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Abstract

In this paper, we introduce a new estimator for the emission densities of a nonparametric
hidden Markov model. It is adaptive and minimax with respect to each state’s regularity–
as opposed to globally minimax estimators, which adapt to the worst regularity among the
emission densities. Our method is based on Goldenshluger and Lepski’s methodology. It
is computationally efficient and only requires a family of preliminary estimators, without
any restriction on the type of estimators considered. We present two such estimators that
allow to reach minimax rates up to a logarithmic term: a spectral estimator and a least
squares estimator. We show how to calibrate it in practice and assess its performance on
simulations and on real data.

Keywords: hidden Markov model; model selection; nonparametric density estimation;
oracle inequality; adaptive minimax estimation; spectral method; least squares method.

1. Introduction

Finite state space hidden Markov models, or HMMs in short, are powerful tools for studying
discrete time series and have been used in a variety of applications such as economics,
signal processing and image analysis, genomics, ecology, speech recognition and ecology
among others. The core idea is that the behaviour of the observations depends on a hidden
variable that evolves like a Markov chain.

Formally, a hidden Markov model is a process (Xj , Yj)j≥1 in which (Xj)j is a Markov
chain on X , the Yi’s are independent conditionally on (Xj)j and the conditional distribution
of Yi given (Xj)j depends only on Xi. The parameters of the HMM are the parameters of
the Markov chain, that is its initial distribution and transition matrix, and the parameters
of the observations, that is the emission distributions (ν∗k)k∈X where ν∗k is the distribution
of Yj conditionally to Xj = k. Only the observations (Yj)j are available.

In this article, we focus on estimating the emission distributions in a nonparametric
setting. More specifically, assume that the emission distributions have a density with re-
spect to some known dominating measure µ, and write f∗k their densities–which we call the
emission densities. The goal of this paper is to estimate all f∗k ’s with their minimax rate
of convergence when the emission densities are not restricted to belong to a set of densities
described by finitely many parameters.
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1.1 Nonparametric state-by-state adaptivity

Theoretical results in the nonparametric setting have only been developed recently. De Cas-
tro et al. (2017) and Bonhomme et al. (2016b) introduce spectral methods, and the latter
is proved to be minimax but not adaptive–which means one needs to know the regularity
of the densities beforehand to reach the minimax rate of convergence. De Castro et al.
(2016) introduce a least squares estimator which is shown to be minimax adaptive up to
a logarithmic term. However, all these papers have a common drawback: they study the
emission densities as a whole and can not handle them separately. This comes from their
error criterion, which is the supremum of the errors on all densities: what they actually
prove is that maxk∈X ‖f̂k − f∗k‖2 converges with minimax rate when (f̂k)k are their density
estimators. In general, the regularity of each emission density could be different, leading to
different rates of convergence. This means that having just one emission density that is very
hard to estimate is enough to deteriorate the rate of convergence of all emission densities.

In this paper, we construct an estimator that is adaptive and estimates each emission
density with its own minimax rate of convergence. We call this property state-by-state
adaptivity. Our method does so by handling each emission density individually in a way
that is theoretically justified–reaching minimax and adaptive rates of convergence with
respect to the regularity of the emission densities–and computationally efficient thanks to
its low computational and sample complexity.

Our approach for estimating the densities nonparametrically is model selection. The
core idea is to approximate the target density using a family of parametric models that is
dense within the nonparametric class of densities. For a square integrable density f∗, we
consider its projection f∗M on a finite-dimensional space PM (the parametric model), where
M is a model index. This projection introduces an error, the bias, which is the distance
‖f∗ − f∗M‖2 between the target quantity and the model. The larger the model, the smaller
the bias. On the other hand, larger models will make the estimation harder, resulting in a
larger variance ‖f̂M − f∗M‖22. The key step of model selection is to select a model with a
small total error–or alternatively, a good bias-variance tradeoff.

In many situations, it is possible to reach the minimax rate of convergence with a good
bias-variance tradeoff. Previous estimators of the emission densities of a HMM perform
such a tradeoff based on an error that takes the transition matrix and all emission densities
into account. Such an error leads to a rate of convergence that corresponds to the slowest
minimax rate amongst the different parameters. In contrast, our method performs a bias-
variance tradeoff for each emission density using an error term that depends only on the
density in question, which makes it possible to reach the minimax rates for each density.

1.2 Plug-in procedure

The method we propose is based on the method developed in the seminal papers of Gold-
enshluger and Lepski (2011, 2014) for density estimation, extended by Goldenshluger and
Lepski (2013) to the white noise and regression models. It takes a family of estimators
as input and chooses the estimator that performs a good bias-variance tradeoff separately
for each hidden state. We recommend the article of Lacour et al. (2016) for an insightful
presentation of this method in the case of conditional density estimation.
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Our method and assumptions are detailed in Section 2. Let us give a quick overview of
the method. Assume the densities belong to a Hilbert space H. Given a family of subsets

of finite-dimensional subspaces of H (the models) indexed by M and estimators f̂
(M)
k of the

emission densities for each hidden state k and each model M , one computes a substitute
for the bias of the estimators by

Ak(M) = sup
M ′

{∥∥∥f̂ (M ′)
k − f̂ (M∧M ′)

k

∥∥∥
2
− σ(M ′)

}
.

for some penalty σ. Then, for each state k, one selects the estimator M̂k from the model
M minimizing the quantity Ak(M) + 2σ(M). The penalty σ can also be interpreted as
a variance bound, so that this penalization procedure can be seen as performing a bias-
variance tradeoff. The novelty of this method is that it selects a different M̂k, that is a
different model, for each hidden state: this is where the state-by-state adaptivity comes
from. Also note that contrary to Goldenshluger and Lepski (2013), we do not make any
assumption on how the estimators are computed, provided a variance bound holds.

The main theoretical result is an oracle inequality on the selected estimators f̂
(M̂k)
k , see

Theorem 2. As a consequence, we are able to get a rate of convergence that is different for
each state. These rates of convergence will even be adaptive minimax up to a logarithmic
factor when the method is applied to our two families of estimators: spectral estimators
and least squares estimators. To the best of our knowledge, this is the first state-by-state
adaptive algorithm for hidden Markov models.

Note that finding the right penalty term σ is essential in order to obtain minimax
rates of convergence. This requires a fine theoretical control of the variance of the auxiliary
estimators, in the form of assumption [H(ε)] (see Section 2.1). To the best of our knowledge,
there is no suitable result in the literature. This is the second theoretical contribution of
this paper: we control two families of estimators in a way that makes it possible to reach
adaptive minimax rate with our state-by-state selection method, up to a logarithmic term.

On the practical side, we run this method and several variants on data simulated from
a HMM with three hidden states and one irregular density, as illustrated in Section 4. The
simulations confirm that it converges with a different rate for each emission density, and
that the irregular density does not alter the rate of convergence of the other ones, which is
exactly what we wanted to achieve.

Better still, the added computation time is negligible compared to the computation time
of the estimators: even for the spectral estimators of Section 3.2 (which can be computed
much faster than the least squares estimators and the maximum likelihood estimators using
EM), computing the estimators on 200 models for 50,000 observations (the lower bound
of our sample sizes) of a 3-states HMM requires a few minutes, compared to a couple of
seconds for the state-by-state selection step. The difference becomes even larger for more
observations, since the complexity of the state-by-state selection step is independent of the
sample size: for instance, computing the spectral estimators on 300 models for 2,200,000
observations requires a bit less than two hours, and a bit more than ten hours for 10,000,000
observations, compared to less than ten seconds for the selection step in both cases. We
refer to Section 4.6 for a more detailled discussion about the algorithmic complexity of the
algorithms.
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1.3 Families of estimators

We use two methods to construct families of estimators and apply the selection algorithm.
The motivation and key result of this part of the paper is to control the variances of the
estimators by the right penalty σ. This part is crucial if one wants to get adaptive minimax
rates, and has not been adressed in previous papers. For both methods, we develop new
theoretical results that allow to obtain a penalty σ that leads to adaptive minimax rates of
convergence up to a logarithmic term. We present the algorithms and theoretical guarantees
in Section 3.

The first method is a spectral method and is detailed in Section 3.2. Several spectral al-
gorithms were developed, see for instance Anandkumar et al. (2012) and Hsu et al. (2012) in
the parametric setting, and Bonhomme et al. (2016b) and De Castro et al. (2017) in a non-
parametric framework. The main advantages of spectral methods are their computational
efficiency and the fact that they do not resort to optimization procedure such as the EM
and more generally nonconvex optimization algorithm, thus avoiding the well-documented
issue of getting stuck into local sub-optimal minima.

Our spectral algorithm is based on the one studied in De Castro et al. (2017). However,
their estimator cannot reach the minimax rate of convergence: the variance bound σ(M)
deduced from their results is proportional to M3, while reaching the minimax rate requires
σ(M) to be proportional to M . To solve this issue, we introduce a modified version of
their algorithm and show that it has the right variance bound, so that it is able to reach the
adaptive minimax rate after our state-by-state selection procedure, up to a logarithmic term.
Our algorithm also has an improved complexity: it is at most quasi-linear in the number of
observations and in the model dimension, instead of cubic in the model dimension for the
original algorithm.

The second method is a least squares method and is detailed in Section 3.3. Nonpara-
metric least squares methods were first introduced by De Castro et al. (2016) to estimate the
emission densities and extended by Lehéricy (to appear) to estimate all parameters at once.
They rely on estimating the density of three consecutive observations of the HMM using a
least squares criterion. Since the model is identifiable from the distribution of three consec-
utive observations when the emission distributions are linearly independent, it is possible
to recover the parameters from this density. In practice, these methods are more accurate
than the spectral methods and are more stable when the models are close to not satisfying
the identifiability condition, see for instance De Castro et al. (2016) for the accuracy and
Lehéricy (to appear) for the stability. However, since they rely on the minimization of a
nonconvex criterion, the computation times of the corresponding algorithms are often longer
than the ones from spectral methods.

A key step in proving theoretical guarantees for least squares methods is to relate the
error on the density of three consecutive observations to the error on the HMM parameters
in order to obtain an oracle inequality on the parameters from the oracle inequality on the
density of three observations. More precisely, the difficult part is to lower bound the error
on the density by the error on the parameters. Let us write g and g′ the densities of the
first three observations of a HMM with parameters θ and θ′ respectively (these parameters
actually correspond to the transition matrix and the emission densities of the HMM). Then
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one would like to get
‖g − g′‖2 ≥ C(θ) d(θ, θ′)

where d is the natural L2 distance on the parameters and C(θ) is a positive constant which
does not depend on θ′. Such inequalities are then used to lower bound the variance of the
estimator of the density of three observations g∗ by the variance of the parameter estimators:
let g be the projection of g∗ and g′ be the estimator of g∗ on the current approximation
space (with index M). Denote θ∗M and θ̂M the corresponding parameters and assume that
the error ‖g − g′‖2 is bounded by some constant σ′(M), then the result will be that

d(θ̂M , θ
∗
M ) ≤ σ′(M)

C(θ∗M )
.

Such a result is crucial to control the variance of the estimators by a penalty term
σ, which is the result we need for the state-by-state selection method. In the case where
only the emission densities vary, De Castro et al. (2016) proved that such an inequality
always holds for HMMs with 2 hidden states using brute-force computations, but it is still
unknown whether it is always true for larger number of states. When the number of states
is larger than 2, they show that this inequality holds under a generic assumption. Lehéricy
(to appear) extended this result to the case where all parameters may vary. However, the
constants deduced from both articles are not explicit, and their regularity (when seen as a
function of θ) is unknown, which makes it impossible to use in our setting: one needs the
constants C(θ∗M ) to be lower bounded by the same positive constant, which requires some
sort of regularity on the function θ 7−→ C(θ) in the neighborhood of the true parameters.

To solve this problem, we develop a finer control of the behaviour of the difference
‖g − g′‖2, which is summarized in Theorem 10. We show that it is possible to assume C to
be lower semicontinuous and positive without any additional assumption. In addition, we
give an explicit formula for the constant when θ′ and θ are close, which gives an explicit
bound for the asymptotical rate of convergence. This result allows us to control the variance
of the least squares estimators by a penalty σ which ensures that the state-by-state method
reaches the adaptive minimax rate up to a logarithmic term.

1.4 Numerical validation and application to real data sets

Section 4 shows how to apply the state-by-state selection method in practice and shows its
performance on simulated data and a comparison with a method based on cross validation
that does note estimate state by state.

Note that the theoretical results give a penalty term σ known only up to a multiplicative
constant which is unknown in practice. This problem, the penalty calibration issue, is usual
in model selection methods. It can be solved using algorithms such as the dimension jump
heuristics, see for instance Birgé and Massart (2007), who introduce this heuristics and
prove that it leads to an optimal penalization in the special case of Gaussian model selection
framework. This method has been shown to behave well in practice in a variety of domains,
see for instance Baudry et al. (2012). We describe the method and show how to use this
heuristics to calibrate the penalties in Section 4.2.

We propose and compare several variants of our algorithm. Section 4.2 shows some
variants in the calibration of the penalties and Section 4.3 shows other ways to select the
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final estimator. We discuss the result of the simulations and the convergence of the selected
estimators in Section 4.4.

In Section 4.5, we compare our method with a non state-by-state adaptive method based
on cross validation. Finally, we discuss the complexities of the auxiliary estimation methods
and of our selection procedures in Section 4.6.

In Section 5, we apply our algorithm to two sets of GPS tracks. The first data set
contains trajectories of artisanal fishers from Madagascar, recorded using a regular sam-
pling with 30 seconds time steps. The second data set contains GPS positions of Peruvian
seabird, recorded with 1 second time steps. We convert these tracks into the average veloc-
ity during each time step and apply our method using spectral estimators as input. The
observed behaviour confirms the ability of our method to adapt to the different regularities
by selecting different dimensions for each emission density.

Section 6 contains a conclusion and perspectives for this work.
Finally, Appendix A contains the details of our spectral algorithm and Appendix B is

dedicated to the proofs.

1.5 Notations

We will use the following notations throughout the paper.

• [K] = {1, . . . ,K} is the set of integers between 1 and K.

• S(K) is the set of permutations of [K].

• ‖ · ‖F is the Frobenius norm. We implicitely extend the definition of the Frobenius
norm to tensors with more than 2 dimensions.

• Span(A) is the linear space spanned by the family A.

• σ1(A) ≥ · · · ≥ σp∧n(A) are the singular values of the matrix A ∈ Rn×p.
• L2(Y, µ) is the set of real square integrable measurable functions on Y with respect

to the measure µ.

• For f = (f1, . . . , fK) ∈ L2(Y, µ)K , G(f) is the Gram matrix of f , defined by G(f)i,j =
〈fi, fj〉 for all i, j ∈ [K].

2. The state-by-state selection procedure

In this section, we introduce the framework and our state-by-state selection method.
In Section 2.1, we introduce the notations and assumptions. In Section 2.2, we present

our selection method and prove that it satisfies an oracle inequality.

2.1 Framework and assumptions

Let (Xj)j≥1 be a Markov chain with finite state space X of size K. Let Q∗ be its transition
matrix and π∗ be its initial distribution. Let (Yj)j≥1 be random variables on a measured
space (Y, µ) with µ σ-finite such that conditionally on (Xj)j≥1 the Yj ’s are independent
with a distribution depending only on Xj . Let ν∗k be the distribution of Yj conditionally to
{Xj = k}. Assume that ν∗k has density f∗k with respect to µ. We call (ν∗k)k∈X the emission
distributions and f∗ = (f∗k )k∈X the emission densities. Then (Xj , Yj)j≥1 is a hidden Markov
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model with parameters (π∗,Q∗, f∗). The hidden chain (Xj)j≥1 is assumed to be unobserved,
so that the estimators are based only on the observations (Yj)j≥1.

Let (PM )M∈N be a nested family of finite-dimensional subspaces such that their union
is dense in L2(Y, µ). The spaces (PM )M∈N are our models; in the following we abusively

call M the model instead of PM . For each index M ∈ N, we write f∗,(M) = (f
∗,(M)
k )k∈X the

projection of f∗ on (PM )K . It is the best approximation of the true densities within the
model M .

In order to estimate the emission densities, we do not need to use every models. Typically
there is no point in taking models with more dimensions than the sample size, since they
will likely be overfitting. Let Mn ⊂ N be the set of indices which will be used for the
estimation from n observations. For each M ∈ Mn, we assume we are given an estimator

f̂
(M)
n = (f̂

(M)
n,k )k∈X ∈ (PM )K . We will need to assume that for all models, the variance–that

is the distance between f̂
(M)
n and f∗,(M)–is small with high probability. In the following, we

drop the dependency in n and simply write M and f̂ (M).
The following result is what one usually obtains in model selection. It bounds the

distance between the estimators f̂ (M) and the projections f∗,(M) by some penalty function
σ. Thus, σ/2 can be seen as a bound of the variance term.

[H(ε)] With probability 1− ε,

∀M ∈M, inf
τn,M∈S(K)

max
k∈X

∥∥∥f̂ (M)
k − f∗,(M)

τn,M (k)

∥∥∥
2
≤ σ(M, ε, n)

2

where the upper bound σ : (M, ε, n) ∈M× [0, 1]×N∗ 7−→ σ(M, ε, n) ∈ R+ is nondecreasing
in M . We show in Sections 3.2 and 3.3 how to obtain such a result for a spectral method
and for a least squares method (using an algorithm from Lehéricy (to appear)). In the
following, we omit the parameters ε and n in the notations and only write σ(M).

What is important for the selection step is that the permutation τn,M does not depend

on the model M : one needs all estimators (f̂
(M)
k )M∈M to correspond to the same emission

density, namely f∗τn(k) when τn,M = τn is the same for all models M . This can be done in
the following way: let M0 ∈M and let

τ̂ (M) ∈ arg min
τ∈S(K)

{
max
k∈X

∥∥∥f̂ (M)
τ(k) − f̂

(M0)
k

∥∥∥
2

}
for all M ∈ M. Then, consider the estimators obtained by swapping the hidden states by
these permutations. In other words, for all k ∈ X , consider

f̂
(M)
k,new = f̂

(M)

τ̂ (M)(k)
.

Now, assume that the error on the estimators is small enough. More precisely, write

BM,M0 = maxk∈X

∥∥∥f∗,(M)
k − f∗,(M0)

k

∥∥∥
2

the distance between the projections of f∗ on the

models M and M0 and assume that 2 [σ(M)/2 + σ(M0)/2 +BM,M0 ] (that is twice the upper
bound of the distance between two estimated emission densities corresponding to the same

hidden states in modelsM andM0) is smaller thanm(f∗,M0) := mink′ 6=k

∥∥∥f∗,(M0)
k − f∗,(M0)

k′

∥∥∥
2
,

which is the smallest distance between two different densities of the vector f∗,(M0).
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Then [H(ε)] ensures that with probability as least 1 − ε, for all k, there exists a single

component of f̂ (M) that is closer than σ(M)/2 + σ(M0)/2 of f
∗,(M0)
k , and this component

will be f̂
(M)

τ̂ (M)(k)
by definition. This is summarized in the following lemma.

Lemma 1 Assume [H(ε)] holds. Then with probability 1 − ε, there exists a permutation
τn ∈ S(K) such that for all k ∈ X and for all M ∈M such that

σ(M) + σ(M0) + 2BM,M0 < m(f∗,M0),

one has

max
k∈X

∥∥∥f̂ (M)
k,new − f

∗,(M)
τn(k)

∥∥∥
2
≤ σ(M)

2
. (1)

Proof Proof in Section B.1

Thus, this property holds asymptotically as soon as infM tends to infinity and supM∈M σ(M)
tends to zero.

2.2 Estimator and oracle inequality

Let us now introduce our selection procedure. This method and the following theorem are
based on the approach of Goldenshluger and Lepski (2011), but do not require any assump-
tion on the structure of the estimators, provided a variance bound such as Equation (1)
holds.

For each k ∈ X and M ∈M, let

Ak(M) = sup
M ′∈M

{∥∥∥f̂ (M ′)
k − f̂ (M∧M ′)

k

∥∥∥
2
− σ(M ′)

}
.

Ak(M) serves as a replacement for the bias of the estimator f̂
(M)
k , as can be seen in Equation

(2). This comes from the fact that for large M ′, the quantity ‖f̂ (M ′)
k − f̂ (M)

k ‖2 is upper

bounded by the variances ‖f̂ (M ′)
k − f∗,(M

′)
k ‖2 and ‖f̂ (M)

k − f∗,(M)
k ‖2 (which are bounded by

σ(M ′)/2) plus the bias ‖f∗,(M)
k − f∗k‖2. Thus, only the bias term remains after substracting

the variance bound σ(M ′).
Then, for all k ∈ X , select a model through the bias-variance tradeoff

M̂k ∈ arg min
M∈M

{Ak(M) + 2σ(M)}

and finally take

f̂k = f̂
(M̂k)
k .

The following theorem shows an oracle inequality on this estimator.

Theorem 2 Let ε ≥ 0 and assume equation (1) holds for all k ∈ X with probability 1− ε.
Then with probability 1− ε,

∀k ∈ X , ‖f̂k − f∗τn(k)‖2 ≤ 4 inf
M∈M

{
‖f∗,(M)
τn(k) − f

∗
τn(k)‖2 + σ(M, ε)

}
.
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Proof We restrict ourselves to the event of probability at least 1 − ε where equation (1)
holds for all k ∈ X .

The first step consists in decomposing the total error: for all M ∈M and k ∈ X ,∥∥∥f̂ (M̂k)
k − f∗τn(k)

∥∥∥
2
≤
∥∥∥f̂ (M̂k)

k − f̂ (M̂k∧M)
k

∥∥∥
2

+
∥∥∥f̂ (M̂k∧M)

k − f̂ (M)
k

∥∥∥
2

+
∥∥∥f̂ (M)

k − f∗,(M)
τn(k)

∥∥∥
2

+
∥∥∥f∗,(M)

τn(k) − f
∗
τn(k)

∥∥∥
2
.

From now on, we will omit the subscripts k and τn(k). Using equation (1) and the definition
of A(M) and M̂ , one gets∥∥∥f̂ (M̂) − f∗

∥∥∥
2
≤(A(M) + σ(M̂)) + (A(M̂) + σ(M))

+ σ(M) +
∥∥∥f∗,(M) − f∗

∥∥∥
2

≤2A(M) + 4σ(M) +
∥∥∥f∗,(M) − f∗

∥∥∥
2
.

Then, notice that A(M) can be bounded by

A(M) ≤ sup
M ′

{∥∥∥f̂ (M ′) − f∗,(M ′)
∥∥∥

2
+
∥∥∥f̂ (M∧M ′) − f∗,(M∧M ′)

∥∥∥
2
− σ(M ′)

}
+ sup

M ′

∥∥∥f∗,(M ′) − f∗,(M∧M ′)∥∥∥
2
.

Since σ is nondecreasing, σ(M ∧M ′) ≤ σ(M ′), so that the first term is upper bounded
by zero thanks to equation (1). The second term can be controlled since the orthogonal
projection is a contraction. This leads to

A(M) ≤
∥∥∥f∗ − f∗,(M)

∥∥∥
2
, (2)

which is enough to conclude.

Remark 3 The oracle inequality also holds when taking

Ak(M) = sup
M ′≥M

{∥∥∥f̂ (M ′)
k − f̂ (M)

k

∥∥∥
2
− σ(M ′)

}
+
.

Remark 4 Note that the selected M̂k implicitely depends on the probability of error ε
through the penalty σ.

In the asymptotic setting, we take ε as a function of n, so that M̂k is a function of n
only. This will be used to get rid of ε when proving that the estimators reach the minimax
rates of convergence.

3. Plug-in estimators and theoretical guarantees

In this section, we introduce two methods to construct families of estimators of the emission
densities. We show that they satisfy assumption [H(ε)] for a given variance bound σ.

In Section 3.1, we introduce the assumptions we will need for both methods. Section
3.2 is dedicated to the spectral estimator and Section 3.3 to the least squares estimator.
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3.1 Framework and assumptions

Recall that we approximate L2(Y, µ) by a nested family of finite-dimensional subspaces

(PM )M∈M such that their union is dense in L2(Y, µ) and write f
∗,(M)
k the orthogonal

projection of f∗k on PM for all k ∈ X and M ∈ M. We assume that M ⊂ N and that the
space PM has dimension M . A typical way to construct such spaces is to take PM spanned
by the first M vectors of an orthonormal basis.

Both methods will construct an estimator of the emission densities for each model of
this family. These estimators will then be plugged in the state-by-state selection method of
Section 2.2, which will select one model for each state of the HMM.

We will need the following assumptions.

[HX] (Xj)j≥1 is a stationary ergodic Markov chain with parameters (π∗,Q∗);

[Hid] Q∗ is invertible and the family f∗ is linearly independent.

The ergodicity assumption in [HX] is standard in order to obtain convergence results. In
this case, the initial distribution is forgotten exponentially fast, so that the HMM will
essentially behave like a stationary process after a short period of time. For the sake of
simplicity, we assume the Markov chain to be stationary.

[Hid] appears in identifiability results, see for instance Gassiat et al. (2015) and Theorem
8. It is sufficient to ensure identifiability of the HMM from the law of three consecutive
observations. Note that it is in general not possible to recover the law of a HMM from two
observations (see for instance Appendix G of Anandkumar et al. (2012)), so that three is
actually the minimum to obtain general identifiability.

3.2 The spectral method

Algorithm 1 is a variant of the spectral algorithm introduced in De Castro et al. (2017).
Unlike the original one, it is able to reach the minimax rate of convergence thanks to two
improvements. The first one consists in decomposing the joint density on different models,
hence the use of two dimensions m and M . The second one consists in trying several
randomized joint diagonalizations instead of just one, and selecting the best one, hence the
parameter r. These additional parameters do not actually add much to the complexity of
the algorithm: in theory, the choice m, r ≈ log(n) is fine (see Corollary 6), and in practice,
any large enough constant works, see Section 4 for more details.

For all M ∈M, let (ϕM1 , . . . , ϕMM ) be an orthonormal basis of PM . Let

η3(m,M)2 := sup
y,y′∈Y3

m∑
a,c=1

M∑
b=1

(ϕma (y1)ϕMb (y2)ϕmc (y3)− ϕma (y′1)ϕMb (y′2)ϕmc (y′3))2.

The following theorem follows the proof of Theorem 3.1 of De Castro et al. (2017), with
modifications that allow to control the error of the spectral estimators in expectation and
are essential to obtain the right rates of convergence in Corollary 6.

Theorem 5 Assume [HX] and [Hid] hold. Then there exists a constant M0 depending
on f∗ and constants Cσ and n1 depending on f∗ and Q∗ such that for all ε ∈ (0, 1), for all

10
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Algorithm 1: Spectral estimation of the emission densities of a HMM (short version)

Data: A sequence of observations (Y1, . . . , Yn+2), two dimensions m ≤M , an
orthonormal basis (ϕ1, . . . , ϕM ) and number of retries r.

Result: Spectral estimators (f̂
(M,r)
k )k∈X .

[Step 1] Consider the following empirical estimators: for any a, c ∈ [m] and b ∈ [M ],

• M̂m,M,m(a, b, c) := 1
n

∑n
s=1 ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)

• P̂m,m(a, c) := 1
n

∑n
s=1 ϕa(Ys)ϕc(Ys+2).

[Step 2] Let Ûm be the m×K matrix of orthonormal left singular vectors of P̂m,m

corresponding to its top K singular values. Ûm can be seen as a projection. Denote
by P′ and M′(·, b, ·) the projected tensors, defined by P′ = Û>mP̂m,mÛm and
likewise for M′.

[Step 3] Form the matrices B(b) := (P′)−1M′ for all b ∈ [M ].

[Step 4] Construct a matrix Ô by taking the best approximate simultaneous diagonalization
of all B(b) among r attempts: for all b ∈ [M ], B(b) ≈ RDiag[Ô(b, ·)]R−1 for some
matrix R (see details in Algorithm 3, in Appendix A).

[Step 5] Define the emission densities estimators f̂ (M,r) := (f̂
(M,r)
k )k∈X by: for all k ∈ X ,

f̂
(M,r)
k :=

∑M
b=1 Ô(b, k)ϕb.

m,M ∈ M such that M ≥ m ≥M0 and for all n ≥ n1η
2
3(m,M)(− log ε)2, with probability

greater than 1− 6ε,

inf
τ∈S(K)

max
k∈X
‖f̂ (M,dte)
k − f∗,(M)

τ(k) ‖
2
2 ≤ Cση2

3(m,M)
(− log ε)2

n

Proof Proof in Section B.2.

Note that the constants n1 and Cσ depend on Q∗ and f∗. This dependency will not
affect the rates of convergence of the estimators (with respect to the sample size n), but it
can change the constants of the bounds and the minimum sample size needed to reach the
asymptotic regime.

Let us now apply the state-by-state selection method to these estimators. The follow-
ing corollary shows that it is possible to reach the minimax rate of convergence up to a
logarithmic term separately for each state under standard assumptions. Note that we need
to bound the resulting estimators by some power of n, but this assumption is not very
restrictive since α can be arbitrarily large.

Corollary 6 Assume [HX] and [Hid] hold. Also assume that η2
3(m,M) ≤ Cηm

2M for a

constant Cη > 0 and that for all k ∈ X , there exists sk such that ‖f∗,(M)
k −f∗k‖2 = O(M−sk).

Then there exists a constant Cσ depending on f∗ and Q∗ such that the following holds.

11
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Let α > 0 and C ≥ 2(1 + 2α)
√
CηCσ. Let f̂ sbs be the estimators selected from the

family (f̂ (M,d(1+2α) log(n)e))M≤Mmax(n) with Mmax(n) = n/ log(n)5, mM = log(n) and σ(M) =

C

√
M log(n)4

n for all M . Then there exists a sequence of random permutations (τn)n≥1 such
that

∀k ∈ X , E
[∥∥∥(−nα) ∨ (f̂ sbsτn(k) ∧ n

α)− f∗k
∥∥∥2

2

]
= O

( n

log(n)4

) −2sk
2sk+1

 .

The novelty of this result is that each emission density is estimated with its own rate
of convergence: the rate −sk

2sk+1 is different for each emission density, even though the orig-
inal spectral estimators did not handle them separately. This is due to our state-by-state
selection method.

Moreover, it is able to reach the minimax rate for each density in an adaptive way. For
instance, in the case of a β-Hölder density on Y = [0, 1]D (equipped with a trigonometric

basis), one can easily check the control of η3, and the control ‖f∗,(M)
k − f∗k‖2 = O(M−β/D)

follows from standard approximation results, see for instance DeVore and Lorentz (1993).
Thus, our estimators converge with the rate (n/ log(n)4)−2β/(2β+D) to this density: this is
the minimax rate up to a logarithmic factor.

Remark 7 By aligning the estimators like in Section 2.1, one can replace the sequence of
permutations in Corollary 6 by a single permutation, in other words there exists a random
permutation τ which does not depend on n such that

∀k ∈ X , E
[∥∥∥(−nα) ∨ (f̂ sbsτ(k) ∧ n

α)− f∗k
∥∥∥2

2

]
= O

( n

log(n)4

) −2sk
2sk+1

 .

This means that the sequence (f̂ sbsk )n≥1 is an adaptive rate-minimax estimator of f∗k–or
more precisely of one of the emission densities (f∗k′)k′∈X , but since the distribution of the
HMM is invariant under relabelling of the hidden states, one can assume the limit to be f∗k
without loss of generality–up to a logarithmic term.

At this point, it is important to note that the choice of the constant C ≥ 2(1+2α)
√
CηCσ

depends on the hidden parameters of the HMM and as such is unknown. This penalty
calibration problem is very common in the model selection framework and can be solved in
practice using methods such as the slope heuristics or the dimension jump method which
have been proved to be theoretically valid in several cases, see for instance Baudry et al.
(2012) and references therein. We use the dimension jump method and explain its principle
and implementation in Section 4.2.
Proof Using Theorem 5, one gets that for all n and for all M ∈ M such that n ≥
n1η

2
3(mM ,M)(1 + 2α)2 log(n)2, with probability 1− 6n−1−2α,

inf
τ∈S(K)

max
k∈X
‖f̂ (M,dte)
k − f∗,(M)

τ(k) ‖
2
2 ≤Cση2

3(mM ,M)
(1 + 2α)2 log(n)2

n

≤(1 + α)2CσCηM
log(n)4

n

≤σ(M)2

4

12
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where σ(M) = C

√
M log(n)4

n with C such that C2 ≥ 4(1 + 2α)2CσCη.
The condition on M becomes

n ≥ n1 log(n)4M(1 + 2α)2

and is asymptotically true for all M ≤Mmax(n) as soon as Mmax(n) = o(n/ log(n)4).
Thus, [H(6n−(1+2α))] is true for the family (f̂ (M,d(1+2α) log(n)e))M≤Mmax(n). Note that

the assumption Mmax(n) = o(n/ log(n)4) also implies that there exists M1 such that for
n large enough, Lemma 1 holds for all M ≥ M1, so that Theorem 2 implies that for n
large enough, there exists a permutation τn such that with probability 1 − 6n−(1+2α), for
all k ∈ X ,

‖f̂ sbs
τn(k) − f

∗
k‖2 ≤ 4 inf

M1≤M≤Mmax

{‖f∗,(M)
k − f∗k‖2 + σ(M)}

= O

(
inf

M1≤M≤Mmax

{
M−sk +

√
M log(n)4

n

})

= O

((
n

log(n)4

)−sk/(1+2sk)
)
,

where the tradeoff is reached for M = ( n
log(n)4

)1/(1+2sk), which is in [M1,Mmax(n)] for n

large enough.
Finally, write A the event of probability smaller than 6n−(1+2α) where [H(6n−(1+α))]

doesn’t hold, then for n large enough and for all k ∈ X ,

E
[∥∥∥(−nα) ∨ (f̂ sbs

τn(k) ∧ n
α)− f∗k

∥∥∥2

2

]
≤ E

[
1A

∥∥∥f̂ sbs
τn(k) − f

∗
k

∥∥∥2

2

]
+ E

[
1Ac(n2α + ‖f∗k‖22)

]
= O

((
n

log(n)4

)−2sk/(1+2sk)
)

+O

(
n2α + ‖f∗k‖22

n1+2α

)

= O

((
n

log(n)4

)−2sk/(1+2sk)
)
.

3.3 The penalized least squares method

Let F be a subset of L2(Y, µ). We will need the following assumption on F in order to
control the deviations of the estimators:

[HF] f∗ ∈ FK∗ , F is closed under projection on PM for all M ∈M and

∀f ∈ F ,

{
‖f‖∞ ≤ CF ,∞
‖f‖2 ≤ CF ,2

with CF ,∞ and CF ,2 larger than 1.

13
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A simple way to construct such a set F when µ is a finite measure is to take the sets (PM )M
spanned by the first M vectors of an orthonormal basis (ϕi)i≥0 whose first vector ϕ0 is pro-
portional to 1. Then any set F of densities such that

∫
fdµ = 1,

∑
i〈f, ϕi〉2 ≤ CF ,2 and∑

i |〈f, ϕi〉|‖ϕi‖∞ ≤ CF ,∞ for given constants CF ,2 and CF ,∞ and for all f ∈ F satisfies
[HF].

When Q ∈ RK×K , π ∈ RK and f ∈ (L2(Y, µ))K , let

gπ,Q,f (y1, y2, y3) =
K∑

k1,k2,k3=1

π(k1)Q(k1, k2)Q(k2, k3)fk1(y1)fk2(y2)fk3(y3).

When π is a probability distribution, Q a transition matrix and f a K-uple of probability
densities, then gπ,Q,f is the density of the first three observations of a HMM with parameters
(π,Q, f). The motivation behind estimating gπ,Q,f is that it allows to recover the true
parameters under the identifiability assumption [Hid], as shown in the following theorem.

Let Q be the set of transition matrices on X and ∆ the set of probability distributions
on X . For a permutation τ ∈ S(K), write Pτ its matrix (that is the matrix defined by
Pτ (i, j) = 1{j=τ(i)}). Finally, define the distance on the HMM parameters

dperm((π1,Q1, f1), (π2,Q2, f2))2

= inf
τ∈S(K)

{
‖π1 − Pτπ2‖22 + ‖Q1 − PτQ2P>τ ‖2F +

∑
k∈X
‖f1,k − f2,τ(k)‖22

}
.

This distance is invariant under permutation of the hidden states. This corresponds to the
fact that a HMM is only identifiable up to relabelling of its hidden states.

Theorem 8 (Identifiability) Let (π∗,Q∗, f∗) ∈ ∆ × Q × (L2(Y, µ))K such that π∗x > 0
for all x ∈ X and [Hid] holds. Then for all (π,Q, f) ∈ ∆×Q× (L2(Y, µ))K ,

(gπ,Q,f = gπ
∗,Q∗,f∗) ⇒ dperm((π,Q, f), (π∗,Q∗, f∗)) = 0.

Proof The spectral algorithm of De Castro et al. (2017) applied on the finite dimensional
space spanned by the components of f and f∗ allows to recover all the parameters even
when the emission densities are not probability densities and when the Markov chain is not
stationary.

Define the empirical contrast

γn(t) = ‖t‖22 −
2

n

n∑
j=1

t(Zj)

where Zj := (Yj , Yj+1, Yj+2) and (Yj)1≤j≤n+2 are the observations. It is a biased estimator
of the L2 loss: for all t ∈ (L2(Y, µ))3,

E[γn(t)] = ‖t− g∗‖22 − ‖g∗‖22

14
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Algorithm 2: Least squares estimation of the emission densities of a HMM

Data: A sequence of observations (Y1, . . . , Yn+2), a dimension M and an
orthonormal basis Φ = (ϕ1, . . . , ϕM ).

Result: Least squares estimators π̂(M), Q̂(M) and (f̂
(M)
k )k∈X .

[Step 1] Compute the tensor M̂M defined by M̂M (a, b, c) := 1
n

∑n
s=1 ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)

for all a, b, c ∈ [M ].

[Step 2] Find a minimizer (π̂(M), Q̂(M), Ô) of (π,Q,O) 7−→ ‖M(π,Q,O) − M̂M‖2F where

• π ∈ RK is a probability distribution on X , i.e.
∑

k∈X πk = 1;

• Q ∈ RK×K is a transition matrix on X , i.e.
∑

k′∈X Q(k, k′) = 1 for all k ∈ X ;

• O is a M ×K matrix such that for all k ∈ X ,
∑M

b=1 O(b, k)ϕb ∈ F ;

• M(π,Q,O) ∈ RM×M×M is defined by

M(π,Q,O)(·, b, ·) = ODiag[π]QDiag[O(b, ·)]QO> for all b ∈ [M ].

[Step 3] Consider the emission densities estimators f̂ (M) := (f̂
(M)
k )k∈X defined by for all

k ∈ X , f̂
(M)
k :=

∑M
b=1 Ô(b, k)ϕb.

where g∗ = gπ
∗,Q∗,f∗ . Since the bias does not depend on the function t, one can hope that

the minimizers of γn are close to minimizers of ‖t− g∗‖2. We will show that this is indeed
the case.

The least squares estimators of all HMM parameters are defined for each model PM by

(π̂(M), Q̂(M), f̂ (M)) ∈ arg min
π∈∆,Q∈Q, f∈(PM∩F)K

γn(gπ,Q,f ).

The procedure is summarized in Algorithm 2. Note that with the notations of the algorithm,

γn(gπ,Q,O
>Φ) = ‖M(π,Q,O) − M̂M‖2F − ‖M̂M‖2F .

Then, the proof of the oracle inequality of Lehéricy (to appear) allows to get the following
result.

Theorem 9 Assume [HF], [HX] and [Hid] hold.
Then there exists constants C and n0 depending on CF ,2, CF ,∞ and Q∗ such that for

all n ≥ n0, for all t > 0, with probability greater than 1− e−t, one has for all M ∈M such
that M ≤ n:

‖ĝπ̂(M),Q̂(M),f̂ (M) − gπ∗,Q∗,f∗,(M)‖22 ≤ C
( t
n

+M
log(n)

n

)
.

In order to deduce a control of the error on the parameters–and in particular on the
emission densities–from the previous result, we will need to assume that the quadratic form
derived from the second-order expansion of (π,Q, f) ∈ ∆ × Q × FK 7−→ ‖gπ,Q,f − g∗‖22
around (π∗,Q∗, f∗) is nondegenerate.
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It is still unknown whether this nondegeneracy property is true for all parameters
(π∗,Q∗, f∗) such that [Hid] and [HX] hold. De Castro et al. (2016) prove it for K = 2
hidden states when only the emission densities are allowed to vary by using brute-force
computations. To do so, they introduce an (explicit) polynomial in the coefficients of π∗,
Q∗ and of the Gram matrix of f∗ and prove that its value is nonzero if and only if the
quadratic form is nondegenerate for the corresponding parameters. The difficult part of the
proof is to show that this polynomial is always nonzero.

For the expression of this polynomial–which we will write H–in our setting, we refer to
Section B.3. Note that Lehéricy (to appear) proves that this polynomial H is non identically
zero: it is shown that there exists parameters (π,Q, f) satisfying [HX] and [Hid] such that
H(π,Q, f) 6= 0, which means that the following assumption is generically satisfied:

[Hdet] H(π∗,Q∗, f∗) 6= 0.

The following result allows to lower bound the L2 error on the density of three con-
secutive observations by the error on the parameters of the HMM using this condition. It
is an improvement of Theorem 6 of De Castro et al. (2016) and Theorem 9 of Lehéricy
(to appear). The main difference is that the constant c∗(π∗,Q∗, f∗,F) does not depend on
the f around which the parameters are taken. This is crucial to obtain Corollary 11, from
which we will deduce [H0]. Note that we do not need f to be in a compact neighborhood of
f∗. Another improvement is that the constant in the minoration only depends on the true
parameters and on the set F .

Theorem 10 1. Assume that [HF] holds and that for all f ∈ F ,
∫
fdµ = 1.

Then there exist a lower semicontinuous function (π∗,Q∗, f∗) 7−→ c∗(π∗,Q∗, f∗,F)
that is positive when [Hid] and [Hdet] hold and a neighborhood V of f∗ in FK de-
pending only on π∗, Q∗, f∗ and F such that for all f ∈ V and for all π ∈ ∆, Q ∈ Q
and h ∈ FK ,

‖gπ,Q,h − gπ∗,Q∗,f‖22 ≥ c∗(π∗,Q∗, f∗,F)dperm((π,Q,h), (π∗,Q∗, f))2.

2. There exists a continuous function ε : (π∗,Q∗, f∗) 7→ ε(π∗,Q∗, f∗) that is positive when
[Hid] and [Hdet] hold and such that for all π ∈ ∆, Q ∈ Q and h ∈ (L2(Y, µ))K a
K-uple of probability densities such that dperm((π,Q,h), (π∗,Q∗, f∗)) ≤ ε(π∗,Q∗, f∗),
one has

‖gπ,Q,h − gπ∗,Q∗,f∗‖22 ≥ c0(π∗,Q∗, f∗)dperm((π,Q,h), (π∗,Q∗, f∗))2.

where

c0(π∗,Q∗, f∗) =
(infk∈X π

∗(k))σK(Q∗)4σK(G(f∗))2

4

∧ H(π∗,Q∗, f∗)

2(1 ∧K‖G(f∗)‖∞)(3K3(1 ∨ ‖G(f∗)‖4∞))K2−K/2 .

Proof Proof in Section B.4.
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Corollary 11 Assume [HX], [HF], [Hid] and [Hdet] hold. Also assume that for all
f ∈ F ,

∫
fdµ = 1.

Then there exists a constant n0 depending on CF ,2, CF ,∞ and Q∗ and constants M0 and
C ′ depending on F , Q∗ and f∗ such that for all n ≥ n0 and t > 0, with probability greater
than 1− e−t, one has for all M ∈M such that M0 ≤M ≤ n:

inf
τ∈S(K)

max
k∈X
‖f̂ (M)
k − f∗,(M)

τ(k) ‖
2
2 ≤ C ′

(
M

log(n)

n
+
t

n

)
.

Remark 12 Using the second point of Theorem 10, one can alternatively take n0 and M0

depending on F , Q∗ and f∗, and C ′ depending on CF ,2, CF ,∞, Q∗ and f∗ only. For instance,
one can take C ′ = C/c0(π∗,Q∗, f∗) with the notations of Theorems 9 and 10.

In particular, this means that the asymptotic variance bound of the least squares estima-
tors (and therefore the rate of convergence of the estimators selected by our state-by-state
selection method) does not depend on the set F , but only on the HMM parameters and on
the bounds CF ,2 and CF ,∞ on the square and supremum norms of the emission densities.
Note that this universality result is essentially an asymptotic one since it requires n0 to
depend on F in a non-explicit way.

Proof Let V be the neighborhood given by Theorem 10, then there exists M0 such that for
all M ≥M0, f∗,(M) ∈ V. Then Theorem 9 and Theorem 10 applied to π = π̂(M), Q = Q̂(M),
h = f̂ (M) and f = f∗,(M) for all M allow to conclude.

We may now state the following result which shows that the state-by-state selection
method applied to these estimators reaches the minimax rate of convergence (up to a loga-
rithmic factor) in an adaptive manner under generic assumptions. Its proof is the same as
the one of Corollary 6.

Corollary 13 Assume [HX], [HF], [Hid] and [Hdet] hold. Also assume that for all

f ∈ F ,
∫
fdµ = 1 and that for all k, there exists sk such that ‖f∗,(M)

k − f∗k‖2 = O(M−sk).
Then there exists a constant Cσ depending on CF ,2, CF ,∞, Q∗ and f∗ such that the following
holds.

Let C ≥ Cσ and let f̂ sbs be the estimators selected from the family (f̂ (M))M≤n with

σ(M) = C

√
M log(n)

n for all M , aligned like in Remark 7. Then there exists a random
permutation τ which does not depend on n such that

∀k ∈ X , E
[∥∥∥f̂ sbsτ(k) − f

∗
k

∥∥∥
2

]
= O

( n

log(n)

) −sk
2sk+1

 .

4. Numerical experiments

This section is dedicated to the discussion of the practical implementation of our method.
We run the spectral estimators on simulated data for different number of observations and
study the rate of convergence of the selected estimators for several variants of our method.
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Finally, we discuss the algorithmic complexity of the different estimators and selection
methods.

In Section 4.1, we introduce the parameters with which we generate the observations. In
Section 4.2, we discuss how to calibrate the constant of the penalty in practice. In Section
4.3, we introduce two other ways to select the final estimators, the POS and MAX variants.
Section 4.4 contains the results of the simulations for each variant and calibration method.
In Section 4.5, we present a cross validation procedure and compare its results with the one
obtained using our method. Finally, we discuss the algorithmic complexity of the different
algorithms and estimators in Section 4.6.

4.1 Setting and parameters

We take Y = [0, 1] equipped with the Lebesgue measure. We choose the approximation
spaces spanned by a trigonometric basis: PM := Span(ϕ1, . . . , ϕM ) with

ϕ1(x) = 1

ϕ2m(x) =
√

2 cos(2πmx)

ϕ2m+1(x) =
√

2 sin(2πmx)

for all x ∈ [0, 1] and m ∈ N∗. We will consider a hidden Markov model with K = 3 hidden
states and the following parameters:

• Transition matrix

Q∗ =

 0.7 0.1 0.2
0.08 0.8 0.12
0.15 0.15 0.7

 ;

• Emission densities (see Figure 1)

– Uniform distribution on [0; 1];

– Symmetrized Beta distribution, that is a mixture with the same weight of 2
3X

and 1 − 1
3X
′ with X,X ′ i.i.d. following a Beta distribution with parameters

(3, 1.6);

– Beta distribution with parameters (3, 7).

We generate n observations and run the spectral algorithm in order to obtain estimators
for the models PM with M_min ≤M ≤ M_max, m = 20 and r = d2 log(n)+2 log(M)e, where
M_min = 3 and M_max = 300. Finally, we use the state-by-state selection method to choose
the final estimator for each emission density. The main reason for using spectral estimators
instead of maximum likelihood estimation or least squares estimation is its computational
speed: it is much faster for large n than the least squares algorithm or the EM algorithm,
which makes studying asymptotic behaviours possible.

We made 300 simulations, 20 per value of n, with n taking values in {5×104, 7×104, 1×
105, 1.5× 105, 2.2× 105, 3.5× 105, 5× 105, 7× 105, 1× 106, 1.5× 106, 2.2× 106, 3.5× 106, 5×
106, 7× 106, 1× 107}.
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Figure 1: Emission densities. In all following figures, the uniform distribution corresponds
to the green lines, the Beta distribution to the red lines and the symmetrized
Beta distribution to the blue lines.

4.2 Penalty calibration

It is important to note that when considering spectral and least squares methods, the
penalty σ in the state-by-state selection procedure depends on the hidden parameters of
the HMM and as such is unknown in practice. This penalty calibration problem is well
known and several procedures exist that allow to solve it, for instance the slope heuristics
and the dimension jump method (see for instance Baudry et al. (2012) and references
therein). In the following, we will use the dimension jump method to calibrate the penalty
in the state-by-state selection procedure.

Consider a penalty shape penshape and define M̂k(ρ) the model selected for the hidden
state k by the state-by-state selection estimator using the penalty ρpenshape:

M̂k(ρ) ∈ arg min
M∈M

{Ak(M) + 2ρ penshape(M)}.

where
Ak(M) = sup

M ′∈M

{∥∥∥f̂ (M ′)
k − f̂ (M∧M ′)

k

∥∥∥
2
− ρ penshape(M

′)
}
.

The dimension jump method relies on the heuristics that there exists a constant C such
that C penshape is a minimal penalty. This means that for all ρ < C, the selected models

M̂k(ρ) will be very large, while for ρ > C, the models will remain small. This translates
into a sharp jump located around a value ρjump,k = C in the plot of ρ 7−→ M̂k(ρ). The
final step consists in taking twice this value to calibrate the constant of the penalty, thus
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selecting the model M̂(2ρjump,k). In practice, we take ρjump,k as the position of the largest

jump of the function ρ 7−→ M̂k(ρ).
Figure 2 shows the resulting dimension jumps for n = 220, 000 observations. Each

curve corresponds to one of the M̂k(ρ) and has a clear dimension jump, which confirms the
relevance of the heuristics. Several methods may be used to calibrate the constant of the
penalty:

eachjump. Calibrate the constant independently for each state. This method has the
advantage of being easy to calibrate since there is usually a single sharp jump in each
state’s complexity. However, our theoretical results do not suggest that the penalty
constant is different for each state;

jumpmax. Calibrate the constant for all states together using only the latest jump. This
consists in taking the maximum of the ρjump,k to select the final models. Since the
penalty is known up to a multiplicative constant and taking a constant larger than
needed does not affect the rates of convergence–contrary to smaller constants–this is
the “safe” option;

jumpmean. Calibrate the constant for all states together using the mean of the positions
of the different jumps.

We try and compare these calibration methods in Section 4.4.

4.3 Alternative selection procedures

4.3.1 Variant POS.

As mentionned in Section 2.2, it is also possible to select the estimators using the criterion

Ak(M) = sup
M ′≥M

{∥∥∥f̂ (M ′)
k − f̂ (M)

k

∥∥∥
2
− σ(M ′)

}
+

followed by
M̂k ∈ arg min

M∈M
{Ak(M) + 2σ(M)}.

This positivity condition was in the original Goldenshluger-Lepski method. The theoretical
guarantees remain the same as the previous method and both behave almost identically in
practice, as shown in Section 4.4.

4.3.2 Variant MAX.

In the context of kernel density estimation, Lacour et al. (2016) show that the Goldenshluger-
Lepski method still works when the biais estimate Ak(M) of the model M is replaced by
the distance between the estimator of the model M and the estimator with the smallest
bandwidth (the analog of the largest model in our setting). They also prove an oracle
inequality for this method after adding a corrective term to the penalty.

The following variant is based on the same idea. It consists in selecting the model

M̂k ∈ arg min
M∈M

{‖f̂ (Mmax)
k − f̂ (M)

k ‖2 + σ(M)}
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Figure 2: Selected complexities with respect to the penalty constant ρ for the same simu-
lation of n = 500, 000 observations. The colored dashed lines correspond to the
single-state complexities Mk(ρ).
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for each k ∈ X and takes

f̂k = f̂
(M̂k)
k ,

where σ is the same penalty as the one in the usual state-by-state selection method.
An advantage of this algorithm is its lower complexity, since it requires O(Mmax) com-

putations of L2 norms instead of O(M2
max). We do not study this method theoretically

in our setting. However, the simulations (and in particular Figure 4) show that it behaves
similarly to the standard state-by-state selection method in the asymptotic regime and even
has a smaller error for small number of observations. In addition, the dimension jumps are
much sharper for this method than for the usual state-by-state selection method (see Figure
2), which makes the calibration heuristics easier to use.

4.4 Results

Figure 3 shows the evolution of the error ‖f̂k − f∗k‖2 for each state k with respect to the
number of observations n, for all penalty calibration methods and all variants of the model
selection procedure. Figure 4 compares the evolution of the median error for the different
calibration methods and for the different selection variants, and Figure 5 compares two
estimators with the oracle estimators.

When the number of observations n is large enough, the logarithm of the error decreases
linearly with respect to log(n). This corresponds to the asymptotic convergence regime: the
error is expected to decrease as a power of the number of observations n when n tends to
infinity. The corresponding slopes are listed in Table 1.

For each state, the confidence intervals of the rates of all estimators–including the oracle
estimators–have a common intersection (except for the symmetrized Beta distribution in the
jumpmax MAX variant, whose estimators seem to converge faster than the others). This
tends to confirm that the calibration and selection variants are asymptotically equivalent.
This phenomenon is also visible in Figures 3 and 4: in the asymptotic regime, the errors
decrease in a similar way for all methods.

Furthermore, the rates of convergence are clearly distinct. The uniform distribution is
estimated with a rate of convergence of approximately n−1/2, which is also the best possible
rate (it corresponds to a parametric estimation rate). In comparison, the rate of convergence
for the symmetrized Beta distribution is much slower (around n−0.36). This shows that the
algorithm effectively adapts to the regularity of each state and that one irregular emission
density does not deteriorate the rates of convergence of the other densities.

Note that the above rates are in accordance with the minimax rates as far as the Hölder
regularity is concerned. The minimax Hölder rate for the symmetrized Beta (which is 0.6-
Hölder) is n−3/11, or approximately n−0.27, which means our estimator converges faster than
the minimax rate would suggest. The minimax Hölder rate for the Beta distribution (which
is 3-Hölder) is n−3/7, or approximately n−0.43, which is around the observed value.

4.5 Comparison with cross validation

In this section, we use a cross validation procedure based on our spectral estimators to
check whether our method actually improves estimation accuracy.œ

When estimating a density by taking an estimator within some class (the model), two
sources of error appear: the bias, that is the (deterministic) distance between the true
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Figure 3: Logarithm of the L2 error on each emission densities depending on the logarithm
of the number of observations for each of the selection and calibration methods.
Each color corresponds to one emission density. The full lines are the medians of
the 20 observations and the dashed ones are the 25 and 75 percentiles.
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Figure 4: Superposition of the median lines of Figure 3 by selection method and by cali-
bration variant. Each color corresponds to one emission density. In Subfigures
(a)-(c), the full lines correspond to the basic selection method, the dashed ones
to the POS method and the dotted ones to the MAX method. In Subfigures
(d)-(f), the full lines correspond to the eachjump method, the dashed ones to the
jumpmax method and the dotted ones to the jumpmean method.

density and the model, and the variance, that is the (random) error of the estimation within
the model. Small models will have a large bias but a small variance, while large models
will have a small bias and a large variance. The core issue of model selection is to select a
model that minimizes the total error, that is large enough to accurately describe the true
densities and small enough to prevent overfitting: in other words, perform a bias-variance
tradeoff.

Cross validation seeks to achieve such a tradeoff by computing an estimate of the total
error. This is done by splitting the sample into two sets, the training sample being used
for the calibration of the estimator and the validation sample for measuring the error.
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Figure 5: Comparison of the errors for the eachjump MAX method (full lines), for the
eachjump method (dashed lines) and for the oracle estimators (dotted lines).

For each k, the oracle estimator f̂oracle
k is defined as the f̂

(M)
k which minimizes

‖f̂ (M)
k − f∗k‖2.

Taking the mean of these errors for different splits between training and validation samples
provides an estimator of the total error. This method has become popular for its simplicity
of use. We refer to the survey of Arlot et al. (2010) for an overview on this method and its
guarantees.

4.5.1 Risk

We use the least squares criterion of Algorithm 2 to quantify the error of the estimators.
Since the guarantees on spectral estimators rely on the L2 norm, a least squares criterion is
more natural than the likelihood. In addition, the spectral estimators might take negative
values depending on the orthonormal basis, which is not a problem as far as L2 error is
concerned but can be an issue for the likelihood.

Let us first recall this criterion. Given an orthonormal basis (ϕi)i∈N of L2(Y, µ), define
the coordinate tensor of the empirical distribution of the triplet (Y1, Y2, Y3) on this basis by

M̂(a, b, c) :=
1

n

n∑
s=1

ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2) for all a, b, c ∈ N.

Given a transition matrix Q of size K, a stationary distribution π of Q and a vector of
densities f = (f1, . . . , fK), define the coordinate matrix O of f by O(b, k) = 〈ϕb, fk〉. Let
M(π,Q,f) be the coordinate tensor of the distribution of (Y1, Y2, Y3) under the parameters
(π,Q, f), that is

M(π,Q,f)(·, b, ·) = ODiag[π]QDiag[O(b, ·)]QO> for all b ∈ N.
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Estimator
Convergence rate exponents

Uniform Sym. Beta Beta

Eachjump −0.500± 0.046 −0.347± 0.007 −0.470± 0.015

Eachjump POS −0.503± 0.047 −0.327± 0.008 −0.469± 0.015

Eachjump MAX −0.480± 0.052 −0.335± 0.009 −0.449± 0.015

Jumpmean −0.532± 0.048 −0.349± 0.006 −0.471± 0.017

Jumpmean POS −0.540± 0.048 −0.350± 0.006 −0.456± 0.016

Jumpmean MAX −0.493± 0.049 −0.374± 0.009 −0.437± 0.015

Jumpmax −0.500± 0.046 −0.349± 0.006 −0.464± 0.016

Jumpmax POS −0.492± 0.046 −0.358± 0.006 −0.442± 0.015

Jumpmax MAX −0.480± 0.052 −0.404± 0.009 −0.466± 0.015

Cross Validation −0.434± 0.007 −0.263± 0.011 −0.377± 0.008

Oracle −0.517± 0.048 −0.360± 0.006 −0.459± 0.017

Minimax (Hölder) −0.5 −3/11 ≈ −0.273 −3/7 ≈ −0.429

Table 1: Exponents of the rates of convergence for the different algorithms. The rates are
obtained from a linear regression with the relation log(‖f̂k − f∗k‖2) ∼ log(n) for

the estimators f̂k computed with n ≥ 700, 000 observations (n ≥ 1, 000, 000 for
the cross validation estimators from Section 4.5). The smaller the exponent, the
faster the estimators converge.

The empirical least squares criterion is ‖M(π,Q,f)−M̂‖2F . It corresponds to the L2 error
between the empirical distribution of three consecutive observations and the theoretical
distribution under the parameters (π,Q, f).

4.5.2 Implementation

We use 10-fold cross validation, that is we split the sequence into 10 segments of same
size I1, . . . , I10. In order to avoid interferences between samples, we prune the ends of
each segment, so that the observations in each segment can be considered independent. In
practice, we take a gap of 30 observations between two segments.

We ran 150 simulations, 10 per value of n, with the same parameters as in Section 4.1.
Each simulation is as follows.

For each segment Ij , we run the spectral algorithm on all models PM for M_min ≤
M ≤ M_max using only the observations from the other segments. The transition matrix
is estimated using an additional step of the spectral method which is adapted from Steps
8 and 9 of Algorithm 1 of De Castro et al. (2017). Then, we compute the least squares
criterion for the estimated parameters using the segment Ij as observed sample. Finally,
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Figure 6: Selected model dimensions for each n using our state-by-state selection method
(left) and 10-fold cross validation (right). The full lines are the median model
dimensions and the dashed lines are the 25 and 75 percentiles.

for each M , we average this error on all segments Ij , which gives the least squares cross
validation error EVC(M).

This cross validation criterion is used to select one model M̂VC ∈ arg minMEVC(M),

from which we construct the final estimators of the emission densities f̂k = f̂
(M̂VC)
k for all

k. Note that the selected model is the same for all emission densities.

4.5.3 Results

Figure 6 compares the selected model dimensions for each n using our state-by-state selec-
tion method and using the cross validation method. When the number of observations n
becomes larger than 106, the cross validation tends to always pick the largest model, which
means that it does not prevent overfitting as well as our method.

The L2 errors on the emission densities are shown in Figure 7. It appears that the cross
validation has a lower error for small n (n ≤ 350, 000) than our method. However, for larger
values of n, the errors becomes larger than the ones of our method (see Figure 5) by up
to one order of magnitude, and only start decreasing once the selected model is set to the
maximum dimension.

Finally, the estimated rates of convergence are shown in Table 1. Our state-by-state
method outperforms the cross validation method for all emission densities. The cross valida-
tion estimators only reach the minimax rate of convergence for the less regular density: the
symmetrized Beta, and even then they converge slower than the state-by-state estimator.
All other emission densities are estimated slower than their minimax rate.
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Figure 7: Error of the cross validation estimators for each n using 10-fold cross validation.
The full lines are the median errors for each density and the dashed lines are the
25 and 75 percentiles.

4.6 Algorithmic complexity

In the following, we treat K as a constant as far as the algorithmic complexity is concerned.
The different complexities are summarized in Table 2.

4.6.1 Spectral algorithm (see Section 3.2)

We consider the algorithmic complexity of estimating the emission densities for all models
M such that Mmin ≤ M ≤ Mmax with n observations and auxiliary parameters r and m
depending on n and M (upper bounded by mmax and rmax).

Step 1 can be computed for all models with O(nMmaxm
2
max) operations. It is the

only step whose complexity depends on n. Steps 2 and 3 require O(m3M) operations
for each model and Steps 4 to 7 require O(Mr) operations for each model, for a total of
O(nMmaxm

2
max +M2

maxm
3
max +M2

maxrmax) operations.

In practice, one takes m ∝ log(n), r ∝ log(n) + log(M) and Mmax ≤ n, so that the total
complexity of the spectral algorithm is O(n log(n)2Mmax).

In comparison, the complexity of the spectral algorithm of De Castro et al. (2017) is
O(nM3

max) because of Step 1. This becomes much larger than our complexity when Mmax

grows as a power of n (which is necessary in order to reach minimax rates).

4.6.2 Least squares algorithm (see Section 3.3)

We consider the algorithmic complexity of estimating the emission densities for all models
M such that Mmin ≤M ≤Mmax with n observations.
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Step 1 is similar to the one of the spectral algorithm, but with O(nM3
max) operations.

The complexity of Step 2 is more difficult to evaluate. Since the criterion is nonconvex,
finding the minimizer requires to run an approximate minimization algorithm whose com-
plexity Cn will depend on the desired precision–which will in turn depend on the number of
observations n–and on the initial points. As discussed in Lehéricy (to appear), this is usu-
ally the longest step when computing least squares estimators. Thus, the total complexity
of the least squares algorithm is O(nM3

max + Cn).

Note that despite the worse sample complexity, the least squares algorithm is tractable
and can greatly improve the estimation for small sample size. As shown in Section 4.4, the
spectral algorithm is unstable for small samples, which makes the state-by-state selection
procedure return abnormal results. This can be explained by the matrix inversions of the
spectral method, which sometimes lead to nearly singular matrices when the noise is too
large. On the other hand, the least squares method does not involve any matrix inversion,
and often gives better results than the spectral estimators, as shown in De Castro et al.
(2016), thus making it a relevant choice for small to medium data sets.

4.6.3 Selection method and POS variant (see Sections 2.2 and 4.3)

We consider the algorithmic complexity of selecting estimators from a family (f̂ (M))Mmin≤M≤Mmax

of estimators. The selection algorithms can be decomposed in two parts.

• Compute the distances ‖f̂ (M)
k − f̂ (M ′)

k ‖2 for all M , M ′ and k. This has complexity
O(M3

max): it requires to compute the L2 distance of at most M2
max couples of functions

in a Hilbert space of dimension Mmax.

• Compute ρ̂k defined as the abscissa of the largest jump of the function ρ 7−→ M̂k(ρ)
for all k, where M̂k is defined as in Section 4.2. Note that computing M̂k(ρ) requires
O(M2

max) operations. An approximate value of ρ̂k can be computed in O(log(ρ̂k)M
2
max)

operations, which is usually O(M2
max).

Once the ρ̂k are known, it is possible to calibrate the penalty in constant time for the three
calibrations methods (eachjump, jumpmax and jumpmean) and to select the final models
in O(M2

max) operations.

Thus, the total complexity of the selection algorithm and of its POS variant is O(M3
max).

4.6.4 Selection method, MAX variant (see Section 4.3)

In the MAX variant, the first step of the standard selection procedure is replaced by com-

puting the distances ‖f̂ (Mmax)
k − f̂

(M)
k ‖2 for all M . This has complexity O(M2

max). The
complexity of the other steps remains unchanged.

Thus, the total complexity of the MAX variant of the selection algorithm is O(M2
max).

5. Application to real data

In this section, we present the results of our method on two sets of trajectories. Trajectories
are a typical example of dependent data that shows several behaviours depending on the
activity of the entity being tracked, which makes hidden Markov models a popular modelling
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Algorithm Complexity

Preliminary
estimators

Spectral method O(n log(n)2Mmax)

Spectral method (De Castro et al. (2017)) O(nM3
max)

Least squares method O(nM3
max + Cn)

Selection step Standard and POS variant O(M3
max)

MAX variant O(M2
max)

Table 2: Complexities of the different algorithms. n is the number of observations, Mmax

is the largest model dimension considered.

choice. For instance, the movement of a fisher is not the same depending on whether he’s
travelling to the next fishing zone or actually fishing.

The first data set follows artisanal fishers in Madagascar. The second one contains
seabird movements. Studying the movements of fishers and seabirds has many applications,
for instance understanding the fishing habits of the tracked entity, controlling the fishing
pressure on local ecosystems and monitoring the dynamics of coastal ecosystems, see for
instance Boyd et al. (2014); Vermard et al. (2010) and references therein.

5.1 Artisanal fishery

We use GPS tracks of artisanal fishers with a regular sampling period of 30 seconds. These
tracks were produced by Faustinato Behivoke (Institut Halieutiques et des Sciences Marines,
Université de Toliara, Madagascar) and Marc Léopold (IRD), who recorded artisanal fishers
from Ankilibe, in Madagascar. Their fishing method is a seine netting.

From this data, we compute the velocity of the fisher during each time step. In order to
estimate densities on [0, 1], we divide this velocity by an upper bound of the maximum ob-
served velocity. We consider the observation space Y = [0, 1] endowed with the dominating
measure δ0 +Leb, where δ0 is the dirac measure in zero and Leb is the Lebesgue measure on
[0, 1]. As a proof of concept, we use the orthonormal basis consisting of the trigonometric
basis on [0, 1] and the indicator function of {0}, that is the family (ϕm)m∈N defined on [0, 1]
by

if x = 0,

{
ϕ0(x) = 1

ϕm(x) = 0 for all m ∈ N∗

if x 6= 0,


ϕ0(x) = 0

ϕ1(x) = 1

ϕ2m(x) =
√

2 cos(2πmx) for all m ∈ N∗

ϕ2m+1(x) =
√

2 sin(2πmx) for all m ∈ N∗

The results using M_max = 1000 are shown in Figures 8 and 9. We took the normalizing
velocity large enough that all observed normalized velocities belong to [0, 0.8], hence the
plot betweeen 0 and 0.8 for the densities.
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Figure 8: Selected complexities and estimated densities on artisanal fishery data (fisher 1,
n = 17, 300). Green = state 1, blue = state 2. The dirac component is shown as
a dot at y = 0. The selected dimensions are (14, 41).
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Figure 9: Selected complexities and estimated densities on artisanal fishery data (fisher 2,
n = 11, 600). Green = state 1, blue = state 2. The dirac component is shown as
a dot at y = 0. The selected dimensions are (68, 18).

31



Luc Lehéricy

0.0 0.5 1.0 1.5 2.0

0
20

0
40

0
60

0
80

0
10

00

Standard criterion

S
el

ec
te

d 
co

m
pl

ex
iti

es

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
10

20
30

40
50

60

es
tim

at
ed

 e
m

is
si

on
 d

en
si

tie
s

Figure 10: Selected complexities and estimated densities for Cormorant d’s trajectory (n =
2, 891). Green = state 1, blue = state 2, red = state 3. The selected dimensions
are (80, 110, 15).

In both cases, the selected model complexities differ greatly depending on the state.
This comes from the fact that in both cases, one of the density is spiked, thus requiring
more vectors of the orthonormal basis to be approximated. This illustrates that our method
is able to estimate the smoother densities with fewer vectors of the basis, thus preventing
overfitting.

As a side note, we needed considerably less observations than in the simulations: around
10,000, compared to 500,000 in the simulations. This can be explained by the fact that each
state is very stable, with an estimated probability of leaving the states below 0.02–compared
to 0.3 in the simulations. This is encouraging, as hidden states in real data are expected to
be rather stable, especially when the sampling frequency is high, as long as the conditional
independance of the observations can be assumed to hold.

5.2 Seabird foraging

In this Section, we consider the seabird data from Bertrand et al. (2015) and we focus on
the tracks named cormorant d in this paper.

We apply the same transformation as in the previous section to obtain normalized
velocities in [0, 0.8] (after removal of anomalous velocities exceeding 150 m/s) and run the
spectral algorithm with the trigonometric basis on [0, 1] plus the indicator of {0}. The
results are shown in Figure 10.

Note that the use of the trigonometric basis allows the estimated densities to take
negative values. This is not a problem as far as minimax rates of convergence (in L2 norm)
are concerned, however this can become an issue if one wants to use these densities in a
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Figure 11: Projection of the estimated densities of Figure 10 for Cormorant d on the set of
probability densities (left) and comparison with an estimation with histogram
densities on a regular partition of size 300 using the EM algorithm (right).

forward-backward algorithm in order to get an estimator of the hidden states. One way to
circumvent this problem is to use simplex projection to compute an approximation of the
projection of these estimated density on the simplex of all probability densities. Note that
since this is an L2 projection on a convex set which contains the true densities, the projected
densities have an even smaller error, thus keeping the minimax rate of convergence of the
original estimators. The resulting densities are shown in Figure 11

The number of observations in this setting is even smaller than for the fishery’s data set:
our algorithm was able to recover three emission densities from less than 3,000 observations,
despite the states being less stable than in the fishery data set: the diagonal terms of the
estimated transition matrix using the EM algorithm are (0.83, 0.93, 0.98). In addition, the
result of our method is consistent with other estimation methods, as shown in Figure 11:
estimating the parameters with the EM algorithm using piecewise constant densities leads
to a very similar result.

6. Conclusion and perspectives

We propose a state-by-state selection method to infer the emission densities of a HMM.
Using a family of estimators, our method selects one estimator for each hidden state in a
way that is adaptive with respect to this state’s regularity. This method does not depend on
the type of preliminary estimator, as long as a suitable variance bound is available. As such,
it may be seen as a plug-in that takes a family of estimators and the corresponding variance
bound and outputs the selected estimator. Note that its complexity does not depend on
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the number of observations used to compute the estimators, which makes it applicable to
arbitrarily large data sets.

To apply this method, we present two families of estimators: a least squares estimator
and a spectral estimator. For both, we prove a bound on their variance and show that
this bound allows to recover the minimax rate of convergence separately on each hidden
state, up to a logarithmic factor. The variance bounds are similar to a BIC penalty, with
an additional logarithmic factor for the spectral estimators.

We carry out a numerical study of the method and some variants on simulated data. We
use the spectral estimators, which are both fast and don’t suffer from initialization issues,
unlike the least squares and maximum likelihood estimators. The simulations show that
our selection method is very fast compared to the computation of the estimators and that
indeed, the final estimators reach the minimax rate of convergence on each state.

Then, we compare our method with a cross validation estimator based on a least square
risk. This estimator only reaches the minimax rate corresponding to the worst regularity
among the emission densities and fails to select models with small dimensions. It is still
noteworthy that the cross validation returns relevant results for small sample sizes, whereas
our method requires the sample size to be large enough to work properly. An interesting
problem would be to investigate whether cross validation or other methods can be combined
with our state-by-state selection method to give an algorithm that is both fast, stable for
small sample sizes and optimal in the asymptotic setting.

Finally, we apply our algorithm to real trajectory data sets. On this data, our method
proves that it is able to match the regularity of the underlying emission densities. In addi-
tion, it is able to produce sensible results with far fewer observations than in our simulation
study.

Our state-by-state selection method can be easily applied to multiview mixture models
(also named mixture models with repeated measurement, see for instance Bonhomme et al.
(2016a) and Gassiat et al. (2016)). Let us first describe the model. A multiview mixture
model consists of two random variables, a hidden state U and an observation vector Y :=
(Yi)i∈[m] such that conditionally to U , the components Yi of Y are independent with a
distribution depending only on U and i. Let us assume that U takes its values in a finite
set X of size K and that the Yi have some density f∗u,i conditionally to U = u with respect
to a dominating measure. A question of interest is to estimate the densities f∗u,i from a
sequence of observed (Yn)n≥1.

Our state-by-state selection method can be applied directly to such a model as long as
estimators with a proper variance bound are available (see assumption [H(ε)] in Section
2.1). Indeed, we never use the dependency structure of the model. Regarding the develop-
ment of preliminary estimators, multiview mixture models appear closely related to hidden
Markov models: Anandkumar et al. (2012) and Bonhomme et al. (2016b) develop spectral
methods that work for both multiview mixtures and HMMs at the same time using the
same theoretical arguments. Thus, it seems clear that variance bounds such as the ones we
developed can also be written for multiview mixture models.
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Algorithm 3: Spectral estimation of the emission densities of a HMM (full version)

Data: A sequence of observations (Y1, . . . , Yn+2), two dimensions m ≤M , an
orthonormal basis (ϕ1, . . . , ϕM ) and number of retries r.

Result: Spectral estimators (f̂
(M,r)
k )k∈X , Q̂ and π̂.

[Step 1] Consider the following empirical estimators: for any a, c ∈ [m] and b ∈ [M ],

• L̂m(a) := 1
n

∑n
s=1 ϕa(Ys)

• M̂m,M,m(a, b, c) := 1
n

∑n
s=1 ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)

• N̂m,M (a, b) := 1
n

∑n
s=1 ϕa(Ys)ϕb(Ys+1)

• P̂m,m(a, c) := 1
n

∑n
s=1 ϕa(Ys)ϕc(Ys+2).

[Step 2] Let Ûm be the m×K matrix of orthonormal left singular vectors and V̂M be the
M ×K matrix of orthonormal right singular vectors of N̂m,M corresponding to its
top K singular values.

[Step 3] Form the matrices for all b ∈ [M ], B̂(b) := (Û>mP̂m,mÛm)−1Û>mM̂m,M,m(. , b, . )Ûm.

[Step 4] Set (Θi)1≤i≤r r i.i.d. (K ×K) unitary matrix uniformly drawn. Form the matrices
for all k ∈ X and i ∈ [r], Ĉi(k) :=

∑M
b=1(V̂MΘi)(b, k)B̂(b).

[Step 5] Compute R̂i a (K ×K) unit Euclidean norm columns matrix that diagonalizes the
matrix Ĉi(1): R̂−1

i Ĉi(1)R̂i = Diag(Λ̂i(1, 1), . . . , Λ̂i(1,K)).

[Step 6] Set for all k, k′ ∈ X , Λ̂i(k, k
′) := (R̂−1

i Ĉi(k)R̂i)(k
′, k′). Choose i0 maximizing

mink mink1 6=k2 |Λ̂i(k, k1)− Λ̂i(k, k2)| and set Ô := V̂MΘi0Λ̂i0 .

[Step 7] Consider the emission densities estimators f̂ (M,r) := (f̂
(M,r)
k )k∈X defined by for all

k ∈ X , f̂
(M,r)
k :=

∑M
b=1 Ô(b, k)ϕb.

[Step 8] Let Ôm be the m×K matrix containing the first m rows of Ô. Set

π̂ = Π∆

(
(Û>mÔm)−1Û>mL̂m

)
where Π∆ is the L2 projection onto the probability

simplex.

[Step 9] Let Q̂ be the transition matrix defined by

Q̂ = ΠTM

(
(Û>mÔmDiag[π̂])−1Û>mN̂m,MV̂M (Ô>V̂M )−1

)
where ΠTM is the projection onto the set of transition matrices. This projection is
obtained by projecting each line of the matrix onto the probability simplex.

Appendix B. Proofs

B.1 Proof of Lemma 1

Let τn,M be the permutation that minimizes τ 7−→ max
k∈X

∥∥∥f̂ (M)
k − f∗,(M)

τ(k)

∥∥∥
2
. [H(ε)] means

that with probability 1− ε, one has max
k∈X

∥∥∥f̂ (M)
k − f∗,(M)

τ(k)

∥∥∥
2
≤ σ(M)

2
.
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Let M ∈ M. Let us show that

∥∥∥∥f̂ (M)

τ−1
n,M (k′)

− f̂ (M0)

τ−1
n,M0

(k)

∥∥∥∥
2

>

∥∥∥∥f̂ (M)

τ−1
n,M (k)

− f̂ (M0)

τ−1
n,M0

(k)

∥∥∥∥
2

for

all k, k′ ∈ X such that k′ 6= k. If this holds, then the definition of τ̂ (M) implies that

τ̂ (M) = τ−1
n,M ◦ τn,M0 . Thus, one has max

k∈X

∥∥∥f̂ (M)
k,new − f

∗,(M)
τn,M0

(k)

∥∥∥
2
≤ σ(M)

2
, which is exactly

Equation (1) with τn = τn,M0 .

Applying the triangular inequality leads to∥∥∥∥f̂ (M)

τ−1
n,M (k)

− f̂ (M0)

τ−1
n,M0

(k)

∥∥∥∥
2

≤
∥∥∥∥f̂ (M)

τ−1
n,M (k)

− f∗,(M)
k

∥∥∥∥
2

+
∥∥∥f∗,(M)

k − f∗,(M0)
k

∥∥∥
2

+

∥∥∥∥f∗,(M0)
k − f̂ (M0)

τ−1
n,M0

(k)

∥∥∥∥
2

≤σ(M)

2
+BM,M0 +

σ(M0)

2

and ∥∥∥∥f̂ (M)

τ−1
n,M (k′)

− f̂ (M0)

τ−1
n,M0

(k)

∥∥∥∥
2

≥
∥∥∥f∗,(M0)

k′ − f∗,(M0)
k

∥∥∥
2
−
∥∥∥∥f̂ (M)

τ−1
n,M (k′)

− f∗,(M)
k′

∥∥∥∥
2

−
∥∥∥f∗,(M)

k′ − f∗,(M0)
k′

∥∥∥
2
−
∥∥∥∥f∗,(M0)

k − f̂ (M0)

τ−1
n,M0

(k)

∥∥∥∥
2

≥m(f∗,M0)− σ(M)

2
−BM,M0 −

σ(M0)

2
.

Thus, the result holds as soon as m(f∗,M0)− σ(M)
2 −BM,M0−

σ(M0)
2 > σ(M)

2 +BM,M0 + σ(M0)
2 ,

which is the condition of Lemma 1.

B.2 Proof of Theorem 5

The structure of the proof is the same as the one of Theorem 3.1 of De Castro et al. (2017).
The first difference lies in the fact that we consider different models for each component

of the tensors N̂m,M and M̂m,M,m in Step 1. As a consequence, we use the left and right

singular vectors of N̂m,M instead of just the right singular vectors of P̂m,m. A careful
reading shows that their proof can be adapted straightforwardly to this situation.

The second difference consists in generating several independant random unitary ma-
trices in Step 4 and keeping the one that separates the eigenvalues of all Ĉi(k) best. This
allows to replace Lemma F.6 of De Castro et al. (2017) by the following one, based on the
independence of the unitary matrices:

Lemma 14 For all x > 0 and r ∈ N∗,

P

[
∀k, k1 6= k2, |Λ̂i0(k, k1)− Λ̂i0(k, k2)| ≥

2e−x/r(1− ε2Nm,M
)1/2

√
eK5/2(K − 1)

γ(OM )

]
≥ 1− e−x

and

P

[
‖Λ̂i0‖∞ ≥

1 +
√

2
√
x+ log(K2r)√
K

‖OM‖2,∞

]
≤ e−x,

The notations εNm,M
(or εPM

in the original proof), γ(OM ) et ‖OM‖2,∞ are introduced in
De Castro et al. (2017).

Using this lemma, their proof leads to our result by taking r = x = t.
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B.3 Definition of the polynomial H

B.3.1 Definition

We parametrize the application

(π,Q, f) ∈ ∆×Q× Span(f∗)K 7−→ ‖gπ,Q,f − gπ∗,Q∗,f∗‖22 (3)

in the following way. For p ∈ RK−1, q ∈ RK×(K−1) and A ∈ RK×(K−1), define the extensions

• p̄ ∈ RK defined by p̄(k) = p(k) for all k ∈ [K − 1] and p̄(K) = −
∑

k∈[K−1] p(k);

• q̄ ∈ RK×K by q̄(k,K) = −
∑

k′∈[K−1] q(k, k
′);

• Ā ∈ RK×K by Ā(k,K) = −
∑

k′∈[K−1]A(k, k′).

p̄ corresponds to π − π∗, q̄ to Q − Q∗ and A to the components of f − f∗ on f∗ (which
is a basis as soon as [Hid] holds). The condition on the last component of p̄ and of each
line of q̄ and Ā follows from the fact that p̄ corresponds to the difference of two probability
vectors, q̄ corresponds to the difference of two transition matrices and Ā correspond to the
difference of two vectors of probability densities on a basis of probability densities.

Then, consider the quadratic form derived from the Taylor expansion of

(p, q, A) ∈ RK−1 × RK×(K−1) × R(K−1)×K 7−→ ‖gπ∗+p̄,Q∗+q̄,f+Āf∗ − gπ∗,Q∗,f∗‖22.

Let M be the matrix associated to this quadratic form. We define H as the determinant
of M . Direct computations show that H is a polynomial in the coefficients of π∗, Q∗ and
G(f∗).

B.3.2 Link between H and the quadratic form from Equation (3)

The goal of this section is to show howH can be used to lower bound the quadratic form from
Equation (3) by a positive constant times the distance between (π,Q, f) and (π∗,Q∗, f∗).
We will not need the assumptions [Hid], [HF] or [Hdet] unless specified otherwise.

Let us start by the relation between the norms of (p, q, A) and (p̄, q̄, Ā).

Lemma 15 For all (p, q, A) ∈ RK−1 × RK×(K−1) × R(K−1)×K ,

‖p‖22 ≤ ‖p̄‖22 ≤ K‖p‖22,
‖q‖2F ≤ ‖q̄‖2F ≤ K‖q‖2F ,
‖A‖2F ≤ ‖Ā‖2F ≤ K‖A‖2F .

Proof ‖p‖22 ≤ ‖p̄‖22 is immediate. Then,

‖p̄‖22 =‖p‖22 +

 ∑
k∈[K−1]

p(k)

2

≤‖p‖22 + (K − 1)
∑

k∈[K−1]

p(k)2

=K‖p‖22.
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The proof is the same for q and A.

The next lemma will be used to link the norms of A and Af .

Lemma 16 For all Ā ∈ RK×K and f∗ ∈ (L2(Y, µ))K ,

σK(G(f∗))‖Ā‖2F ≤
∑
k∈X
‖(Āf∗)k‖22 ≤ K‖G(f∗)‖∞‖Ā‖2F

Proof For the first inequality, we use that for all k ∈ X ,

‖(Āf∗)k‖22 =Ā(k, ·)G(f∗)Ā(k, ·)>

≥σK(G(f∗))‖Ā(k, ·)‖22

and the inequality follows by summing over k.
For the second inequality,∑

k∈X
‖(Āf∗)k‖22 =

∑
k∈[K]

∫
(Āf∗)k(x)2µ(dx)

=
∑
k∈[K]

∫ ∑
j∈[K]

Ā(k, j)f∗j (x)

2

µ(dx)

≤
∑
k∈[K]

∫
K
∑
j∈[K]

Ā(k, j)2(f∗j )2(x)µ(dx)

≤K

 ∑
k,j∈[K]

Ā(k, j)2

 sup
j∈X

∫
(f∗j )2(x)µ(dx)

=K‖Ā‖2F ‖G(f∗)‖∞.

Finally, we will use the following result of Lehéricy (to appear) (Section B.2) in order to
upper bound the spectrum of the matrix M .

Lemma 17 For all π1, π2 ∈ ∆, for all Q1,Q2 ∈ Q and for all f1, f2 ∈ (L2(Y, µ))K ,

‖gπ1,Q1,f1 − gπ2,Q2,f2‖2 ≤
√

3K(‖G(f1)‖3∞ ∨ ‖G(f2)‖3∞)dperm((π1,Q1, f1), (π2,Q2, f2))

Together, these results imply that for all (p, q, A),

‖gπ∗+p̄,Q∗+q̄,f∗+Āf∗−gπ∗,Q∗,f∗‖22
≤3K(‖G(f∗ + Āf∗)‖3∞ ∨ ‖G(f∗)‖3∞)(‖p̄‖22 + ‖q̄‖2F +

∑
k∈X
‖(Āf)k‖2F )

≤3K‖G(f∗)‖3∞(1 +K2‖A‖2F )3(K‖p‖22 +K‖q‖2F +K2‖G(f∗)‖∞‖A‖2F )
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so that σ1(M) ≤
√

3K3(1 ∨ ‖G(f)‖2∞). Since H =
∏(K−1)(2K+1)
i=1 σi(M), one has

σ(K−1)(2K+1)(M) ≥ H

(3K3(1 ∨ ‖G(f)‖4∞))K2−K/2 .

Now, assume that [Hid] holds, so that σK(G(f∗)) > 0, then

‖gπ∗+p̄,Q∗+q̄,f∗+Āf∗ − gπ∗,Q∗,f∗‖22 ≥σ(K−1)(2K+1)(M)(‖p‖22 + ‖q‖2F + ‖A‖2F )

+ o(‖p‖22 + ‖q‖2F + ‖A‖2F )

≥
σ(K−1)(2K+1)(M)

1 ∧K‖G(f∗)‖∞

(
‖p̄‖22 + ‖q̄‖2F +

∑
k∈X
‖(Āf∗)k‖2F

)

+ o

(
1

1 ∧ σK(G(f∗))

(
‖p̄‖22 + ‖q̄‖2F +

∑
k∈X
‖(Āf∗)k‖2F

))
and finally

‖gπ∗+p̄,Q∗+q̄,f∗+Āf∗ − gπ∗,Q∗,f∗‖22

≥ c2(π∗,Q∗, f∗)

(
‖p̄‖22 + ‖q̄‖2F +

∑
k∈X
‖(Āf∗)k‖2F

)

+ o

(
‖p̄‖22 + ‖q̄‖2F +

∑
k∈X
‖(Āf∗)k‖2F

)
(4)

where

c2(π∗,Q∗, f∗) =
H

(1 ∧K‖G(f∗)‖∞)(3K3(1 ∨ ‖G(f∗)‖4∞))K2−K/2

is positive as soon as [Hid] and [Hdet] hold.

B.4 Proof of Theorem 10

Let
Nf (p, q,h) = ‖gπ∗+p,Q∗+q,f+h − gπ∗,Q∗,f‖22

and
‖(p, q,h)‖2f = dperm((π∗ + p,Q∗ + q, f + h), (π∗,Q∗, f))2.

We want to show that there exists a constant c∗ > 0 such that there exists a neighborhood
V of f∗ such that if one writes

cf := inf
p∈(∆−∆), q∈(Q−Q), h∈(F−F)K

Nf (p, q,h)

‖(p, q,h)‖2f
then inff∈V cf ≥ c∗.

The proof follows the structure of the proof of Theorem 6 of De Castro et al. (2016). It
consists of three steps: the first one controls the component of h that is orthogonal to f .
This makes it possible to restrict h to the finite-dimensional space spanned by f in the two
other parts. The second step controls the case when h is small, so that the behaviour of Nf

is given by its quadratic form, and the last step controls the case where h is far from zero.
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B.4.1 The orthogonal part.

Let u be the orthogonal projection of h on Span(f). Then

Nf (p, q,h) = Nf (p, q,u) +Mf (p, q,u,h− u)

where

Mf (p, q,u,a) =
∑

i1,j1,k1

∑
i2,j2,k2

(π∗ + p)(i1)(Q∗ + q)(i1, j1)(Q∗ + q)(j1, k1)

(π∗ + p)(i2)(Q∗ + q)(i2, j2)(Q∗ + q)(j2, k2)(
〈ai1 , ai2〉〈(f + u)j1 , (f + u)j2〉〈(f + u)k1 , (f + u)k2〉

+ 〈(f + u)i1 , (f + u)i2〉〈aj1 , aj2〉〈(f + u)k1 , (f + u)k2〉
+ 〈(f + u)i1 , (f + u)i2〉〈(f + u)j1 , (f + u)j2〉〈ak1 , ak2〉

+ 〈ai1 , ai2〉〈aj1 , aj2〉〈(f + u)k1 , (f + u)k2〉
+ 〈ai1 , ai2〉〈(f + u)j1 , (f + u)j2〉〈ak1 , ak2〉
+ 〈(f + u)i1 , (f + u)i2〉〈aj1 , aj2〉〈ak1 , ak2〉

+ 〈ai1 , ai2〉〈aj1 , aj2〉〈ak1 , ak2〉
)
.

Let us write Π′ the matrix whose diagonal terms are the elements of π∗ + p and Q′ the
matrix Q∗ + q, then Mf can be written as

Mf (p, q,u,a) =
∑
i,j

(
((Π′Q′)>G(a)Π′Q′)i,jG(f + u)i,j(Q

′>G(f + u)Q′)i,j

+ ((Π′Q′)>G(f + u)Π′Q′)i,jG(a)i,j(Q
′>G(f + u)Q′)i,j

+ ((Π′Q′)>G(f + u)Π′Q′)i,jG(f + u)i,j(Q
′>G(a)Q′)i,j

+ ((Π′Q′)>G(a)Π′Q′)i,jG(a)i,j(Q
′>G(f + u)Q′)i,j

+ ((Π′Q′)>G(a)Π′Q′)i,jG(f + u)i,j(Q
′>G(a)Q′)i,j

+ ((Π′Q′)>G(f + u)Π′Q′)i,jG(a)i,j(Q
′>G(a)Q′)i,j

+ ((Π′Q′)>G(a)Π′Q′)i,jG(a)i,j(Q
′>G(a)Q′)i,j

)
.

By the Schur product theorem, these terms are nonnegative since they correspond to
Hadamard products of three Gram matrices which are nonnegative. Thus, one can lower
bound Mf (p, q,u,a) by the second term of the sum, which leads to

Mf (p, q,u,a) ≥
K∑

i,j=1

((Π′Q′)>G(f + u)Π′Q′)i,j(Q
′>G(f + u)Q′)i,j〈ai, aj〉

Assume [Hid] holds for the parameters (π∗+p,Q∗+q, f+u), then the matrices (Π′Q′)>G(f+
u)Π′Q′ and Q′>G(f + u)Q′ are positive symmetric with respective lowest eigenvalue lower
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bounded by (infk(π
∗
k+pk)σK(Q∗+q))2σK(G(f +u)) and σK(Q∗+q)2σK(G(f +u)). There-

fore, their Hadamard product is positive, and one has

(((Π′Q′)>G(f + u)Π′Q′)i,j(Q
′>G(f + u)Q′)i,j)i,j = (DU)>(DU)

with U an orthogonal matrix and D a diagonal matrix with positive diagonal coefficients.
Moreover, the Schur product theorem implies that σK(D)2 ≥ (infk(π

∗
k + pk))

2σK(Q∗ +
q)4σK(G(f + u))2. Then

Mf (p, q,u,a) ≥
K∑

i,j=1

((DU)>(DU))i,j〈ai, aj〉

=
K∑
j=1

‖DUa‖22

≥σK(D)2‖Ua‖22
≥(inf

k
(π∗k + pk))

2σK(Q∗ + q)4σK(G(f + u))2‖a‖22.

Finally, let c1(π∗ + p,Q∗ + q, f + u) = (infk(π
∗
k + pk))

2σK(Q∗ + q)4σK(G(f + u))2. The
application (p, π∗, q,Q∗,u, f) 7→ c1(π∗ + p,Q∗ + q, f + u) is continuous and nonnegative, it
is positive when [Hid] holds for the parameters (π∗ + p,Q∗ + q, f + u), and one has

Mf (p, q,u,a) ≥ c1(π∗ + p,Q∗ + q, f + u)‖a‖22.

We will now control the term Nf (p, q,u). Two cases appear: when (π∗+p,Q∗+q, f +u)
is close to (π∗,Q∗, f∗) in some sense and when it is not. The first case will be solved using
the nondegeneracy of the quadratic form ensured by [Hdet]. The second case will be solved
using the identifiability of the HMM.

B.4.2 In the neighborhood of f∗.

The Taylor expansion of

(p, q,u) ∈ (∆−∆)× (Q−Q)× ((F − F) ∩ Span(f))K 7→ Nf (p, q,u)

around (0, 0, 0) leads to a nonnegative quadratic form and no linear part. [Hdet], [Hid]
and equation (4) ensure that this form is positive for f = f∗. Let c2(Q∗, π∗, f) be as defined
in Section B.3.2, then f 7→ c2(Q∗, π∗, f) is continuous and it is positive in the neighborhood
of f∗. Moreover, there exists a positive constant η depending on ‖G(f)‖∞ such that for all
(p, q,u) such that ‖(p, q,u)‖f ≤ 1, one has

Nf (p, q,u) ≥ c2(Q∗, π∗, f)‖(p, q,u)‖2f − η‖(p, q,u)‖3f .

For instance, η = 4000K6‖G(f)‖3∞ works: the terms of order 2 or more in the Taylor expan-
sion ofNf are the scalar product of sums of terms of the form

∑
i,j,k∈X π

∗(i)Q∗(i, j)Q∗(j, k)fi⊗
fj ⊗ fk where zero to three of the f may be replaced by u, zero to two of the Q∗ by
q and π∗ may be replaced by p and at least one of them is replaced. There are 63
possibilities, which leads to a sum of (63K3)2 terms, each of which can be bounded by
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‖G(f)‖3∞(max{p(i), q(i, j), ‖ui‖2 | i, j ∈ X})r where r is the number of replaced terms. By
taking the right permutation of states, the max can be bounded by ‖(p, q,u)‖f , hence the
result.

Then, using ‖(p, q,h)‖2f = ‖(p, q,u)‖2f + ‖a‖22 leads to

Nf (p, q,h)

‖(p, q,h)‖2f
≥c1(Q∗ + q, π∗ + p, f + u)

‖a‖22
‖(p, q,u)‖2f + ‖a‖22

+ c2(Q∗, π∗, f)
‖(p, q,u)‖2f

‖(p, q,u)‖2f + ‖a‖22
− η

‖(p, q,u)‖2f
(‖(p, q,u)‖2f + ‖a‖22)1/2

≥c1(Q∗ + q, π∗ + p, f + u)
‖a‖22

‖(p, q,u)‖2f + ‖a‖22

+ c2(Q∗, π∗, f)
‖(p, q,u)‖2f

‖(p, q,u)‖2f + ‖a‖22
− η
√
‖(p, q,u)‖2f

Let c0 = min(c1/2, c2)/2, then c0 is continuous and there exists a continuous function
(π∗,Q∗, f) 7→ ε(π∗,Q∗, f) which is positive as soon as [Hid] and [Hdet] hold for (π∗,Q∗, f)
and such that

‖(p, q,u)‖f ≤ ε(π∗,Q∗, f) ⇒ Nf (p, q,h)

‖(p, q,h)‖2f
≥ c0(Q∗, π∗, f).

Thus, there exists positive constants ε0 and cnear depending on Q∗, π∗ and f∗ such that

∀(p, q,h, f) ∈ (∆−∆)× (Q−Q)× (F − F)K ×FK

s.t. ‖(p, q,u)‖f ≤ ε0 and
∑
k∈X
‖fk − f∗k‖22 ≤ ε20,

Nf (p, q,h)

‖(p, q,h)‖2f
≥ cnear.

B.4.3 Far from f∗.

Lemma 18 The application

(p, q,u, f) ∈ (∆−∆)× (Q−Q)× (F − F)K ×FK 7−→ Nf (p, q,u)

restricted to the set of (p, q,u, f) such that u ∈ Span(f)K is uniformly continuous for the
norm ‖ · ‖tot defined by

‖(p, q,u, f)‖2tot := ‖p‖22 + ‖q‖2F +
∑
k∈X

(
‖uk‖22 + ‖fk‖22

)
.

Thus, by compacity of (∆−∆)× (Q−Q)× ((F − F) ∩ Span(f))K , the application

cfar : f 7−→ inf
(p,q,u)∈(∆−∆)×(Q−Q)×((F−F)∩Span(f))K s.t. ‖(p,q,u)‖f>ε0

Nf (p, q,u)

is continuous. Let us now prove that cfar(f
∗) > 0.

Let (pn, qn,un)n ∈ ((∆−∆)× (Q−Q)× ((F −F) ∩ Span(f∗))K)N be a sequence such
that ‖(pn, qn,un)‖f∗ > ε0 for all n and

cfar(f
∗) = lim

n
Nf∗(pn, qn,un).
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Then by compacity, this sequences converges towards a limit (p, q,u). Necessarily ‖(p, q,u)‖f∗ ≥
ε0. Since [Hid] holds, Theorem 8 shows that Nf∗(p, q,u) > 0, which implies cfar(f

∗) > 0 by
continuity of Nf∗ . Note that cfar(f

∗) may depend on F in addition to the parameters π∗,
Q∗ and f∗.

Thus, by continuity, there exists ε1 > 0 such that for all f ∈ FK such that
∑

k∈X ‖fk −
f∗k‖22 ≤ ε21, cfar(f) ≥ cfar(f

∗)/2.
Finally, [HF] implies that there exists a constant C depending only on CF ,2 such that

‖(p, q,u)‖2f ≤ ‖(p, q,h)‖2f ≤ C for all (p, q,h) ∈ (∆−∆)× (Q−Q)× (F −F)K . Therefore,

∀(p, q,h, f) ∈ (∆−∆)× (Q−Q)× (F − F)K ×FK

s.t. ‖(p, q,u)‖f ≥ ε0 and
∑
k∈X
‖fk − f∗k‖22 ≤ ε21,

Nf (p, q,h)

‖(p, q,h)‖2f
≥ Nf (p, q,u)

C

≥ cfar(f
∗)

2C
.

The theorem follows by taking c∗(π∗,Q∗, f∗,F) = min

(
cfar(f

∗)

2C
, cnear

)
and the neigh-

borhood containing all f ∈ FK such that
∑

k∈X ‖fk − f∗k‖22 ≤ min(ε0, ε1)2. Moreover,
(π,Q, f) 7−→ c∗(π,Q, f ,F) is lower bounded by this value in a neighborhood of (π∗,Q∗, f∗),
so that it can be assumed to be lower semicontinuous.

Note that the dependency of c∗ on F appears during this last step and is made non
explicit because of the compacity assumption.

B.4.4 Proof of Lemma 18∣∣∣Nf (p, q,u)−Nf ′(p
′, q′,u′)

∣∣∣
=
∣∣∣‖gπ∗+p,Q∗+q,f+u − gπ∗,Q∗,f‖22 − ‖gπ

∗+p′,Q∗+q′,f ′+u′ − gπ∗,Q∗,f ′‖22
∣∣∣

≤2‖gπ∗+p,Q∗+q,f+u − gπ∗+p′,Q∗+q′,f ′+u′‖22 + 2‖gπ∗,Q∗,f − gπ∗,Q∗,f ′‖22
+ 2

∣∣∣〈gπ∗+p′,Q∗+q′,f ′+u′ − gπ∗,Q∗,f ′ , gπ∗+p,Q∗+q,f+u − gπ∗+p′,Q∗+q′,f ′+u′
〉∣∣∣

+ 2
∣∣∣〈gπ∗+p′,Q∗+q′,f ′+u′ − gπ∗,Q∗,f ′ , gπ∗,Q∗,f − gπ∗,Q∗,f ′

〉∣∣∣
Then, using the fact that ‖gπ,Q,f − gπ′,Q′,f ′‖2 ≤

√
3KC3

F ,2‖(π−π′,Q−Q′, f − f ′, 0)‖tot (see

Lemma 17), that ‖gπ,Q,f‖2 ≤ C3
F ,2 (see for instance Lemma 29 of Lehéricy (to appear)) and

the Cauchy-Schwarz inequality,∣∣Nf (p, q,u)−Nf ′(p
′, q′,u′)

∣∣ ≤6KC6
F ,2‖(p− p′, q − q′, f + u− f ′ − u′, 0)‖2tot

+ 6KC6
F ,2‖(0, 0, 0, f − f ′)‖2tot

+ 4
√

3KC6
F ,2‖(p− p′, q − q′, f + u− f ′ − u′, 0)‖tot

+ 4
√

3KC6
F ,2‖(0, 0, 0, f − f ′)‖2tot

≤24KC6
F ,2

(
‖(p− p′, q − q′,u− u′, f − f ′)‖2tot

+ ‖(p− p′, q − q′,u− u′, f − f ′)‖tot

)
,
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which proves the uniform continuity of the application.
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Stéphane Bonhomme, Koen Jochmans, and Jean-Marc Robin. Estimating multivariate
latent-structure models. The Annals of Statistics, 44(2):540–563, 2016b.
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