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STANDARD INELASTIC SHOCKS 

AND THE DYNAMICS OF UNILATERAL CONSTRAINTS 

J.J. Moreau 

Institut de Mathematiques 
Universite des Seiences et Techniques du Languedoc 

Montpellier 

I . INTRODUCTION 

This paper is devoted to mechanical systems with a finite number of 

degrees of freedom let 
I n 

q , •.• ,q denote (possibly local) coordinates 

in the configuration manifold Q . In addition to the constraints, bila-

teral and frictionless, which have permitted such a finite-dimensional 

parametrization of Q , we assume the system submitted to a finite fami-

ly of unilateral constraints whose geometrical effect is expressed by v 

inequalities 

f (q) ..;;; 0 
0. 

(I. I) 

G. Del Piero et al. (eds.), Unilateral Problems in Structural Analysis
© Springer-Verlag Wien 1985



174 J.J. Moreau 

defining a closed region L of Q . As every greek index in the sequel, 

a takes its values in the set {1,2, •.. ,v} The v functions f 
a 

are supposed c1 , with nonzero gradients, at least in some neighbor-

hood of the respective surfaces f = 0 
a 

we assume them independent of time. 

for the sake of simplicity, 

The typical instance of such a setting 1s provided by a system of 

perfectly rigid bodies which may enter into contact, and detach from 

each other, but can never interpenetrate. In view of this example, we 

shall refer to a configuration in which equality f = 0 holds, by 
Cl. 

saying that contact a takes place. But the formalism applies as well 

to the unilateral constraints realized by means of inextensible strings 

equality f 
a 

0 in that case expresses that the corresponding string 

1s taut. 

Kinematically, for every motion t + q(t) , the right-velocity 

.+ 
q if it exists at the considered instant, is an element of the n-

dimensional linear space E(q) , the tangent space to Q at the point 

q ( t) ; its components in this space are 
.i+ 
q the right-derivatives 

of the real functions 
i 

t + q (t) . If the moving point q(t) remains 

in L for every t and if the contact 

sidered instant, one immediately finds 

Therefore, if we put, for every q E L , 

J(q) {aE{l, ... ,v} f (q) 
a 

0} 

f = 0 
Cl. 

takes place at the con-

(I • 3) 
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the right-velocity vector necessarily belongs to the convex polyhedral cone 

defined in E(q) as 

V(q) {v E E(q) 
. af 

Y a. E J(q), E vl. __:;..;;; 0} 
i aql. 

( 1.4) 

in particular, this is the whole of E(q) if J(q) = ~ This set is 

usually called the tangent cone at the point q to the region L . 

Symmetrically, the left-velocity q if it exists, belongs to the 

cone -V(q) • If the proper velocity 
.+ 

q = q q exists at the consi-

dered instant, it belongs to the linear subspace V(q) n -V(q) of E(q) 

We are to study the dynamics of the system, submitted from another 

part to some given forces, under the hypothesis made explicit in Sect. 2 

that the unilateral constraints are frictionless. 

Some practical instances have long been discussed this usually 

exhibits finite successions of time intervals : when t ranges over the 

interior of each of these intervals, J(q(t)) remains a constant subset 

of {I, 2, ... , v} Let us call this a motion of finite sort. Counter-. 

examples can be produced where no motion of this sort satisfies the equa­

tions of Dynamics 1 • Practising mechanists may consider such instances 

as pathological and restriet themselves to the search of motions of finite 

sort ; even so, they will have to face two crucial questions : 

Question 1. Starting from an instant t 
0 

with q(t ) = q E L , 
0 0 

.+( ,+ E ( q t ) = q V q ) , 
0 0 0 

determine which of the contacts fa. = 0 

persist during a subsequent interval. 

Question 2. If some interval during which f (q(t)) > 0 ends at an ins­a. 
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a shock is expected to occur ; de-

termine the right-velocity 

E. Delassus showed2 that Question had been incorrectly addressed 

by his eminent predecessors. One usually begins with the tentative 

assumption that all the contacts o: E J(q ) 
0 

suchthat (1.2) holds as an 

equality persist ; this amounts to treat the corresponding constraints 

f 0 as bilateral and the associated reactions are then calculated 
Cl 

from the equations of Dynamics. If the calculation yields for one or more 

of these reactions a sign incompatible with the unilaterality of the cor-

responding constraint, the tentative assumption must be rejected and smal-

ler subsets of J(q ) have to be tried in the same way. By very simple 
0 

counter-examples, Delassus demonstrated that the contacts which cease are 

not necessarily those corresponding to conflicting signs 1n the first cal-

culation. Even the existence of some satisfactory subset of J(q ) 
0 

is a 

priori to prove, as well as its uniqueness. Delassus'arguments toward a 

correct solution seem today difficult to read ; a much clearer account of 

his ideas can be found in 3 (also annexed to the last edition of 4). 

5 6 The present author ' developed a more expedient approach to the 

same question, using convex optimization. The result may be viewed as the 

extension of the Gauss-Appell "principle of least constraint" to unilate-

ral situations. (The same idea is applied, with an infinite nurober of 

degrees of freedom, to the unilaterality of the incompressibility cons-

. . . 'd . 7,8,9 d' . h . . f . . tra1nt 1n a l1qu1 1n , papers 1scuss1ng t e 1ncept1on o cav1tat1on 

when capillary effect may be neglected). 

About Question 2, it is classical that adapting the no-friction hy-
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pothesis to the dynamics of percussions does not yield enough information 

. .+( to determ1ne q t 1) • The shock is classically called elastic if it pre-

serves energy ; adding this assumption is known to determine only 

. 10 II 
in the case of a s1ngle contact. ' However, it is widely recognized 

· today that mechanical models have not necessarily to be deterministic. 

12 13 
M. Schatzman ' has effectively studied the dynamics of a system of fi-

nite freedom with frictionless unilateral constraints and elastic shocks, 

under the convenience assumption that L consists of a convex subset of 

En her approach is based on regularization techniques. For the case 

• 14 15 
v = see also C. Buttazzo and D. Perc1vale, ' who apply the concept 

of r-convergence to the approximation of solutions. (On the other hand, 

as an example of problern with infinite freedom, numerous papers have in 

recent years been devoted to the vibrating string in the presence of an 

16 
obstacle, initially considered by L. Amerio and G. Prouse 17 ' 18 see e.g. 

Another example is provided by the longitudinal dynamics of a rectilinear 

. . 19 
bar, an end of wh1ch h1ts an obstacle ; see C. Do ). 

In contrast, the present paper rests on the recently introduced con­

cept of a standard inelastic shock, 20 essentially dissipative, whose pro-

perties are discussed in Sect. 5 below. This results (Sect. 8) in a syn-

thetic formulation of the evolution problem, which embodies in particular 

the jump conditions, in the event of a shock of the said sort, and the 

equations of dynamics for possible phases of smooth motion (considered in 

Sect. 3). The formulation may also be turned into a form in which the 

• 21 • 
sweep1ng process , plays the central role. Sect. 7 summar1zes some pro-

perties of this process which reveals itself as the basic example of evo-
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lution under unilateral and irreversible conditions, with possible jumps. 

In view of the jumps, the solutions of the process are defined as vector 

functions with locally bounded variation their time change is thus ex-

pressed in terms of vector measures, for which fundamental inequalities 

are given. The importance of right-continuity in this connection is ex­

plained. 

However, the availability of an elaborate theory for the sweeping 

process does not readily solve all questions raised by the present 

dynamical problern : the existence of solutions, possible uniqueness, ap­

proximation procedures are still under investigation. 

Assuming standard inelastic shock in calculating the motion of some 

elementary systems yields conclusions in agreement with common observation 

(a very simple example is given in Sect. 5) ; physical situations undoub­

tedly exist, where this concept gives a reasonably accurate description 

of reality. But, to the author's opinion, the main interest of the concept 

lies in the internal mathematical consistency of the resulting evolution 

problem. People facing technological applications may question such an 

attitude ; let us suggest the following answer. 

In many domains of applied science, one is dealing with physical laws 

which, although nonlinear, are smooth enough to admit some linear approxi­

mation, after what various corrections, arising from experimental data, 

may be effected in order to reach a better agreement with reality. In con­

trast, when facing such situations as unilateral mechanics (or also dry 

friction or plasticity) one has to treat highly nonlinear, in fact non 

differentiable, relations. No linear approximation may be used as a first 
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approach ; fortunately the tools of convex analysis are able to provide, 

as in the present paper, a mathematical framewerk as consistent and al­

most as simple as linear analysis ; related to it, a numerical machinery 

has been previously devised on the purpose of optimization techniques. 

The solidity of the theoretical core so constructed minimizes the risk 

of numerical and logical unconsistency when empirical corrections are 

afterwards added. 

In support to the assertion that the quest for mathematical harmony 

is more than academic decorum, let us recall how successful such an atti­

tude has been in theoretical physics, during the past century. 
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2. UNILATERAL REACTIONS 

During a time interval of smooth motion, all actions experienced by 

the system are expressed in termsof forces. In the framework of analyti-

cal dynamics that we adopt in this paper, if the configuration of the 

system is q, forces are represented as elements of E'(q) the co-

tangent space at the point q to the configuration manifold Q . For 

every possible velocity v E E(q) of the system through the said confi-

guration, the power of a force f E E'(q) is, by definition, the "scalar 

product" <V,f> , the bilinear form which places the linear spaces E(q) 

and E'(q) in duality. 

In particular, the mechanical realization of the condition f (q) .;;;;; 0 
a 

involves some force of constraint, or "reaction", R EE'(q) 
a 

we shall make the following usual assumptions : 

1° The reaction R vanishes unless f (q) = 0 i.e. 
a a 

a '1- J(q) '* R a 
0 . 

20 The possible "contact" f (q) = 0 is frictionless, i.e. 
a 

<v,Ra> is zero for every v E E(q) such that <v,Vf (q)> a 

Vf (q) E E' (q) denotes the gradient of f at the point q 
a a 

about which 

(2. 1) 

the power 

0 
' 

where 

(non-zero, 
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by hypothesis). This is knovm to be equivalent to 

3 :\ E 1R such that R a a 
- :\ Vf (q) . 

a a 
(2.2) 

3° The direction of R 1s such that the above poTver is ;;;. 0 for every a 

v directed toward the permitted region 

:\ ;;;. 0 . 
a 

f .,;:;; 0 ' a 
i.e. 

(2. 3) 

The latter involves in particular that no adhesion occurs at any pro-

per contact ; for the case of the unilateral constraint realized by means 

of some irrextensible string, it involves that the string exhibits no stif-

fness. 

Conversely, we shall suppose that every value of R E E' (q) 
a 

satis-

fying conditions (2.1), (2.2), (2.3) is feasible ; this means that the 

physical realization of the considered unilateral constraint suffers no 

strength limitation. 

Therefore, a value RE E'(q) is feasible as the sum of the reactions 

of the v unilateral constraints if and only if 

- R E N(q) , (2.4) 

where N(q) denotes the convex cone generated in E'(q) by the elements 

Vf ( q), a E J ( q) (by convention reduced to the zero of E' ( q) if a 

J(q) = c/>) 
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In view of elementary Convex Analysis, N(q) is a closed convex po-

lyhedral cone, equal to the polar cone, relative to the scalar product 

<.,.> , of the closed convex polyhedral cone V(q) defined in (1.4), 1.e. 

N(q) {r E E'(q) ~ v E V(q) , <v,r> ~ 0} (2.5) 

and symmetrically, with N and V exchanged. 

Classically, N(q) is called the outward normal cone to the region 

L of Q at the point q . 

REMARK. Let us discuss more precisely than in Sect. I the meaning of 

V(q 1) , the so-called tangent cone at some point q 1 of L . For each 

a E J(q 1) , condition <v, Vfa(q 1)> ~ 0 is indeed necessary and suffi­

cient for the existence of a motion t ~ q(t) starting from q 1 with v 

as initial right-velocity and verifying f(q(t))~O 
a. 

in the sequel. But 

the following counter-example show that, some element v being chosen in 

V(q 1) , it may prove impossible to construct a motion satisfying all con-

ditions f (q(t)) ~ 0 together. 
a. 

Take n = 3 , with three inequalities 

f I (q) 
I 
~0 - -q 

f2(q) 
I 2 3 - q - q q ~ 0 

f/q) 
2 q3 ~ 0 - -q 

For ql (0,0,0) 
' 

one has J(q I) {1,2,3} 

(2.6 

(2. 7) 

(2.8) 

and 
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I 2 3 V(q 1) = {v = (v ,v ,v ) I 
V 

2 3 0 , V +V ;;,. 0} (2.9) 

Every motion t ~ q(t) starting from q 1 at time 0 , with right-

velocity v = (0,2,-1) E V(q 1) yields for t > 0 

2 
q ( t) 2t + o(t) - t + 0 ( t) . 

Hence 
2 3 2 2 q (t)q (t) = - 2t + o(t ) is negative in some right-neighborhood 

of zero ; this contradicts inequalities (2.6),(2.7) . 

The following additional regularity assumption is known to secure 

equivalence between v E V(q) and the existence of a motion 1n L , 

starting from q with V as initial right-velocity (cf. 22 ; in Optimi-

zation Theory, this is called a "qualification" condition) : 

interior V(q) * ~ (2. I 0) 

By classical Convex Analysis, this in turn is found equivalent to the 

existence of a compact base for the polar cone N(q) of V(q) , 1.e. 

there exists in E'(q) a hyperplane, not cantairring the origin, which 

intersects all the half-lines generated by the llf (q) ' a a E J (q) (this 

1s understood to hold, trivially, if J(q) = ~) 

The above counter-example leads to question the generality of the 

so-called Principle of Fourier. This asserts that an element R of 

E' (q) is a feasible value for the total reaction if and only if 

<oq,R> ;;;. 0 for every "virtual displacement" (this is another word for 
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the velocity of an imagined motion) starting from q and directed into 

the permitted region L. If condition (2.10) is satisfied, this pro­

perty is indeed equivalent to (2 .. 4). Examining the region L of lR_J de-

fined by (2.6),(2.7),(2.8), which does not verify conditi_on (2.10) at 

the point q 1 = (0,0,0), throws some light on the situation. The subset 

defined by v 1 = 0 , 2 
V ~ 0 , 3 v ~ 0 might be more legi-

timately interpreted as the tangent cone to L at q1 . Whether every 

element of its polar cone W0 , larger than N(q 1) is a feasible value 

of the total reaction of the supposedly frictionless unilateral cons-

traints appears as a mechanically irrelevant question. The tangent planes 

at to the smooth boundaries defined by equations 

f 3 = 0 make zero angles. This allows for q , considered as a material 

point, to be "pinched" between these boundaries in the position q 1 

so infinitely large values of the normal components of the boundary reac-

tions may arise as a response to some moderate driving force acting on q. 

Under such circumstances, however small may be the friction coefficient 

between q and the boundaries, friction cannot be neglected. 

Points at which (2.10) is not satisfied arenot necessarily isolated: 

for instance, in ~3 , some boundaries may meet at zero angle all along 

a curve. The discussion of would-be frictionless bilateral constraints 

in classical Analytical Mechanics exhibits similar "pathological" situa­

tions ; see e.g. II, Sect. 9.2.b. 



Dynamics of Unilateral Constraints 185 

3. DYNAMICAL EQUATIONS OF SHOCKLESS MOTION 

In addition to the reactions of constraints, the system is supposed 

to experience some configuration-dependent forces, represented, in our 

setting of analytical dynamics, by giving the coefficients Q. 
1 

of the 

differential form "virtual work" of this system of forces, as continuous 

functions of I n 
(q , ••• ,q) this amounts to define, on the manifold Q, 

a continuous field of covectors, say q ~ Q(q) E E'(q) , possibly depen-

dent also on time. 

On the other hand, the expression T(q,q) of the kinetic energy is 

given ; for simplicity' s sake we restriet ourselves in this paper to the 

scleronomic case, implying that T does not contain t as independent 

variable and is a quadratic form relatively to q E E(q) 

Then the system of Lagrange equations for every smooth motion writes 

down as 

p Q + R (3. I) 

where P denotes, as classical, the element of E'(q) whose components, 

relative to the chosen parametrization of Q are 
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d aT aT 
Pi = dt "q.i - -. 

a a q~ 
(3.2) 

Eliminating R through (2.4), we give (3.1) the form of a second order 

differential inclusion 

Q(t,q(t)) - P(q(t),q(t),q(t)) E N(q(t)) . (3.3) 

By a solution of (3.3) over some, possibly unbounded, time interval 

I , we mean a differentiable motion t ~ q(t) such that the n deriva­

tives t ~ qi(t) are absolutely continuous functions on every compact 

subinterval of I , with derivatives t ~ qi(t) satisfying (3.3) up to 

the possible exception of a Lebesgue-negligible subset of I If I 

possesses an origin 

the right-derivatives 

t 
0 

and contains it, this implies the existence of 

qi+ (t ) 
0 

and makes the ini tial condi tions q ( t ) = q 
0 0 

If we put the natural convention 

N(q) for q cF L (3.4) 

the requirement q(t) E L for every t ~n I is involved in (3.3). 

We shall prove now that every solution of (3.3) in the above sense, 

actually satisfies a somewhat stronger differential inclusion. 

The assumptions made imply that the velocity q E E(q) exists for 

every t in the interior of I since the motion t ~ q(t) takes pla-

ce in the region L , i t has been observed in Sect. I that q E V(q)n-V(q). 
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In view of (2.5), we conclude that, for every t in the interior of I 

and such that (3.3) holds, one has 

<q, Q-P> 0 . (3.5) 

For every subset A of a linear space, we shall denote by ~A or 

~(A,.) the indicator function of A, i.e. 

~(A, x) 0 if X E A , +oo if X ~ A . 

This function is convex (resp. lower semi-continuous) if and only if the 

set A is convex (resp. closed). Fora pair of mutually polar convex co­

nes, such as V(q) and N(q) above, the respective indicators ~(V,.) 

and ~(N,.) are known to constitute a pair of Fenchel conjugate functions. 

Now, (3.3) means that ~(N(q),Q-P) = 0 Then, in view of (3.5) and of 

the fact that q E V(q) , one has, for almost every t in I , the 

equality 

~(V(q),q) + ~(N(q),Q-P) - <q,Q-P> 0 , 

expressing that q in E(q) and Q-P in E'(q) are conjugate points 

relative to the above pair of conjugate functions. This in turn is known 

to be equivalent to 

Q(t,q)- P(q,q,q) E a~(V(q),q) , (3.6) 
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where the subdifferential a$(V(q),q) classically equals the outward nor­

mal cone at the point q to the closed convex set V(q) . This normal 

cone is essentially a subset of N(q) here again, convention (3.4) 

makes that q(t) E L is involved in (3.6) . 

REMARK. The dynamics of supposedly shockless motions in the presence of 

scleronomic frictionless unilateral constraints, as developed here, exhi­

bits the same reversibility in time as the traditional bilaterally cons­

trained case. In fact the above reasoning could also· yield symmetrically 

Q(t,q) - P(q,q,q) E -a$(-V(q) ,q) • (3. 7) 

On the other band, (3.5) expresses that the total reaction RE E'(q) 

develops a zero power in the actual motion. The assumptions made imply 

that the function t ~ T(q(t),q(t)) is absolutely continuous on every 

compact subinterval of I , hence differentiable almost everywhere. A 

classical calculation, based on the fact that T(q,q) is a quadratic 

form in its second argument, yields the "energy equation" 

:t T(q(t),q(t)) <q(t),Q(t,q(t))> . (3.8) 

It permits to establish a priori bounds of q for supposed solutions of 

the initial value problem. This equation is specially useful when the 

field of covectors q ~ Q(t,q) derives from a time-independent potential 

function q ~ W(q), i.e. Q(q) = -VW(q) then it comes that 

T(q,cj) + W(q) is a constant of the motion this is the familiar conser-

vation property of the total energy. 
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4. SHOCK DYNAMICS 

If an interval of smooth motion ends at some instant t such that 
s 

the left-velocity <i (t ) ' s 
more shortly denoted by does not be-

long to V(q8 ) , q8 = q(t8 ) , a shock necessarily occurs. Classically, 

by integrating the Lagrange equation (3.1} over the "infinitely short" 

duration of this shock, one obtains 

II • (4. 1) 

Here and respectively denote the right and left limits at time 

t of the momentum 
s 

p = ~~E E'(q). 

The percussion of constraint IIEE'(q) 
s 

(4.2) 

is introduced as the integral, 

over the shock duration, of the "infinitely large" reaction R(t) as 

this reaction is supposed to satisfy (2.4) with N(q) = N(q.) , a closed 
s 

convex cone which does not vary during the shock, one has 

-II E N(q ) 
s (4. 3) 
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(a discussion of this argument may be found in 11 , Sect. 9.7.c, Remarque). 

On the other hand, the kinematical condition 

.+ E V(q ) qs s (4. 4) 

holds as before. 

Even in the special case of a single contact, i.e. J(q ) 
s 

consisting 

10 11 
of a singleton, conditions (4.1), (4.3) and (4.4) are well known ' to 

bring insufficient information to derive from the data and q . 
s 

The parametrization (qi) of the configuration manifold is supposed 

kinetically regular,_ in the sense that the quadratic form defined on each 

tangent space E(q) by 

(with 

E(q) 

V --> 2T(q,v) E 
i,j 

a .. a .. ) is 
1] ]1 

with a Euclidean 

the squared norm llvll 2 

positive definite. Let us equip 

structure by taking 2T(q,v) 

Equivalently, the Euclidean 

two elements v and w of E(q) is expressed by 

v.w E 
i,j 

the linear space 

as the definition of 

scalar product of 

(4.5) 

For geometrical and notational simplicity, we shall perform the clas-

sical trick of using this Euclidean structure of the linear space E(q) 

in order to identify it with its dual space E'(q) From the standpoint 

of calculation, this means the following : to each choice of a parametri-
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zation (qi) of the manifold Q corresponds a base in the tangent space 

E(q) , say (e.) , 
1 

i=l, ... ,n. The derivatives qi of the functions 

i t ~ q (t) representing some motion constitute, as before, the components 

relative to this base of the velocity vector q On the other band, in 

view of (4.5), the expressions 

( ) • j 
E a .. q q 
j 1J 

equal the covariant components of the same element q of E(q) relative 

to the said base, i.e. the respective scalar products q.e. 
1 

The identi-

fication trick amounts to dec1aring that the element q of E(q) and the 

element p of E'(q) constitute the same object. 

Similarly, the partial derivatives af /aqi are interpreted as the 
a 

covariant components of the gradient Vf (q) , 
a 

now considered as an ele-

ment of the Euclidean linear space E(q) We continue to denote by N(q) 

the convex cone generated by the 'Vf ( q) a E J(q) this is now a 
a 

closed convex polyhedral cone in E(q) , actually the polar cone of V(q) 

since (2.5) still holds with <v,r> equal to the Euclidean scalar product 

v.r. 

In view of the above identification, (4.1) takes on the form 

TI , (4.6) 

while (4.3) and (4.4) stay unchanged. 

The shock is traditionally called elastic if it preserves energy, 
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that is, in terms of the Euclidean norm of E(qs) , 

(4.7) 

In the special case where J(q) reduces to a singleton, say J(q) = {1}, 

conditions (4.3), (4.4), (4.6) and (4.7) are found, by elementary geome-

try, equivalent to : the vector equals the mirror image of the vec-

tor relative to the hyperplane of E(q ) 
s 

with normal 

On the other band, for the same special case J(q) = {1}, the 

shock is called soft or inelastic if, instead of (4.7), one has 

q+.'Vf1(q) 
s s 

0 • (4.8) 

We propose, in the Section to come, a generalization of the latter. 
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5. STANDARD INELASTIC SHOCK 

Let us first recall a few facts of elementary convex analysis in a 

Euclidean linear space E (also valid in an infinite-dimensional real 

Hilbert space). For every nonempty closed convex subset C of E , eve-

ry point z of E possesses a unique proximal point in C , denoted 

here by prox(C,z) 
23 . 24 

Then (cf. or, for more general1ty, ) the fol-

lowing non-linear generalization of the classical decomposition of E 

into the sum of orthogonal subspaces holds : 

LEMMA OF THE TWO CONES. If V, N denote a pair of mutually polar closed 

convex cones in E and if x, y, z are three points of E , assertions 

i) and ii) below are equivalent 

i) x = prox (V, z) , y = prox (N, z) 

ii) z = X + y , X E V , y E N , . x.y 0 . 

COROLLARY 

x = prox (V, z) ~ z - x prox (N, z) . 

20 
Using again the setting of Sect. 4, let us propose 

DEFINITION. The shock at time t is said standard inelastic if the three 
s 

following conditions, equivalent in view of (4.3), (4.4), (4.6), hold 
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.+ 
(V(qs),q:) (5. 1) qs prox 

-rr prox (N(qs),() (5. 2) 

.+ 
rr.qs 0 (5. 3) 

Equivalence immediately results from the above Lemma, by taking 

Y = -rr . 

Condition (5.1) presents the reassuring aspect of an economy princi-

ple : among all the values of 
.+ 
qs kinematically compatible with the uni-

lateral constraints, it imposes the nearest one to q8 , in the sense of 

the kinetic metric of E(q ) . 
s 

Symmetrically, (5.2) may be written as 

II (5.4) 

Using the equations of the dynamics of percussions under the form (4. 6)' 

one sees that -qs equals the percussion which should be apElied to the 

in order to obtain 
.+ = 0 Then (5 .4) that, in the system qs expresses 

set of the values of II permitted by the law (4.3) of frictionless uni-

faterality, the actual solution consists in the nearest point to this 

stopping percussion. 

Concerning condition (5.3), one gives it in v~ew of (4.6) the equi-

valent form 

- _!_ llq.-- .+11 2 
2 s qs (5.5) 



Dynamics of Unilateral Constraints 195 

This displays a loss of kinetic energy : the process described by the 

above definition is essentially dissipative. Observe that (5.3) holds in 

particular if 
.+ 
qs happens to be kinematically consistent with the perma-

nence of all the contacts f 
Cl 0 ' a. E J(q ) 

s 
Hence (5.5) may be 

viewed as a generalization of a classical theorem of Carnot, pertaining 

to the sudden introduction of persistent, bilateral, constraints. II 

In that connection, when the cone V(q ) 
s 

is given, the mapping 

qs -+-TI defined by (5. 2) appears as a relation between some "velocity" 

and some "force" of the form currently called a standard dissipative pro-

25 26 cess ' ; in fact this mapping equals the gradient of some convex func-

tion, namely v-+ (dist(v,V )) 2/2 
s 

EXAMPLE. Let the system consist of a single particle moving in some ver-

tical piane, with 
I 2 

(q 'q ) as orthonormal Cartesian Coordinates, the 2 
q 

axis vertical and oriented upward. Fixed frictionless boundaries are assu-

med to impose 

2 
q ;;;. 0 

with 8 given 1n 

I 2 q cos 8 + q sin 8 ~ 0 

1 -~+1![ 2' 2 . 

A phase of motion : 

t < 0 ' wt , 0 

(w > 0 constant) ends with a shock at time t 
s 

the left-velocity q- = (w,O) 
s 

does not belong to 

0 ' (0,0) ' since 
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V(q ) 
s 

2 
{v E :R 

J.J. Moreau 

2 o 1 e 2. o} V ;;;;. , V COS + V S1n 9 ".;; • 

Here the kinetic norm coincides with the natural Euclidean norm of the 

plane. Using (5.1) to determine leads to distinguish between two 

cases. 

L 

0(') 

"'" 0. .+ 
q 

q_<_t_> _< t_<_o>.._ __ , ••••• ~ ••••• ._. <i: 
(0,0) 

case 

L 

q(t)(t<O) 

6> ,, 

case 2 

Case 1 : - ~ < e < 0 • The subsequent motion takes place on the ascen­

dent boundary line, with initial velocity : 

.+ ( . 2 . ) q8 w s1n e , -w s1n e cos e . 

Case 2 

REMARK. 

o ".;; e <.:!!. 
2 

Minimizing •over 

The subsequent motion is rest. 

V(q ) s the distance to is the same as mini-

mizing the square of this distance ; hence the determination of from 

(5.1) constitutes a problern of "quadratic programming". Let us only obser-

ve that the base (e.) in E(q ) corresponding to some parametrization 
1 s 

(qi) of Q has no reason to be orthonormal relatively to the Euclidean 
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structure precedingly defined ; in fact (4.5) shall be used to express 

the squared norm •. Symmetrically, (5. 2) makes the determination of !I a 

problern of quadratic programming however it should be kept in mind that 

the elements Vf (q ), a E J(q) , generating the 
a s s 

N(q ) possess the respective partial derivatives 
s 

components relative to the above base, i.e. such a 

scalar product of by the base vector e. 
1 

convex polyhedral cone 
()f 
~(q ) as covariant 
()q1 s 

derivative equals the 

If calculations are 

to be performed by using this sort of components, recall that, for a pair 

of vectors v , w with covariant components vi , wj , 

duct is expressed by 

v.w L a ij v. w. 
i,j 1 J 

where a ij is the inverse matrix of a .. 
1J 

the scalar pro-
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6. DIFFERENTIAL MEASURES 

Let I denote a real interval ; for brevity, we shall restriet the 

sequel to the case where I is open on the right, possibly unbounded, 

but 1S closed on the left, with origin t A funct'ion f of I into 
0 

a real Banach space X is said to have a locall;t bounded variation if it 

has a bounded variation, in the sense of the norm of X over every 

compact subinterval of I notation f E lbv(I,X) 

This classically implies the existence of a measure df on I , 

with values in X , called the differential measure of f , with the 

characteristic property that, for every compact subinterval [a,b] of I, 

I df 
[ a,b] 

(6. 1) 

The existence of the right and left limits f+ and f 1s secured by 

the bounded variation assumption ; by convention, f ( t ) 
0 

is taken 

equal to f ( t ) . 
0 

In particular, by making a = b , (6.1) yields that 

every discontinuity point of f constitutes an atom of the vector mea-

sure df , with a mass equal to the jump of f 

Incidentally for every open subset ~ of I the restriction of 

the measure df to ~ constitutes the derivative, in the sense of 
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Schwartz's distributions in Q, of the vector measure f dt (dt the 

Lebesgue measure in Q) • 

From (6.1) it ensues that, for every t EI , 

+ 
f(t ) + J df f ( t) 

0 
[ t 't] 

0 

(6.2) 

f-(t) f ( t ) + J df . 
0 

[ t 't[ 
0 

(6. 3) 

Hence, knowing the measure df only allows one to reconstruct f+ and 

f but not the actual function f this shows that the familiar pat-

tern, according to which the "differential" df determines f up to an 

additive constant can subsist in the present context only under some as-

sumption connecting f with its one-side limits. For a vast class of 

evolution problems, formulated in terms of differential measures, the 

good assumption turns out to be f = f+ i.e. f right-continuous ; 

notation f E rclbv(I,X) . This has the immediate advantage of making, 

for such an evolution problem, the initial condition f(t ) = f meaning-
o 0 

ful ; the following goes a little deeper in explaining the situation. 

Let B : X x X ~ R denote a norm-continuous bilinear form. For 

every couple f , g of elements of lbv(I,X) the function 

t ~ B(f(t),g(t)) belongs to lbv(I,E) and the following calculation 

27,28 
rules holds to express its differential measure : 

dB(f,g) B(df,g+) + B(f-,dg) 

B(df,g-) + B(f+,dg). 

(6.4) 
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Under some general definition that we shall not develop here, the symbols 

on the right-hand side represent real (signed) measures ; in usual ins-

tances, in particular when X is finite-dimensional or is a Hilbert spa-

ce, a differential measure, such as df above, possesses a density rela-

tive to some nonnegative real measure d~ , i.e. there exists a function 

I f' C l 1 (I,d~;X) such that df = f'd~ • Then the said definition is oc 

found to yield 

+ 
B(df,g ) I + B(f ,g )d~ , (6.5) 

a meaningful expression since + 
g as every element of 

locally bounded and universally measurable. 

lbv(I,X) , is 

Let us make now the additional assumptions that the bilinear form B 

is symmetric and that the quadratic form x ~ B(x,x) it generates is 

nonnegative. Then it is proved that, for every f E lbv(I,X) , the fol-

lowing inequalities hold, in the sense of the ordering of real (signed) 

measures 

+ 2B(f ,df) ~ dB(f,f) ~ 2B(f ,df) • (6.6) 

The inequality on the right explains the importance of the assumption 

+ 
f = f i.e. f E rclbv(I,X) , when "energy inequalities" for the 

considered'evolution problems are tobe derived ; see Sect. 7 below. 
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7. THE SWEEPING PROCESS 

Here is a basic evolution problern of the unilateral sort, intensive-

ly studied by the author, with the theory of elastoplastic systems as 

· · · 21 ' 25 Th. b 1 . 11 b h . h 1 pr~mary mot~vat~on. ~s pro em w~ e s own ~n t e seque to pre-

sent a close connection with the subject of this paper. 

Let be given a moving set t ~C(t) , or multifunction from the in-

terval I into some real Hilbert space H with closed convex values. 

A moving point u: I ~H is called a solution of the sweeping process 

by C if it satisfies the differential inclusion 

-Ü(t) E Cll/I(C(t),u(t)) • (7.1) 

At the first level of the theory, the time-derivative Ü(t) , i.e. the ve-

locity vector of the moving point, is defined in the elementary way and 

(7.1) is supposed to hold for every t in I If C(t) possesses a 

non-empty interior, a particularly suggestive interpretation of (7.1) may 

be given: as long as u(t) lies in this interior, the set Cll/I(C(t),u(t)), 

namely the outward normal cone to C(t) at this point, reduces to the 

zero of H then (7.1) implies that the point u stays at rest. It is 

only when caught up with by the boundary of C(t) that u takes up a 
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motion, in some inward normal direction so as to go on belanging to the 

moving set ; in fact the right-hand side of (7.1) would be empty if 

u(t) fF C(t) . 

The existence of differentiable or absolutely continuous solutions 

to (7.1) clearly requires some smoothness assumptions concerning the mo-

tion of C they can be formulated, for instance, in terms of the 

Hausdorff distance between successive positions of the moving set in H • 

At a more elaborate level, some "unilateral" rating for the evolution of 

C is put forward, sensitive only to retraction. 29 

If, on the contrary, the multifunction t ~ C(t) is discontinuous, 

jumps are expected to occur in the motion of u , so that condition (7.1) 

has ·to be given some extended meaning : 

DEFINITION. Weshall say that u: I ~H is a solution of the sweeping 

process by C in the sense of differential measures if u E rclbv(I,H) 

and if there exists (non uniquely) a nonnegative real measure d~ , with 

a vector function 1 • u' E .t1 (I,d~,H) , 
~ oc 

-u' (t) E Cllji(C(t),u(t)) 
~ 

holds for every t in I • 

such that du = u' d~ 
~ 

and that 

(7.2) 

As usual, we denote with l the non-separated topological linear 

spaces consisting of everywhere defined functions, while L refers to 

the corresponding separated spaces whose elements are equivalence classes 

of such functions. 
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Observe that (7.2) implies u(t) E C(t) for every t EI : otherwise 

the right-hand side would be empty. Instead of requiring of (7.2) tobe 

satisfied everywhere, one could equivalently except a possible d~-negli-

' 
gible subset S of I , provided the condition u(t) E C(t) is additio-

nally prescribed everywhere in I in fact the latter ensures that the 

right-hand side contains at least the zero of H , hence the latitude of 

correcting u' in 
~ 

s ' so as to finally satisfy (7.2) for every t • 

A prominent feature is that, if u complies with the above Defini-

tion, the same holds when replacing d~ by any other nonnegative real 

measure dv , relatively to which the vector measure du possesses a 

"density" 1 u' E t.1 (I,dv;H) • \) oc This easily results from the fact that 

every set a~(C(t),u(t)) is a cone use the sum d~ + dv = dß as a 

"base" measure, relatively to which d~ and dv both possess nonnegative 

density functions t 

~ ß and v' 
ß 

observe that every subset of I 

throughout which v' 
ß 

0 is dv-negligible. 

In particular, with the vector measure du it is associated the 

non-negative real measure !du I , 30 called its absolute value, and du 

possesses a density relatively to it (this is from elementary measure 

theory if H is finite-dimensional, but also holds for an arbitrary Hil-

bert space such a space is said to possess the Radon-Nikodym property). 

So d~ in the above Definition may equivalently be taken equal to idui 

Let us now give an illustration of the importance of the right-

continuity involved in the requirement u E rclbv. Let u and u de-

note two solutions of the sweeping process by C , satisfying (7.2) with 

du= u' d~ and du= Ü'- d~ respectively •. The nonnegative measures d~ 
~ ~ 
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and d~ possess nonnegative densities relatively to dß = d~ + d~ 

hence, using again the fact that every a~ is a cone, one obtains 

- u' ß(t) E a~(C(t),u(t)) 

- ~~ (t) E a~(C(t) ,~(t)) 
ß 

Classically, for every t , the multifunction x ~ a~(C(t),x) from H 

into itself is monotone therefore 

(~' ß(t) -u' ß(t)).(u(t) -u(t)) E;; o. 

The scalar product of H • denoted here by • may be taken as the bi-

linear form B in the right-hand inequality (6.6). Due to the right-

- 2 
continuity of u and u • this yields that the real measure dllu- ull 

is nonpositive. Consequently, for every pair u, u of solutions of the 

sweeping process by C , the distance II~- ull is a nonincreasing func-

tion of t this implies in particular that at most one such solution 

may agree with some initial condition u(t ) = u E C(t ) 
0 0 0 

Concerning the existence of this solution, see 21 

In the above definition of the sweeping process is involved a pre-

eise jump condition for every discontinuity point t of a solution u 
s 

In fact, at such a point, the vector measure du presents an atom of 

value 
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u(t) -u-(t) =u' (t)11 s s 11 s s 

where 11 > 0 denotes the value of the corresponding atom of d11 . Then s 

(7. 2) implies 

u-(t)- u(t) E ai}!(C(t ),u(t )) . s s s s 

Due to the classical characterization of proximal points in a Hilbert 

space, this is equivalent to 

u(t ) 
s 

prox (C(t ),u-(t) 
s s (7.3) 

This jump law is to be compared with a natural time-discretization 

procedure for approximating solutions. Le"t us start with the elementary 

formulation (7.I), involving the existence of the time derivative u. 

An increasing sequence of points 

I (u(t. ) - u(t.)) 
t. I-t. l.+I ]. 

].+ ]. 

t. is chosen in I and the vector 
]. 

is adopted as an approximant of the derivative at point ti+I of some 

approximate solution u Then replacing (7.I) by 

I (u(t.) - u(t 1.+I)) E ai}!(C(t 1.+I'u(t1.+I)) 
ti+I-ti ]. 

constitutes a discretization scheme of the implicit sort. Because (lljJ is 
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a cone, the positive factor I /t. 1 - t. may be dropped, hence equiva-
1+ l 

lently 

prox (C(t. 1),G(t.)) , 
l+ l 

(7.4) 

a relation similar to the jump condition (7.3) • In fact the above appro-

ximation procedure amounts to replace the given moving set t ~ C{t) by 

another one which moves stepwise, say t ~ C(t) , with the constant value 

C(t) = C(t.) 
l 

for every t E [ t., t. I [ 
l l+ 

The corresponding solution G 

of the sweeping process, agreeing with the initial condition G(t ) = u 
0 0 

is a right-continuous step-function whose successive values are inducti-

vely constructed by means of (7.4). This procedure may be called the 

catching-up algorithm, since the moving point u{t) , instead of being 

swept by C(t) , is left at rest during the time-interval [ti,ti+l [ , 

at the end of which it has to catch up with C (t. I) 
l+ 

by the shortest way. 

In the case of a smoothly moving set C , one obtains the uniform 

convergence of u toward the exact solution when the subdivision (t.) 
l 

is uniformely refined. 25 In the discontinuous case, the uniform approxi-

mation of u by u can visibly be expected only if one includes in the 

sequence ( t.) 
l 

the instants at which the jumps of u exceed in magnitu-

de the accepted incertainty. This is not unrealistic in the present pro-

blem, since the discontinuities of u can only occur at points of dis-

continuity of the given multifunction t ~ C(t) In view of (7.3) , 

every jump of C(t) , expressed in terms of Hausdorff distance, exceeds 

the corresponding jump of u(t) . One proves in fact a property of uni-
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form convergence relative to the set of the finite subsets of I , such 

as (t.) above, partially ordered by inclusion, i.e. the uniform conver­
~ 

gence of some directed net of step-functions. 21 

But, when tackling the approximation of discontinuous processes, 

another sort of convergence seems more promising : instead of measuring 

the distance between u and u by the uniform norm, one considers the 

Hausdorff distance between their graphs. This amounts to take into account 

jointly some·uncertainty about the values of the investigated functions 

of t and some uncertainty about the values of t at which they are 

computed. In that context, a practical convergence theorem, relative to 

·f f. f h d. · · · 1· h d 31 un~ orm re ~nements o t e ~scret~zat~on, ~s estab ~s e • 
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8. A SYNTHETIC FORHULATION 

Let us come back now to the problern formulated in Sect. 3 • In the 

general expression of the kinetic energy 

1 
T(q,q) = z E 

i,j 
( ) . i . j 

a .. q q q 
~J 

(8. 1) 

the functions a .. (q) = a .. (q) are assumed smooth enough for the Lagrange 
~J J~ 

equations to make sense. Actually the dependence of a .. 
~J 

on q would in 

the sequel cause only technical complication, so for the sake of simplici-

ty we shall restriet ourselves to the case where some parametrization of 

Q may be found, such that these n(n+1)/2 functions are constants. This 

amounts to say that the Riemannian metric constructed on Q by putting 

E 
i,j 

a .. (q) dqi dqj 
~J 

turns out to be locally Euclidean ; in other words, we let aside the 

possible effect of Riemann curvature. 

Equivalently Q may, at least locally, be identified with an open 

subset of some Euclidean linear space E , with dimension n • In view 

of this Euclidean structure, the tangent space E(q) at every point is 
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identified with E itself, as well as the cotangent space E'(q) . The 

expression (8.1) of the kinetic energy now reduces to 

(8. 2) 

and the Lagrange equation (3.1), for every interval of smooth motion, 

becomes 

q Q(t,q) + R . (8. 3) 

Using (2.4) as before in order to eliminate R we obtain 

Q(t,q) - q E N(q) . (8.4) 

As in Sect. 3, for every interval of smooth motion, this is found 

equivalent to the strenger differential inclusion 

Q(t,q) - q E a~(V(q),q) . (8.5) 

Let us formulate now an evolution problern involving differential 

measures in the way explained in Sect. 6 and 7 ; here again I is a real 

interval, open on the right or unbounded, but containing t 
0 

as origin. 

PROBLEM P . Given q0 E L and q0 E V(q 0 ) , to find u E rclbv(I,E) , 

with u(t ) = q , such that by putting 
0 0 
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q ( t) 

one has 

t 
q + J 

0 
t 

0 

U( T)d T 

Q(t,q(t))dt- du E a~(V(q(t)),u(t)) 

J.J. Moreau 

(8.6) 

(8. 7) 

in the following sense : there exists (non uniquely) a nonnegative real 

measure d~ on I relatively to which the Lebesgue measure dt and the 

differential measure du of u admit the respective densities 

I 
t' E l 1 (I,d~;R) 

~ oc 
and u' E l 11 (I,d~;E) verifying for every t E I 

~ oc 

Q(t,q(t))t' (t)- u' (t) E a~(V(q(t),u(t)) . 
~ ~ 

(8. 8) 

In the same way as in Sect. 7 for the sweeping process, the above 

formulation is found to be indifferent to changing the "base" measure d~ 

A possible solution u of this Problem is locally absolutely conti-

nuous over some open subinterval I' of I if and only if there exists 

ü E i 1
1 (I',dt;E) such that, in restriction to I' 
oc 

one has du = ü dt ; 

then the following equalities hold between the restrictions to I' of the 

considered measures 

u' d~ 
~ 

Consequently 

u dt ü t' d~ • 
~ 

u' = Ü t' throughout 
~ ~ 

I I ' with the possible exception 

of a d~-negligible, hence dt-negligible, subset. On the other hand the 
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function t' is nonnegative and the subset in which it vanishes is dt­
ll 

negligible. Therefore (8.8) implies that 

Q(t,q(t))- ü(t) E a~(V(q(t),u(t)) (8.9) 

holds Lebesgue-a.e. in I' • This amounts to say that the function 

t ~ q(t) satisfies over I' the dynamical condition (8.5) of shockless 

motion. 

Suppose on the other hand that a solution u of Problem P is dis-

continuous at time t E I . Then the vector measure du presents at s 

this point an atom with value u(t ) - u (t ) 
s s 

equivalently the real 

measure dll presents an atom with mass 

u' (t )l.l ll s s 

ll > 0 and 
s 

Since the Lebesgue measure dt has no atom, one obtains 

and finally (8.8) implies 

u (t) - u(t) E o~(V(q(t )),u(t )) , s s s . s 

equivalent to 

u(t ) 
s 

prox (V(q(t )),u-(t )) 
s s 

t I ( t ) 
ll s 

0 

(8.10) 

In view of the right-continuity of u , this is nothing else than the 
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definition property (5.1) of a standard inelastic shock in fact (8.6) 

elementarily implies that the right and left limits of u respectively 

equal the right and left derivatives of q . 

Converse!y, one checks in a similar way that a motion consisting of 

a sequence of intervals of smooth motion, connected by standard inelastic 

shocks, is a solution of Problem P But it cannot be expected a priori 

that every solution of Problem P exhibits such a simple structure, i.e. 

is of finite sort, according to the terminology of Sect. 1 . 

Let us establish now a power balance formula which generalizes both 

relations (3.8) and (5.3). For every t EI , condition (8.8) expresses 

that u(t) and the right-hand member form a pair of conjugate points 

relative to the pair of Fenchel conjugate functions equal to the respec-

tive indicators of V(q(t)) and N(q(t)) ; therefore these elements are 

orthogonal, i.e. 

V t E I u(t).[Q(t,q(t)) t' (t)- u' (t)] ].J ].J 0 • 

As an element of lbv(I,E) , the function u is locally bounded 

and universally measurable ; hence the above expression constitutes the 

density, relative to d].J , of some real measure. Using the notations of 

Sect. 6 this yields the equality of real measures 

u.du u(t).Q(t,q(t))dt . (8. 11) 

Therefrom we shall derive some inequalities, emphasizing in general 
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the dissipative character of the mechanical process under study. 

Let us call the speed of the system the real function 

o(t) llu(t)ll 

belonging to lbv(I,E), since the norm mapping is Lipschitz from E 

into E. Clearly 
+ + 

o (t) = Uu (t)ll = o(t) in view of the right-

continuity, and o-(t) = llu-(t)ll Observe that (8.10), established for 

every discontinuity point ts , is also trivially true at continuity 

points since u = u E V(q) at such points. As the mapping "prox" is 

nonexpanding, it comes out that 

V t o{t) .;;;; o- (t) (8.12) 

Applying (6.6) successively with X = E and X E one obtains, 

in view of 
+ 

u = u and using (8.11) and (8.12), 

- I 2 I 2 -o da.;;;; 2 d(o ) = 2 dllull .;;;; u.du.;;;; a IIQO dt.;;;; o IIQII dt • (8.13) 

If an upper bound M of IIQ(t,q)ll is available for the considered 

problem, this allows one to derive an upper bound of o(<) , namely 

o(<) .;;;; II c:i II + (<-t ) M. 
0 0 

(8.14) 

In fact in the special case where o does not vanish in the interval 
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]t ,<[, (8.13) yields, for the restriction of the considered measures 
0 

to this interval, 

da .".; M dt (8.15) 

from which (8.14) would ensue by integration and by using (6.3) and (8.12). 

If the subset of ]t ,<[ where a vanishes is nonempty, let us denote 
0 

by < the l.u.b. of this subset. Every left-neighborhood of 
0 

< in I 
0 

contains points where a- = 0 , hence (recall that the 

function is essentially left-continuous, see 27 e.g. ) thus 

a(<) = 0 by (8.12), Inequality (8.15) holds for the restriction of the 
0 

considered measures to ]< ,<[, then, by integration 
0 

J da 
) T , T ( 

0 

Using again (8.12) one concludes 

a ( T) .".; a- ( T) .".; ( <-T ) M .".; ( <- t ) M 
0 0 

which establishes (8.14). 

We now discuss the connection of Problem P with the sweeping process 

presented in Sect. 7. 

Let us introduce the new unknown function v E rclbv(I,E) , 

v(t ) = q , by 
0 0 



Dynamics of Unilateral Constraints 

t 
V ( t) U ( t) - f Q ( T , q ( T ) ) dT 

t 
0 

215 

In view of (8.6), the function t ~ q(t) is related to v as being the 

solution of the smooth integre-differential equation 

t 
dq - f 
dt 

t 
0 

Q(T ,q(T) )dt v(t ) , 

with initial condition q(t ) = q 
0 0 

Let us express this by writing 

q = Sv 

s 

the nonlinear operator 

rclbv(I,E) ~ w1 ,oo (I E) 
loc ' 

enjoys reasonably good continuity properties. The right-hand side of 

(8.7) now writes down as 

with 

a~(V(q(t)),u(t)) aHc (t),v(t)) , 
V 

c ( t) 
V 

t 
V(Sv(t)) - f Q(T,Sv(T))dT 

t 
0 

Under these notations, Problem P takes the equivalent form 

v E rclbv(I,E) , v(t ) = q , satisfying 
0 0 

(8. 16) 

To find 

-dv E a~(C (t),v(t)). (8.17) 
V 
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In other words, v is a solution of the sweeping process by some 

moving convex set C which itself depends on v . Whether this allows 

one to prove solution existence by some fixed point argument is still an 

open question. But the above provides at least some insight into the 

structure of the problem and naturally suggests various approximation 

procedures. 

For instance, one may apply to (8.17) the catching-up algorithm 

described in Sect. 7, with C adjusted at each step through the conco­
v 

mitant discretization of (8.16). 

Another sort of approximation would proceed by "regularization" : 

replacing the indicator function ~(Cv ,.} in (8.17) by a penalty function 

of the set Cv , namely 

x ~ --1 [dist (x,C )] 2 
2)._ V 

where ;>, is a "small" positive constant. Hence the differential inclusion 

(8.17) is replaced by the differential equation 

dv l - -- = - [ v-prox(C v)] dt ;>, v' 

The single-valued Lipschitz mapping in the right-hand side may also be 

viewed as resulting from the regularization, in Yosida's style, of the 

monotone muLtifunction a~ (c , • ) 
V 

32,33 
(see e.g. ), 

Here, as well as in the catching-up discretization, a certain extent 

of violation of the geometrical condition q E L has to be accepted, with 
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some adequate definition of V(q) for q ~ L. The regularization pro-

d d .12,13 . . . 1. llb k ce ure use 1n cons1sts 1n exert1ng some e ast1c pu - ac as soon 

as this condition is violated : this agrees with the concept of an energy-

preserving shock. In contrast, the above amounts to apply some breaking 

action of the viscous type, with coefficient 1/A , as soon as the ki­

nematical condition q+ E V(q) is violated : this is consistent with 

the dissipative character of inelastic shocks. 
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