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Uniqueness in the Elastic Bounce Problem, II

INTRODUCTION

In a recent paper (see [START_REF] Percivale | Uniqueness in the elastic bounce problem, J. Differential Equations, to appear. I. M. SCHATZMAN, Probkmes unilattraux d'tvolution du 2tme ordre[END_REF]) uniqueness for the elastic bounce problem has been studied in a very general framework. More precisely given T> 0 and f~ C3 (TV; W), a pair (x, U) E Lip(0, T; Rn) x L'(0, T; C'(lR')) is said to be a solution to the elastic bounce problem iff In [START_REF] Percivale | Uniqueness in the elastic bounce problem, J. Differential Equations, to appear. I. M. SCHATZMAN, Probkmes unilattraux d'tvolution du 2tme ordre[END_REF]7] it was pointed out that the Cauchy problem for (P) admits a unique solution when certain inequalities (involving the Gaussian curvature of da and the normal component with respect to aQ of U is fulfilled (see 16, Thm. 2.2]). ' When these conditions are violated, uniqueness for (P) may fail as it is shown in [7,[START_REF] Taylor | Grazing rays and reflection of singularities of solutions to wave equations[END_REF], where an example off E Cm(R2) is constructed in such a way that Sz = {x: f(x) 3 0} is convex and, as soon as one takes U = 0, the solution of the Cauchy problem for (P) is not unique.

This example shows that+ven in the absence of external forces and in two dimensions-boundaries having rapidly oscillating Gaussian curvature which vanishes at order infinity at some point may cause a loss of uniqueness.

The aim of this paper is to show that if u is assumed to be real analytic and U E 0 then these phenomena disappear and the solution to the elastic bounce problem is unique for every choice of the Cauchy data.

STATEMENT 0F THE PROBLEM

Let f: R" + R be a real analytic function such that Q(X) # 0 on the set {xElR":f(X)=O}.

w e want to study the elastic bounce problem for a material point whose position at time t will be indicated by x(t). This point moves in the region 0 = {x: f(x) >/ 0} and bounces against the boundary dQ= (x$(x)=0}.

W e s a h 11 assume that no external force is acting on the point and therefore given T> 0 we say that x E Lip(0, T; R") solves the elastic bounce problem (P) iff (i) f(x(t)) 2 0 for every t E [0, T] (ii) there exists a finite positive measure p on [0, T] such that x(t) is an extremal for the functional and sptpz {to [0, T]:f(x(t))=O} (iii) for every I,, t2 E [0, T] we have Ii'+ (t1)12= Ii'+ (t2)12?

where f, and f-respectively denote the right and left derivatives of x since i is a BV function (see [START_REF] Buttazzo | On the approximation of the elastic bounde problem on Riemannian manifolds[END_REF][START_REF] Carriero | PASCALI, 11 problema de1 rimbalzo unidimensionale[END_REF]71).

As we have seen in [START_REF] Buttazzo | On the approximation of the elastic bounde problem on Riemannian manifolds[END_REF], a function x E Lip(0, r; lRn) satisfies (i), (ii), and (iii) if and only if it satisfies (i), (iii), and the following equality

2 = pVf(x( t)) (1)
holds true in the sense of distributions and spt p E {I E [0, T] : j-(x(t)) = O}.

According to [START_REF] Buttazzo | On the approximation of the elastic bounde problem on Riemannian manifolds[END_REF] we introduce the set E = {x E Lip(0, T; W) : x solves (P)} and define the initial trace F: [0, T] x E + E43n+2 F(4 x) = (fl~W12, x(t), %(t),f(x(t)) 2

As we have seen in [START_REF] Percivale | Uniqueness in the elastic bounce problem, J. Differential Equations, to appear. I. M. SCHATZMAN, Probkmes unilattraux d'tvolution du 2tme ordre[END_REF] this set is non void and moreover we can state the following result (see [START_REF] Percivale | Uniqueness in the elastic bounce problem, J. Differential Equations, to appear. I. M. SCHATZMAN, Probkmes unilattraux d'tvolution du 2tme ordre[END_REF]):

PROPOSITION I. Let toe [0, T] and b E C4? such that f(b2) = 0 and lb312-2bl IVf(b2)14=0. Suppose that for every xeG(to, b) there exists 6 such that in (t,, t, + 6) the inequality holds true. Then there exists 0 > 0 such that the set

G(t,, b)= {x~Lip(&, t,+a):xEE, F(t,,x)=b} is a singleton.
The aim of this paper is to prove the following result:

THEOREM II. Zf f: R" + R is real analytic, then for each t, E [0, T] and for each b E B the set G( to, b) is a singleton.

In order to prove Theorem II we remark that f may be put into the form f(x) = h(x,, x2, . . . . x, _ i) -x, is a suitable neighbourhood of X E X2 with Vh(X, , . . . . 2, _ i ) = 0. Now, fixing t,, E [0, T], we may considerwithout loss of generality-only those b E g such that f(bJ = 0 and lb3j2-2 IVf(b2)l b, =0= lb312-2b,; the last equality implies that (i+(to), Vf(x(t,,))) =0 and therefore, from now on, we assume that f(b2) = 0, Vh(b,) = 0 b, = (1, 0, . . . . 0), bz = (0, 0, . . . . 0).

Moreover we put R = (x,, . . . . x,_ i) E W-*, q(x) = V,, f(x), 1= (x1, A?), V,f(x) = Y(Z) so that problem (P) can be rewritten as follows: 

PROOF OF THEOREM (II)

Let to E [0, T], b E 9, XE G(t,, b) and assume that to and b satisfy the hypothesis stated in the previous section. Moreover-by virtue of [6, Thm. 2.2]-it is no restrictive to assume that is,& (x(tO)) ii CfO) ~j(rCl)'o 1 3

and as in [START_REF] Percivale | Uniqueness in the elastic bounce problem, J. Differential Equations, to appear. I. M. SCHATZMAN, Probkmes unilattraux d'tvolution du 2tme ordre[END_REF] (see also [START_REF] Buttazzo | On the approximation of the elastic bounde problem on Riemannian manifolds[END_REF]) it is not difficult to check that the following energy-relation holds:

(

We put f(x) = h(x,, .-Z) -x,; hence when it = 2, ( Since h is real analytic we may assume that there exists an index p > 2 such that &'(~i (to)) # 0 unless h"(x,) is identically zero; in the latter case from (2') it follows f(x(t)) = 0 in a neighbourhood of to. If hP(xI (to)) > 0 then h"(x, (t)) > 0 so that j-(x(t)) is convex in a suitable [to, I, f 6) and therefore or z(t)=0 in [to, t,+6) or z(t)>0 in (to, t,+6). In both cases from [6, Lemma (2.1)] we argue the thesis.*

We claim that even in the case @"(x(t,)) < 0 the function z(t) = h(x, (t)) -x2(t) is identically zero in some neighbourhood of to.

In fact we have (choosing t,, = 0) and then, by using Holder inequality, s,; /f(s),"ds~C{tY'j~z(,,dS+ j; ds j;r"-?r(r)dTj <zct-(j; ,i(s),'dC)"2 which yields

li(t)l'= 2h"(x, ( 2 
(3)

and then Jz(t)( < 2CtP. Since ~2~ is decreasing and f, (0) = 1 we have II,/ 6 1 and then for t small enough s t Ih"'(x,)l R;z(s)ds<(l +&l(t))~xf-3j~z(s)dS (4) 0 0

Ih"(x,)l i; = 22: ~ x wYO)' fP2(1 +E2(t)), (P-2)! [START_REF] Citrini | Controesempi all' unicitA de1 moto di una corda in presenza di una parete, Atli Accad[END_REF] where .sr (t) and s2 (t) goes to zero when t + 0. From these two relations we obtain lW12 d Ih"(Xl)l a: {--i(t)+(p-2)K(t)t-1 j;z(s)ds}, where K(t)=

(1 +Er(t))(l +E2(t))-'til-2x;1 goes to 1 as t +O and therefore it is possible to choose 6 in such a way that K(t) < (p -l)( p -2) ~ ' for O<t<S. Now, the latter inequality yields (for t E (0, 6)) li(t)l'< Ih"(x,)l a: {-z(t)+(p-l)tr~Jfz(s)ds}; 0 moreover we have [z(t)1 < ctP and ~(t'~~j's(s)d~)=t-p(tz(t)-(P-l) j;z(s)d+o 0 so that t + tlpP ' so z(s) ds is decreasing and then SC, z(s) ds d 0 but z 2 0 and therefore z(t) = 0 in (0, 6); from [6, Lemma 2.11 we easily complete the proof of Theorem II in the case n = 2. We deal now with the case II > 2; to this aim it is useful to put f(x) = h(x,, 0) + (a, g(x)) -x, so that and

V-J(x) = Y'(n) = i(x1,O) + A(f)& (6')
where A(x) is a suitable (n-2)x (n-2) matrix. Now we are able to state the following LEMMA 1. Zf x E G(t,, b) then there exists Q > 0 such that I&t)1 GK I $(x1(t), 011 l%(t)l for every t E [to, to + u).

Proof

From ( 6) and ( 6 The method consists now in proving that the sign of (a, V)m(j)(x(t)) depends only on the sign of a~,h(x,, 0) in a neighbourhood of t,. To this aim we consider first the case in which g(x,, 0) goes to zero faster than h,, (xi, 0) as t --f to, which leads to ) !PI goes to zero faster than cp as t -+ t, In this case, by using Lemma 1, a direct computation shows that for every k 2 2 and t-t, small enough holds true with o(t) d c Itt,l.

By the previous equality, we may reduce ourselves to the two-dimensional case and, by using the same techniques, the proof of Theorem II can be easily achieved in this case.

In order to complete the proof, from now on we suppose that Again from Lemma 1 if 2(x,, 0) = 0 in some neighbourhood of (xi (to), 0), then i(t) z 0 in some neighbourhood of to and we fall in the two-dimensional case; therefore d(x,, 0) is assumed to be different from zero in some neighbourhood of (xi (to), 0). and it is easy to check that, when t + t,, e(t) goes to zero faster than ( ix, (x1 (t), Oh i' W,(s), 0) dP 10 > .

This fact easily implies (11).

The crucial point of the proof is the following LEMMA 3. If x E G(t,, b) then there exists A4 > 0 such that rp'M0) w 6 ii4 1 qx(q)12 +q(;(j$)xs)>l Since we have assumed /I ~0 from Lemma 2 we argue the sum on the second member is negative and this fact yields for all t sufficiently close to t, and so (17) is completely proved.

From the previous lemmas we easily obtain the following.

' 6 )

 6 f(x(t)>o in [O, T] (ii) there exists a bounded measure p > 0 on [0, T] such that x(t) is an extremal for the functional (P) F(Y)=/T {flJ;I'+ U(t, At))) nt+jTf(YuwP 0 0 and sptps {TV [0, T]:f(x(t))=O}. (iii) the function F: t + I.t(t)12 is continuous on [0, r].

  4th 01, wheref(t)=(Vf(x(t))~*~(t)-(~,Vf(~(t)))Vf(~(t)).Now,fixedt,~[0,T] and bEF({t,} xE)=LB, we set 505/90/Z-7

  (i) h(x,(t), a(t))>x,(t) for every t [0, T]. (ii) there exists a bounded measure p 20 on [0, T] such that sptps {te [0, T]:f(x(t))=O} and (P') in the sense of measures (iii) for every t, , t, E [0, T] we have \ Ii+ M2= Ii, (t2)12= 1.

  ' h"'(xl (s)) it: (s)(h(x, (s)) -x2(s)) ds. 10 (2')

  )) z(t) i:(t) -2 j-; h"'(x,(t)) x,(s) z(s) ds < C F2z(t)+ tP-' { I 1 I z(s) ds 0 * Here (5, Vjm(f)(x(f)) denotes af/(ax;l . '8x2) 5;' '52 I: a, = m.
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6 [

 6 X1(I),O)+A(X(t))P(t))~,+j'1(S)dS, (9) IO where A(s) = [xl(s) 2(x1 (s), 0) + (A(x(s)) a(s))'] a,(~). By using equality (9) we obtain 121 i IO,, O)l lktl + ci j-' P(s)l ds f0 +jt uec xl, ON Iin1 + c2 I4 + ci $I> ds, t0 where we have used that IA(x(t)l < cI and I&x(t)\ < c2. From the previous inequality we argue I$*<c, I~(~l,O)(~.i;+c, j' I$s)l'ds to for every t E [to, T]. Since t --* [ g(xl (t), 0)1*$(t)is increasing in a suitable interval to, to + cr), we can apply Gronwall's Lemma to the latter inequality and we obtain Ik(t)12<eC4c3 Ig(~~(t),O)(~i~ which is precisely (7).

LEMMA 2 .

 2 If x E G(t,, b) then there exists 6 > 0 such that < Wx(t)), 4t)> 2 0 (10) ( $ (Vx(x(t)), P(t)) 20 (11) for every t E [to, t, + S]. Proof: We prove only (11) since (10) can be proven in an analogous way. We have ( $ (W(t))), &) = (&,(x1(t), Oh jt ax1 (s), 0) dp) + e(t) 10 with lo(t)I <s(t) I b(xi (t), 0)l s:, ( g(xi (s), O)l & and e(t) --+ 0 as t -, to. By the analyticity of g we may suppose &(x1, 0) = a,x;11+ O(xT') (12)

  (13) for every t E [0, T]. Proof: From (P') we obtain dx(t))~ = Xl Wx(x(t)) and then cp(x(t))(K Y) = ji-, 1 !zq* -~,~(~(~),~(s))ds. Since if(t) f Ic?(t)12 + ii(t) = 1, setting Z(t) = j:, ((d/dt)(q!P/l)l*), i(s)) ds, we obtain +(l-Z(t))2+2(1-Z(t)) + Ii(*+i;= 1. (16) By a standard argument from (16) we obtain 2 (1 -z(t))* I+ (1 +(P*/lW~ -(l -Z(t))'-a;+ 120 which easily yields (13). We recall now that, since b, = (0, . . . . 0) and b, = (JO, . . . . 0), to say ((4tcl), wf)(xkd) = 0 is equivalent to saying that h,,,,(O, 0) =0 and therefore there exists an index p> 2 such that (dPh/&;)(O, 0) # 0 unless hx,xl (xi, 0) = 0 in some neighbourhood of (0,O); in the latter case we agree to put p = co. First we assume p < co, (8"/&;)(0,0) < 0 and as in (13) we set J&(X,) 0) = a,xy + O(xT') and m=min{mj: i=2, . . . . n -1 }; we now prove the following. LEMMA 4. Let x E G( t,, 6); then there exists z > 0 such that i;:(t)QKxl(t)*(p-lfor every t E [t,, t, + z] and for a suitable constant z-> 0. (17) Proof: Let p < 2m + 1; from Lemma 3 we have and from (6), (6'), and Lemma 1 we argue a;(t)< L(xl(t)*(~-'--m)+Xl(t)~p--lkO(t)), where u(t) goes to zero as t -+ t, and having taken p < 2m + 1 the inequality (17) holds true in a suitable interval [to, t, + z]. If p > 2m + 1, setting I 2(x1, O)l* = c?x~~ + 0(x:"') and h(x, , 0) = j?xf + 0(x;) we obtain c9 l~12-&JcK ~>lW,~)+(p IV2 <4L+> =~~{a2/?p(p-1-2(m-l))x~"~2+P+U(x~m~2+P)))(ly,~) + c?jp(xfm+p-2+ O(xf+'m-*))( !P, R).

 PROPOSITION 5.For every k > 2 we have ((4th Vk)(f)(X(N = g (x1(t), 0x1+ E(l)) 1 for all t sufficiently close to to and with E(t) -+ 0 as t -+ t,. Now by using the same techniques of the case n = 2 we easily achieve the proof of the following. Again we can prove that (a, g,,,, (x1, 0)) > 0 for tt,, small enough and by using ( 18), ( 19) from the latter equality we obtain

for all t such that tt, is sufficiently small. When p d 2m + 1 we may proceed as in the first part of Lemma 4 (which does not depend on the sign of (Ph/iYxf)(O, 0)) and we obtain i;(t)< K~,(t)~(~--l-~) (20) as t + t,. By using (20) we obtain for tto small enough ((4th V>')(f)(x(t))=h,,,,(x,, O)$(l +v(t)), where v(t) + 0 as t + t,.

DANILO PERCWALE

We have only to consider the case p = co, i.e., h(x, , 0) = 0; from ( 6) and (6') we obtain C&X) = (2, g,, (x) ) and so Lemma 1 and Lemma 3 yield when tto is small enough. But for the same t we have We have proved that when (@h/~?x;)(O, 0) > 0 or f(xi, 0) E 0 then ((4th V2U)(x(t)) 20 holds true in a suitable interval [t,, t, + q]; this fact, by applying Proposition I completes the proof of local uniqueness and so Theorem II is completely proven. 1