of (3.12), 
the closed orbit must satisfy (3.12) within O(e). But it can be shown that 
the only two-dimensional orbit lying in an equipotential surface which 
satisfies (3.12) is a circle. That demonstration is based on the observation 
that !!x[J8 = const for any trajectory in an equipotential surface. Finally, 
we show that equipotential surfaces of admissible systems do not contain 
circles in a plane containing the origin, because such equipotential surfaces 
occur only in systems which are not elastically coupled throughout; i.e~, 
which satisfy (2.4). Thus, no trajectory satisfying (3.12) can be asymptotic 
to an equipotential surface; consequently, we have proved that iJUfiJt 
vanishes for bounded t1 • By the same arguments as above, no arc of finite 
length of a trajectory can coincide with an equipotential surface because, 
if it did, the arc would have to be that of a circle about the origin. and no 
equipotential surface contains such arcs. This proves Theorem A-11. 

Let us denote by h; the energy levels of the Q1 , and let us write 

(A.I9) t; = t;(X) 

because it has been shown that the t; depend on the initial point X. 
We wish to show that every h1 is continuous and differentiable with 

r~pect to the initial point X. The differential of U is 

.. 
{A.20) dU = U,rlt + ~ Ux dX« 

«-1 ex 

for variations in transit time through a given energy level. and for variations 
in the initial point. The existence of this differential is assured by the prop-
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erties of U and the uniqueness of (A.6) . Consider now one of the h;. say h,. 

Its differential is the same as (A.20) except that U, = 0 by definition. 
Hence, 

(A.21) 

Thus, the h; are continuous and differentiable with respect to the initial 
point P0(X). 

To prove the existence of a simple trajectory we extremize h;(X) subject 
to the equation of constraint 

(A.22) U(X) + h = 0. 

In other words, we determine the stationary values of the potential energy 
for a trajectory and we insure by the constraint equation (A.22) that this 
trajectory is a T-curve. Thus. we define a function 

(A.23) g(X) = h;(X) - lU(X) 

where l is a Lagrangian multiplier. Since we wish to deal here with the 
phase space we may write, instead of (A.23) 

(A.24) g(X,X) = hj(X) + 0 (.; X;2) - A [ U(X) + 1~1 X;•] 

with X = 0. Then, the necessary conditions for the extremum are 

(A.25) 
ag 

ax(J = o, 
iJg 

ax(J = o. (« = 1, ... ,n) 

and, in view of (A.21), we have at t = t1 

(A.26) 

ah1 _ ~ au a~p . 
ax(J - ,8 -t OXp ax(J 

Then, we may rewrite (A.25) as 

(A.27) [- JlU] [J70U] 
A (t; ,X) 0 = l 0 J 

where A (t,X) has been defined in (A.l2}. But, if we write (A.l6) at t = t1 
we have 

(A.28) [- vu] [- Volll 
A (t; ,X) .i = 0 j 
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or, combining the last two, 

(A.29) vu]= o. x 

But, since det A = 1, the only possible solutions to (A.27) are 

(a) 

(b) 

and 

and 

vu== 0; 

i=O. 

The first of these states that U, = 0 at the origin since flU = 0 at the origin 
only, and the second, that U, = 0 on the bounding surface because that 
surface is defined by x = 0. Hence, a T-curve T* exists which connects 
an initial point on the bounding surface with the origin. To prove Theorem 
A-1, it remains to show that the T*-curve is a simple trajectory. 

Let P0* be the initial point ofT* on the bounding surface. Let its points 
of first, second, etc. tangency with equipotential surfaces be Q1 ,Q2 , •••• 

Now, suppose that Q1 is not at the origin. Then, in view of the above 
demonstration, Q1 is on the bounding surface. In that case, T* moves at 
first toward configurations of lower potential energy and then toward 
configurations of higher potential energy. Thus, there is a point R between 
P0* and Q1 at which U, = 0. But this contradicts the fact that Q1 is the 
first point along T* where U, = 0. Hence, Q1 is at the origin. This com­
pletes the proof. 
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