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INTRODUCTION

In this article, we study the uniqueness and continuous dependence on data of solutions to a differential system with impact. We use the mathematical formulation we gave in [l] and we recall the description and the main results given there, specialized to the one-dimensional case: a continuous function f from [T, T'] x W x R is given; it, is assumed to be Lipschitz continuous with respect, to its last two arguments; a convex closed set, K is also given that is not a singleton. 1

We let C"( [T, T']; K)

The set of admissible Cauchy data for (l.l)-(1.3) is the subset CK of W2 given by CK = {(t&b) : a E K, b E T&a)}.

We are given Cauchy data (2~0, ur) E CK and an initial time to E [T, T']. The solution has to satisfy the initial conditions u(ro) = zco, tic(te) = ur.

(1.4)

We will say that we solve a forward (respectively, backward) Cauchy problem if we seek a solution of (l.l)-(1.4) on [tc,T'] (respectively, [T,tc]). Conditions (l.l)-(1.4) d o not suffice to define interesting solutions: in the very simple case N = 1, f = 0, and K = lR+, with initial data u(O) = ~0 > 0 and h(O) = ur < 0, it is easy to see that the solution is defined uniquely up to time tr = -uc/ur by u(t) = uc -urt. Conditions (1.1) to (1.3) imply that ti(tr + 0) 1 0. It can be checked that all solutions of (l.l)-(1.3) with these initial data are given by uo -WC for 0 5 t 5 tr, U(t) = 0, { for tr I t I t2, ui(t -ts), for t 2 t2, where ui is any positive number and t2 is any number larger than tr; we can even take t2 infinite.

In this case, the third line in the above formula has to be suppressed. Therefore, the variational formulation (l.l)-(1.3) lacks a constitutive law for the impacts; we choose to use the classical model of Newton: given a restitution coefficient e E [0, 11, we require that at an impact the normal component of the velocity be reversed and multiplied by e. Since we consider a one-dimensional problem, we must have u(t) E dK =s ti(t + 0) = -eti(t -0).

(1.5)

It has been proved in [l] that under the above assumptions, the problem (l.l)-( 1.5) possesses a solution.

However, the solution of (l.l)-(1.5) is not unique in general.

Let us check that e > 1 precludes forward uniqueness, even in the simplest case. Let f = -1, 2~0 = ur = 0. Choose to > 0 and vc > 0 such that 2vo to>-.

l-e

We define the sequences {vn} and {t,,}, for all n E Z, by v, = e -nvo, &l-l -tn = 2e+vO.

As n tends to +oo, t, tends to too = to -2vc/(l -e). On (tn, &-I), we let (t -G2 u(t) =v,(t-&a) -

with restitution coefficient e = 1, and the Hamiltonian is the sum of kinetic energy and potential energy which may depend on time. In particular, in dimension N = 1 when f is an analytic function of time only, uniqueness holds. In this article, the following theorem is proved. This theorem assumes that we have a reasonable notion of a local solution of (l.l)-(1.5). In order to build such a notion, we define a phase space in Section 2 by a gluing process. If e > 0, the gluing process produces a Cm manifold, provided that we remove the points (a, 0) and (b, 0). If e = 0, this gluing process produces a badly behaved object, which is to be expected. However, even in the case e > 0, there is no smooth metric which would serve the analysis of the dynamical system of interest; therefore, we use a nonsmooth metric which is obtained explicitly. The phase space equipped with this metric is denoted V,. To apply Ascoli-Arzelb's theorem, we show that V, is complete, and we characterize the compact subsets of V,.

Let U(t) be the projection in the phase space V, of the solution (u(t), d(t f 0)); in Section 3, we give some local estimates on U; in particular, we show that U is Lipschitz continuous, and we estimate its Lipschitz constant. Moreover, we can define a local solution when f is de&red only on an open subset of W3 and is only locally Lipschitz continuous with respect to its last two arguments. Then we estimate the minimal time of existence.

In Section 4, we prove the uniqueness of the local solution.

Finally, we prove in Section 5 that the local solutions depend continuously on the data, provided that we measure distances in the metric of Ve; more precisely, if the sequence fn converges uniformly on compact sets to an analytic function f, and if the initial data (tO,n,uO,n, ~1,~) converge to (to, ~0, ui), then the inferior limit of the existence time of the solution u, is greater than or equal to the existence time of the solution u; moreover, U,, converges to U uniformly on compact sets.

THE PHASE SPACE

It is convenient to work with K = R+; the general case is easy to construct from this particular case.

A first and naive definition of the phase space starts from the reflection condition: Then it is clear that R, is a regular equivalence relation, so that V/R, is endowed with a structure of Coo manifold. If R, is extended to V simply by taking its closure & in V x V, we still obtain an open and closed equivalence relation: however, the quotient space cannot be smooth in the neighborhood of (0,O). The manifold V/R, is homeomorphic to a plane. However, a distance on V/R, cannot be simultaneously smooth and convenient for the study of the dynamical properties; in particular, whenever n-'(z) = {<} and K'(Y) = {Q}, 5 and 71 are close enough, we would like this distance to be the norm of < -q, so as to work as in ordinary space; this is clearly impossible if e < 1. Moreover, the status of the point (0,O) is unpleasant and the case e = 0 is left out altogether.

The second way to remedy the situation is more simple-minded and explicit: it consists of constructing explicitly a distance function d, on V/R, which defines a coarser topology than the quotient topology, We proceed as follows: let E = (<I, &) be an element of W2, and let its norm be 14 = 1511 + 1621.

For all z and y in V/R,, we let @A Y) = min{ I5 -4 : S E x7 77 E ~1.

(2.1)

The function S is symmetric, nonnegative, and it vanishes if and only if x = y. However, 6 is not a distance if e E [O,l): it suffices to take a > 0, x = (a, -2)*, Y = (0, -2)', z = (0, -1)'. Then (2.5)

6(x, z) = a + 1, GGY) = o, 6(y, z) = e.
PROOF. It is immediate that (2.2) defines a distance on V/R,. This distance is maximal among all the distances on V, which are estimated by 6, indeed, let d' be any distance on V/R, which satisfies for all x and y d'(x, Y) L 0, Y).

For all sequence (x:j)c<jl~ such that I" = z and xN = y, we have

N-l d'(z,y) < c d' (x$j+') 5 Nc 6 (&.j+')

. j=O j=O Therefore, d/(x, y) I d&r, y).

Therefore, we will have proved (2.4) if we can establish that its right-hand side is a distance on V/R, which is situated between d, and 6. For 

According to (2.2), and the definition of d', de@, y) I d'(z, y) < a(? Y).

We will show now that d' is a distance on V/R,; first we obtain an explicit expression for d': let z = {<I; if e > 0, this means that 51 > 0; if e = 0, this means that <i > 0 or &+ > 0, and similarly for y = (77). A straightforward calculation gives w,?x = Il(le(~2) -94112)l.

(2.6)

Therefore, d'(x,y) = min(lS -rll,& + ql+ Iti&) -&(r12)l)- (2.7)
The function 6 is continuous on (V/R,) x (V/R,), since (<, q) I+ 6(c, 7') is continuous on VxV, as can be seen by a simple observation. In the same way, the mapping z H Z is continuous from VJ R, to itself: it suffices to check that 5 H p is continuous, but thii is so since thii mapping can be decomposed as This relation holds because +,, is a contraction. The case d'(z, y) < 6(x, y) is treated analogously, and the details are left to the reader.

Therefore, we have proved that d' given by (2.7) is identical to d,, i.e., we have proved (2.4).

The fact that the topology of V/R,, equipped with the distance function d,, is coarser than the quotient topology follows from the observation that the mapping (5,~) cs de(cr 11') is continuous fromVxVtoW+.

I

From now on, we will denote by V, the quotient space V/R, equipped with the distance d,.

The mapping 4 is the composition of A and the injection V/R, L, V,. It is continuous since the topology of V, is coarser than the topology of V/R,.

The spaces P/a, can be identified to V, if e > 0. This fact is not needed in the sequel, and its proof is left to the reader.

The closed ball of center Uo E V, and radius p will be denoted B,(Uc, p):

~,(Uo,p) = {z E K : d&uo) I P). (2.9)

#r e = l/2. 

M. SCHATZMAN

Then, relation (2.4) implies that (qP& is a Cauchy sequence in the closed subset V of W2, whose limit will be denoted qm. We infer from (2.3) that ($)P converges to &,.

Assume now that the subsequence (vP) satisfies lim ~1,~ = 0, P--J

(2.10) and 7l2,p i? 0.

(2.11)

Then, (2.3) implies that (77~,~)~ is a Cauchy sequence whose limit will be denoted 7soo, and if voo = (0, r/~,~), then (v;)~ converges to 77;. If instead of (2.11), we have rl2,p L 0,

(2.12)

we have to consider separately the case e > 0 and the case e = 0. In the case e > 0, we conclude as above that ~2,~ is a Cauchy sequence whose limit is ~2,~ and (v;)~ converges to $,. If e vanishes, (~2,~) is not a Cauchy sequence, but ($)p converges to (0,O)' as we can see immediately.

It remains to join together all these results. Observe first that if we have a subsequence (r]p)p of (&)n which satisfies (2.9) and a subsequence (<p)P of (&) which satisfies (2.10), we have a contradiction if we apply (2.10) to the distance between qp and cp. Observe now that if (Q~)~ satisfies (2.10) and (2.11) and (&,)p satisfies (2.10) and (2.12), then, in the case e > 0, (2.4) implies that 7,7~,~ = -e&+;

in the case e = 0, (2.4) implies that 77~~ = 0.

Therefore, in all the possible cases, we have established that (&), has a limit in V,.

We characterize the compact sets of V, in a very straightforward manner: if e > 0, and (z,), is a bounded sequence in V,, we can find a bounded sequence (&,),, in V such that x, = <E, thanks to (2.4), and the remainder of the argument is clear. If e = 0, and (z,), is a bounded sequence, we find c,, E x,, and we can make sure that (&)n is bounded, only if we know that 52,,, cannot tend to -oo; this is ensured by the extra condition of the statement of our lemma in the case e = 0. I

LOCAL ESTIMATES AND LOCAL EXISTENCE

Let us assume first that f is a continuous function on R3 which is uniformly Lipschitz continuous with respect to its last two arguments.

For all (&, UO, iii) in lR x CK and for all p > 0, we define Assume now that (t, t') contains exactly one point tl of F', then the triangle inequality and the previous case imply that cl@(t), iY(t')) L M(tl -t) + $1 -ty + (ti(t + O)(@l -t) + Iqt' -t1)

+ $tl -Q2 + lti(t1 + 0)l(t' -t1). If we insert this inequality into (3.6), we obtain (3.3).

Assume that (t, t') contains p > 2 points of F, tl < t2 < . . . < t,; the sign conditions ti(tj-l + 0) 2 0, ti(tj -0) < 0, and (3.4) imply Iti@j -0) -qtj-1 + 0)l = Ii& -O)( + (ti@j-1 + O)l I Aqtjtj-1).

(3.7) Thus,

&W(tp), U(h)) I DDE, W-1)) I w,h).

j=2

Moreover, if we apply (3.3) to the interval (tpr t') and if we observe that (3.

7) gives (ti(t, + O)( I M(t, -&I),

we can see that d, (lqt'), U(Q) 5 A4 (t' -tp) + ; (t' -tJ2 + M (tp -tp-1) (t' -tp).

Therefore, W(t), W'>) 5 M(tl -t) + ;ct1 -t)2 + liL(t + 0)l(t1 -t)

+ M ($h) + h4 (t' -tp) + ; (t' -$J2 + A4 (tp

(3.8) -tp_l) (t' -tp) .
We observe that

(tl -ty + (t' -t,y + 2(t, -t+)(t' -tp) 5 (t' -t)2,

and gathering the terms on the right-hand side of (3.8), we infer that (3.3) holds.

Let us assume now that (t, t') contains an infinite number of points of 3. Let 3'" denote the set of nonisolated points of 3 and let s = inf(3a fl (t, t'))

and s' = sup(F n (t, t')).

10

M. SCHATZMAN At s, ti(s + 0) or ti(s -0) vanish; if e > 0, both vanish; if e = 0, at least ti(s + 0) vanishes; the same observations hold at s'. If s > t, for all E > 0, the interval (t, s -E) contains at most a finite number of points of F; therefore, for all ~7 E (t, s), d,(U(t), U(a)) I M(o -t) + $(ot)2 + 1?i(t + O)l(c7t).

W-9

We pass to the limit in (3.9) as c tends to s, which is permissible, thanks to (2.3) and the continuity on the right of u(a) and ti(a -0). Therefore, &?(U(% U(s)) 5 M(st) + $(st)2 + 1ti(t + O)l(s -t>.

(3.10)

The same argument proves that if s' < t', then d,(U(s'), u(t')) 5 n/i(t' -s') + $(C -s')2 + Iti(s' + o)l(t' -s'). Assume that the continuous function f is locally Lipschitz continuous with respect to its last two arguments on 0. Choose an arbitrary triplet (tO,ug,w) in 0, and p > 0 such that D(to, uo, ul, p) is included in 0. It is possible to find a continuous function g on W3 which is uniformly Lipschitz continuous with respect to its last two arguments, and which coincides with f on D(tO,u0,q,p). Thus, we have a solution of (l.l)-(1.5) on [to, +m), with f replaced by g. Theorem 3.3 implies that there exists 8 such that (t, u(t), ti(t f 0)) remains in D(to, ug, ~1, p) for all t E [to,to + 61. Therefore, on [tO,tO + 61, we have a solution of (l.l)-(1.5).

As in the classical theory of ordinary differential equations, a local solution of (l.l)-(1.5) will be defined by giving an interval I whose left end is to and a function u E C"(I; W) whose derivative is of locally bounded variation, with u satisfying (l.l)-(1.5) on every compact subinterval of I. It is then possible to speak as in the classical theory of a maximal solution.

UNIQUENESS

We assume in this section that 0 is a domain of W3 which possesses the property (3.16)

and that f is a real analytic function on 0. Therefore, as stated in Section 3, for all data (to, ~0, ~1) E 0, there exists a local solution of (l.l)-(1.5) on some time interval starting at to. PROOF. In this proof, we assume K = IR +. When K is not of this form, local arguments and elementary geometric transformations enable us to reach the same conclusion.

Assume that there exist two distinct solutions u and v of (l.l)-( 1.5) on [to, tb), with initial data ug and ~1. Let 7 = inf{t > to : u(t) # v(t)}.

We can see that u = v on [to, 71; the nonuniqueness assumption implies that 7 < th. By definition of the solutions, U(T) = v(7) 2 0. Moreover, if U(T) = V(T) = 0, then ti(~ -0) = S(7 -0) < 0. Condition (1.5) implies then that

ti(7 + 0) = S(T + 0) = -eti(T -0)
This means that the Cauchy conditions for u and v coincide at r. Therefore, without loss of generality, we may assume that to = inf{t > to : u(t) # v(t)}.

(4.1)

Let us first observe that if there exists a nonempty interval (to, T), on which u and v are strictly positive, we have a contradiction: on (to, T), u and v satisfy the classical ordinary differential equation ti = f(.,W,ti), with the same initial data at to; therefore, u = v on [to, T] which implies that inf{t > to : u(t) # v(t)} 1 T > to, which contradicts (4.1). In particular, these remarks preclude the situations where uo > 0, or where ug = 0 and ~1 > 0: in this case, we could find by continuity a nonempty interval (to, T) on which u and v would be strictly positive.

Hence, from now on, we may assume that U-J = 111 = 0.

(4.2)

Moreover, we must have f(to,O,O) I 0. If this condition is not satisfied, then by continuity of u and by continuity on the right of ti at 0, there exists a time interval (to,~) on which f(t,u(t),ti(t)) > 0. Relation (1.3) implies that p is a nonnegative measure; we infer from (1.1) and (1.2) that u > 0 on (to, tl). The same argument applies to v, and thus we have a contradiction.

From now on, we sssume that f@o,O, 0) I 0.

(4.

3)

The previous analysis shows that one of the two functions u or v has to vanish at times arbitrarily close to to. Let us assume, for instance, that u vanishes for times arbitrarily close to to. We will show that there must exist an interval [to,tz], with t2 > t,-, such that u vanishes identically on [to, tz].

If such an interval does not exist, it means that the set Lf = {t E (to, t;, : u(t) > 0)

(4.4)

has to in its closure. Therefore, there exists an infinite sequence of nonempty intervals (a,, bn) which are connected components of U such that for all n 2 1, &+I 5 an < bn,

(4.5)
and a, tends to to aa n tends to infinity.

We recall some classical results in the theory of complex ordinary differential equations: if P is an open connected region of @ x U?' x (CP, and F is an analytic mapping from P to @", the Let E be the solution of @E(t, s, 4 = At, X)&E(t, s) + m(t, JW(t, s), In fact, since (4.6) is linear, it is even possible to take (T = p.

In particular, there exists a constant C such that P&W, s, X)l 5 C,

V(t, s, X) E A,.

This implies that V(t, 3,X) E A,, 

Vt

Yk

This implies that for k large, Wk increases faster than a diverging geometric sequence, a contradiction.

Let us take now the case e = 1. We need another estimate to reach our conclusion: on the relatively compact set {(t, u(t), ti(t + 0)) : t E [0, T]}, f is Lipschitz continuous with respect to its arguments; therefore, there exists a constant C such that -i" -^(k 5 c max u(t) + miX(Wk,wk_l) + Tk-1 -'fk .

(Q,fk-1)

1

We infer from (4.13) that for t E (Tk,Tk_l), We show that $J is strictly increasing with respect to e if E > -t, t > 0, and A, e, and t are small enough: we differentiate $ with respect to e and obtain which is a contradiction. Therefore, for k large enough, ek 2 Ek+l which precludes the convergence of the series of general term ok. Hence, in the case (4.17) too, to cannot be in the closure OfU.

Next, if we assume that the two solutions u and ZI vanish on (to,tl), we obtain a contradiction to (4.1). Finally assume that v > 0 and u z 0 on (to,tl). According to (l.l), f(t,O,O) 5 0 on [to,tl]; therefore, if X0 = (to,O,O), we have, according to (4.11),

J t v(t) = ~(~7 3, XO)fl (s) & to

This implies immediately that v is strictly negative on (to, to + a); therefore, we have a contradiction. Our proof of uniqueness is complete. I

CONTINUOUS DEPENDENCE OF SOLUTIONS

The continuous dependence of the solution of (l.l)-( 1.5) on the data under these assumptions is given here for the sake of completeness. We make the following assumptions: 0 is a domain of W3 which has property (3.16), f and the fn, n E N are real analytic functions on 0, (to, ~0, ~1) and (ton, uon, uln), n E N are given in (R x CK) n 0, and u, is the solution of (l.l)-(1.5) with ton, Bon, Uln, and fn instead of (to, uo, uI, f ) . We assume that u and the u,, n E p1 are maximal solutions, with respective intervals of existence [to, T] and [ton, T,]. 

  be the set of continuous functions from (T, T'] to IR which take their values in K. We seek a function '1~ E C"( [T, T']; IR) w h ose derivative is of bounded variation, and a real measure p on [T, T'] which satisfy the following set of relations: u E CO([T, T']; K), (1.1) ii = f( ., U, C) + p, in the sense of distributions, (must have discontinuities at the boundary dK of K: when u(t) = 0 with strictly negative velocity ti(t -0), the velocity after impact has to be nonnegative, and the second derivative of '1~ must, have a Dirac mass at to. Condition (1.3) is equivalent to SUPP(/J) c {t : dt> E dK), is the indicator function of K. Let us describe now the admissible Cauchy data: the tangent cone at, a to K is given by TK(a)=WifaEint(K), TK(a)=W-ifa=mUK, TK(a)=W+ifa=minK.

  THEOREM 4.1. Assume that f is a real analytic function of (t, a, b) on a domain 0, s&i&&g the geometric property (3.16). If (to, ~0, ~1) belongs to Cl fl (R x CK), there exists at most one forward local solution of (l.l)-(1.5). In fact, I conjecture that if K is a closed subset of RN with analytic boundary, e E [0, 11, and f is a real analytic function of (t, a, b) on a domain 0 of W x RN x RN, the solution of the forward Cauchy problem is unique for the N-dimensional generalization of (l.l)-(1.5).

F+={

  iff or < E A-, 77 = -e.$, orqEA_, <=-en. This is clearly an equivalence relation; the class of < E V is denoted r, and the projection e H 6' is denoted z. Unfortunately, R, is not an open equivalence relation, and the quotient topology is not interesting: if e > 0 and 0 is an open set of (0,oo) x R intersecting A_, then n(0 n V) does not contain any point n(t) such that & > 0 and 52 > 0, though it contains the points of n(-e0 II A+). A correct concept of gluing should preclude this situation.There are two ways to correct this situation. The first one consists in adding flaps to V, i.e., we let, when e > 0, linear transformation H by its matrixWe extend the relation R, to all of V by

  x,y) = inf Nc6(zj,xjc1) :NEN, x0=5, xlv=y j-0 P-2) LEMMA 2.1. The function d, is a distance over V/R,.The metric topology defined by d, onThe distance d, is given explicitly by &XC', v') = minIIml + IEz -ml, G + VI+ W&d -&(m)ll,

  x = (cl,&)* E VfR,, we define f = (O,&)*, and similarly for y = (~,r/2)*, jj = (O,QZ)*, and we let d'(z, y) = min(6(2, y), 6(x, 2) + 6(% ?Zj) + 6(8, Y)).

  continuous. Therefore, by continuity, (2.7) holds for all z and y in V/R,. By continuity, it is enough to prove the triangle inequality d/(x, Y) I d'(x, z) + d'(z, Y), when x # d, y # 0, and z # z', because the set of x such that x # f is dense in V/R, for the quotient topology. We have to consider several cases. Assume first that d'(x, y) = +, Yh 6 M. SCHATZMAN i.e., 6(x, Y) 5 6(&E) +w,id +q%Y). On the one hand, we have &, Y) I G,~) +6(&Y). If d'(z, z) = 6(z, z) and d'(z, y) = 6(z, y), we are done. On the other hand, thanks to (2.6). Therefore, if d'(z, z) < b(s, z), and d'(z, y) < b(z, y), we have and the inequality holds. If d'(z, z) = a(z, z) and d'(z, y) < 6(z, y), our inequality will hold if we show that a@, Z) + 6(Z, #) + 6(&y) I a(& z) + a(& 2) + 6(Z, @) + a(& y). More explicitly, if y = (77) and z = {c}, (2.8) can be rewritten as (2.8) G + 71 + lhG2) -l(le(rl2)l I IG -&I+ I<2 -tl + Cl + I&?(t) -k!(r/2)( + q2.

  Figures l-4 depict some pictures of balls in V,. The essential topological properties of V' are summarized in the next lemma. LEMMA 2.2. The metric space V, is complete, and all the bounded closed sets of V, are compact if e > 0; if e = 0, the compact sets are the bounded closed sets C of V, for which there exists a 2 0 such that C is included in qi(W+ x [-a, +co)).PROOF. Let (z,J,, be a Cauchy sequence of elements of V,.Let &, = (&,,&) 

Figure 2 .

 2 Balls in V, for e = l/2. br e = 0. Figure 4. Balls in V, for e = 0.

  the compact subsets D(Eo, Qo, ~1, p) of W3 by ( b) : a + b > fi0 + El -2p}), if e = 0. According to [l], for all initial data (to,uo,ul) in R3, and for all T > to, there exists a solution of (l.l)-(1.5) on [to,T). This solution is such that at to, u and ti are continuous from the right. If we take (to, UO, ul) in D(&, Co, ~1, p/2), there exists T > to such that for all t E [to, 71, (t, u(t), ti(t f 0)) belongs to D&J, ~0, ~1, p). Our purpose in the beginning of this section is to give an estimate from below on T -to. To this end, we let M = max{lf(t,a,~)l : (t,a,b) E ~(fo,Gh&,P)), (3.2) we denote U(t) = (u(t),ti(t f O))*, and we prove an estimate on &(U(t), U(to)). LEMMA 3.1. For aJ.l t E [to,~) and all t' E [t,~], the following estimate holds:d@(t), iY(t')> 5 hqt -t) + $(t/ -t)2 + 1qt + O)((t' -t).(3.3)

  + O)l 5 Iti(tl -O)l 5 iti(t + O)l + M(tl -t).

  But we have seen that ti(s' + 0) vanishes, thus d&J(d), cqt')) 5 h!f(t' -s') + $(t! -s')? (3.11) Of course, (3.10) and (3.11) hold also if t = s or t' = s'; as d,(U(s), U(s')) vanishes, we obtain (3.3) with the help of the triangle inequality. I In the case e = 0, the definition of D(to, ZLO, ~1, p) is more complicated. The following lemma enables us to deal with the supplementary condition.

  LEMMA 3.2. If e = 0, then for all t E [to,~], the following inequality holds: u(t) + 1qt f O)l 2 UrJ + 741 -itqt -to) + $(t -to)2 + Iwl(tta)] * (3.12) PROOF. If U contains an interval (to, tl), (3.4) and (3.5) imply that Iu(t) -210) + Iti -211( I M(t -to) + +$t -to)2 + Iwl(t -to), (3.13) and (3.12) is obvious. If [to, t] f-13 is not empty, let s = inf F. On (to,s), (3.13) implies Iti(s -0) -'1Lrj + ('1101 I M(s -to) + F(s -Q2 + IUll(S -to). Thanks to the sign conditions ti(s -0) 5 0, this relation implies 211 + Ue I M(sto) + $(s -to)2 + ~w~(s -to). Let s' = sup(F n [to, t]). If s' < t, (3.3) gives Iu(t)l + jti(t -O)( 5 A4(t -s') + $(t -s')2, to) + $(t -to)2 + Iull(t -to) 1 ( and our conclusion holds. I We are able now to estimate from below the length of the largest time interval [to, r] during which (t, u(t), ti(tf0)) remains in D(to, ~0, ~1, p), provided that (to, ug, ul) belongs to D(to, ~0, ~1, P/2). THEOREM 3.3. Let p be a strictly positive number, let (&,o,Uo,Cl) be an element of HP x CK, let M be as in (3.2), and let (to, ILO, ~1) belong to D(to, UO, ~1, p/2). Let (T be the strictly positive root of the euuation and let 6 = min(o, p/2). Then, (t, u(t), ti(t f 0)) belongs to D(to, ug, 2~1, p) for a11 t E [to, to + CT]. PROOF. Let 7 > to be the largest time such that (t, u(t), ti(t f 0)) belongs to D(to, ~0, ulr p) for to 5 t 5 T. If e > 0, (3.3) holds on [to,T]; if 7 -to < 8, (3.3) implies de (Wo + e),iio) I f + M(T -to) + $(Tto)2 + ltill(~to) < p, Therefore, there exists a nonempty time interval [T, T + E] on which (t, u(t), ti(t f 0)) still belongs to D(to, IQ, ~1, p), which contradicts the definition of T. If e = 0, we use also (3.12), and then the same argument leads to the same conclusion. 1 We are able now to prove the existence of local solutions of (l.l)-( 1.5): let 0 be an open bounded subset of W3 which has the following property: 0 n (W x CK) is not empty; tl(t,a,b) E 0 n (W x V), 3p > 0 such that D(t,a,b,p) is included in 0. (3.16) Condition (3.16) means that if e is strictly positive, (t, 0, b) belongs to 0 if and only if (t, 0, -min (b, 0)e -max(b, 0)/e) belongs to 0; if e vanishes, it means that (t, 0, b) belongs to 0 if and only if {t} x (0) x [b, max(6, 0)] belongs to 0.

  1. Under the above assumptions, if (to, ~0, ~1) belongs to CY n (W x CK), there exists at most one solution of (l.l)-(1.5) on any interval [to, t&l.

  unique solution for each (~0,200, A). If the value of this solution at z is denoted by W(t, zc, wc, A), it is locally an analytic function of ail its arguments. More precisely, one can find for all (50, 60, &,) E P a number p > 0 such that W is well defined and analytic on a set containing the multicylinder of (Cz+n+p, {lz-Zol Lp}x{lzo-201 SP}X {~~~~~lw,-~o,~l~~}X(~~~plX*-Xo,rl<~}.----We apply this result first to the problem ti = f(&w,ti), W(T) = a, cl(T) = p.There exists p > 0 such that its solution w = W(t, T, CX, p) is defined and analytic on an open set containing [to -p, to + p12 x [-p, p12, and (t, W(t,r, CY, P), &IV(t, 7, cr, P)) belongs to 0

  E (0, p) such that E is well defined and analytic on an open set containing A, = [to -CT, to + o13 x [-CT, ~1~.

  , s, A) E A,,IE(t, s, X) -t + sj 5 C(t ; s)2Yk)k and (yk)k tend to -f(ts,O,O)as k tends to infinity; thus, if e E (0, l), we can take k so large that e

From

  this relation, (4.15), and (4.14), we infer that there exist C' such that 7" --/k 5 C'vkr (4.16) for k large enough. Assume that (4.16) holds for k 2 m; relation (4.15) implies that wk tends to zero as k that Now (4.16) and (4.12) imply that tends to infinity, then the theory of infinite products implies c Vj =O, j=m and therefore, thanks to (4.14), j=m a contradiction. Therefore, we have proved that to cannot belong to the closure of U.

  The function Q can be rewritten using Taylor's formula as Then, relation (4.10) implies that 4p is well defined and analytical on an open set containing the set Observe that B, = {(t, E, s, A) : (t + E, t, X) E A,, s E [0, 11). @@,E,O,X) = 1, qt, E, 1, A) = 1. Let By Taylor's expansion, it is clear that QTr remains strictly positive on A,. It is immediate that so that &&(t,&,O,X) = 0. Therefore, there exists an analytic function (32 on an open set containing B, such that &@(t, E, s, A) = s(l -sp&(t, E, s, A). Let us define now +(t, E, A) = -1' (P(t,E, s, x)fl(t + es) ds.0

  The elementary properties of the analytic function ff show that &$ is strictly positive if t > 0 and E > -t and E, t, and X are sufficiently small.Let us show now that E~+I 2 &k for all ]c large enough. Suppose to the contrary that &+I < Ek; the monotonicity properties of $, relations (4.18) and (4.19), and the fact that ti

THEOREM 5 . 1 .

 51 Assume that (f ) ,, Ned converges uniformly to f on the compact subsets of 0, and that the sequence (tOn,uon, ZLI~)~~~J converges to (tO,uo,ul) in CK. Then, the sequence of maxima1 solutions ([t on, T,), u,) converges to the maximaI solution ([to, T), u) in the following sense: lim inf 7, > 7, n+oo un converges uniformly to u on compact subsets of [to, T), C, converges to ti almost everywhere and in Lp,, for all finite p, pn converges weak* to p, U, converges uniformly to U on compact subsets of [to, T).

  For all T E (i&T), the set S = {(t,u(t), ti(t -0)); t E (to,T)} U {(&u(t), ti(t + 0)) : t E [to, T)} is compact; it is covered by the open sets int D(t, u(t), ti(t f 0), p) which are included in 0. We cover S by a finite union of these open sets, i.e., we can find p 2 1, pj > 0, tj E [to,c], 1 I j 5 p such that S C (J int D(tj, U(tj), ?i(tj f O), pj). j=l Without loss of generality, we may assume that the first of the tj's is to. Let L = fi D(tj,u(tj),c(tj *O),Pj), j=l

*

When (t, t') is included in U, u satisfies the ordinary differential equation ii = f(., U, ti); hence, we infer the estimates

If we choose Q small enough, we may conclude from (4.7) that E(t, s, x)(t -S) > 0 and from (4.8) that &Jqt, s94 > 0, for all (t, s, X) E A,.

(4.9)

On (a,, bn), we may write ii(t) = I?(t) + f2(& '1L(t))'Ll(t) + f3@r u(t), 4q)qq.

Using the previously introduced notations and

A, = (a,, 0, C(k + O)),

we may write, with the help of a Duhamel's formula, that t u(t) = qt, a,, &+(a, + 0) + / W, 3, Lz)fi(s) ds.

(4.11)

As fi is analytic at to, there (0,ti). Let us assume first that By construction, ti(an + 0) 2 0; exists tl such that either fi (t) < 0 on (to, tl) or jr(t) 2 0 on fl(G r 0, vt E (toltl).

if b, 5 tl is small enough, (4.9) implies that E(t,a,) is strictly positive on (a,, b,), and u(t) 2 0 on (an, b,); we can also see that u(bn) vanishes only if ti(a, + 0) and the restriction of fi to (an, bn) vanish, then 21 vanishes identically on (a,, b,) which contradicts the definition of (a,,, b,). Therefore, fi < 0 on (to, tl).

If ti(un + 0) vanishes, then (4.11) implies that u(t) < 0 on (a,, b,,). This also contradicts the definition of (a,, b,,). Therefore, ti(u+, + 0) > 0.

Thus, if e = 0, we have proved that to cannot be in the closure of U. F'rom now on, in the proof, we assume that e E (0, 11. The previous considerations show that we may find a strictly decreasing sequence (T&)~c such that (Q, r&r) is a connected component of U. The limit of this sequence as k tends to infinity is 7oo 2 to. We may choose sequence (rk)k, so that rot is arbitrarily close to 0. We denote 'wk = ti(rk + 0).

Let us first assume that f00, 030) < 0.

(4.12) By continuity, there exists r such that for t E [to, T], f@, 4th W) 5 ;mo, 0,O).

Let -Yk = tg&l-f(t7 4a

W)l, and 7" = On (rk, Tk-r), we have the two inequalities wk(t -Tk) -yk @ --FJ2 5 u(t) < Wk(t -Tk) -^lk (t -Tkj2 4 .

(4.13) Let cx be some strictly positive number such that CY < 6. The functions u, and (ti,(t f 0)) are bounded on I(n) = [t s,, , s, -a] uniformly in n for n large enough. Moreover, if pn is the measure associated to unr we have

i.e., the measures pn are uniformly bounded. This suffices to extract a subsequence which has the convergence properties described at (5.1), thanks to the uniqueness theorem. Of course, this means that all the sequence converges to u. Let D(s,, u(s~), ti(s-+ 0), p') be included in 0; let 8' be determined as in Theorem 3. The last statement follows from the observation that the sequence (U,)n is equicontinuous from [ts,o] to V,, thanks to Lemmas 3.1 and 3.2, and each of the sets {U,,(z) : n E N} is relatively compact in V,. Therefore, we may apply Ascoli-Arzelb's theorem, and our conclusion holds. 1 REMARK 5.2. The analyticity of fn has not been used in the proof of the theorem. When the fn's are only locally Lipschitz continuous on 0 and have the convergence property described above, the conclusion still holds.