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ABSTRACT  This paper deals with the modelling of weakly rarefied and dilute gas flows in heated 

micro channels by the continuum approach, valid for Knudsen numbers smaller than about 0.1. The 

first order slip and thermal jump model usually used for the forced convection of gas flows in long 

micro channels between two infinite plates is discussed. Indeed, in the huge literature related to this 

subject, it appears that simplified models are often used without justifying them and recurrent errors 

propagate from one paper to the other. The erroneous models particularly concern the heat transfer 

analysis and the energy equation. The compatibility of the pressure work and viscous dissipation in the 

energy equation with the power of the viscous forces at the walls and the choice of an appropriate 

Nusselt number are particularly discussed. Our aim is to provide a consistent model for gaseous micro-

flows and the linked heat transfer. Then, a dimensional and asymptotic analysis is performed in the 

context of long micro channels. An analytical solution for the temperature field and the Nusselt number 

is proposed in the case of a compressible gas flow in a long micro-channel maintained at a constant 

wall temperature. This solution is compared with the numerical solution of the full model taking into 

account the first order slip and thermal jump conditions at the walls, the power of the viscous forces in 

the wall heat flux, the thermal creep term, the pressure work and the viscous dissipation in the bulk. 

The vanishing values of the Nusselt number measured in the experiments by Demsis et al. (2009, 

2010) are explained for the first time.  

 

 

INTRODUCTION 

 

Due to the increasing development of MEMS (Micro Electro Mechanical Systems), the study of liquid 

or gas flows and heat transfer in channels or ducts whose hydraulic diameter, Dh , is of the order of a 

few microns (say 1 to 100 µm), has given rise to a considerable amount of works over the past twenty 

years. For gas flows at the microscopic scale, some observed phenomena require specific models [Gad-

el Hak 1999, Karniadakis et al. 2005]. In a layer called the Knudsen layer, whose thickness is of the 

order of O(λ) from the wall, where λ is the mean free path of the gas molecules, a state of local 

thermodynamic non-equilibrium exists. It results in non-linear mean velocity profiles and relations 

between stress and strain rates. From the continuum mechanics point of view, at the micro channel 

scale, when the Knudsen number is such that 0.001 < Kn = λ/Dh < 0.1, these phenomena translate into 

a non-vanishing slip velocity, a temperature jump at the wall and a phenomenon called “thermal creep” 

[Sharipov 2011]. The consequences of these phenomena on the macroscopic quantities such as the 

mass flow rate, the friction factor, the bulk temperature and the wall heat flux can be significant 



[Lockerby et al. 2005] and must be taken into account in the modelling of the convective heat transfer 

in MEMS with gas flows because they may have antagonistic effects on heat transfer.  

 

For gas flows in micro channels of large aspect ratio, L/Dh, and typical hydraulic diameter 1 µm ≤ Dh ≤ 

10 µm and length 100 µm ≤ L ≤ 1 mm, submitted to a moderate heating of the walls and to pressure 

variations between the inlet and the outlet of the channel of the order of one bar to a few bars, the 

conversion of the mechanical work of the viscous forces into internal energy and heat is very 

important. It can also be shown that the Mach number, Ma = u/(γrT)
1/2

, and the Brinkman number, Br 

= µu
2
/k∆T, can reach or exceed 1 and the Reynolds number, Re = uDh/ν, and Péclet number, Pe = 

uDh/α, can vary between 10
−2

 and 10
2
. Accordingly, modelling this type of flow requires to take into 

account a wide range of physical phenomena: dynamic slip, temperature jump, thermal creep, gas 

compressibility, pressure work, viscous dissipation, work of the viscous forces at the wall, variation of 

the physical properties with temperature, conjugate heat transfer, relative roughness of the walls … A 

bibliographic review of the numerous studies on this subject has shown that all these effects are never 

taken into account simultaneously in the numerical models used.  

 

One objective of this paper is thus to study the influence of different phenomena described above in the 

case of gas flows in 2D micro channels, heated or not. The analysis will particularly focus on the 

thermal aspects: we will analyse the pressure work (PW) and viscous dissipation (VD) in the energy 

equation and the power of the viscous stress (VSP) in the wall thermal boundary conditions on the 

evolution of the temperature field and the Nusselt number. A dimensional and asymptotic analysis will 

be performed to highlight the influence of each of these terms and potentially to simplify the 

mathematical model. Then the analytical solution of the simplified model established by Caï et al. 

[2007] for compressible gas convection in isothermal wall micro-channels is reminded. It is used to 

explain the vanishing values of the Nusselt number measured in the experiments by Demsis et al. 

(2009, 2010) [8,9] and not explained till now. The analytical solutions of this simplified formulations is 

then compared with the numerical solutions of the full model.  

 

GEOMETRY AND MATHEMATICAL MODEL 

 

Geometry  We consider gas flows between two parallel smooth walls of length L in the x-direction, 

separated by a distance H in the transverse y-direction. The hydraulic diameter is Dh=2H. The flow is 

generated by a pressure difference, pin-pout > 0, between the inlet and outlet sections. The fluid is 

considered as an ideal gas with variable physical properties. The flow is assumed to be two-

dimensional, steady, compressible, laminar and symmetrical through the horizontal mid-plane (see 

Figure 1).  

 

 

 
 

Figure 1.  Geometry and boundary conditions for gas flows in 2D heated micro channels 

 

 

Governing equations  The governing equations are the mass, momentum and energy conservation 

equations in which the volume forces are neglected with respect to the viscous forces because the 



surface effects prevail in microfluidic. By denoting (u, v) the velocity components in directions (x, y) 

and p and T the local the pressure and temperature, the equations in Cartesian coordinates write: 

 

        (1) 

 

 

        (2) 

 

 

        (3) 

 

 

        (4) 

 

 

where ρ is the density, µ the dynamic viscosity, Cp the specific heat, k the thermal conductivity and the 

viscous dissipation is equal to: 

 

        (5) 

 

 

The ideal gas law closes this system, with r the specific ideal gas constant: 

 

        (6) 

 

Boundary conditions  The associated boundary conditions are the following. At the inlet section x=0, 

uniform pressure and temperature are applied: 

 

        (7) 

 

At the outlet section x=L, the pressure is fixed and fully developed flow conditions are applied: 

 

        (8) 

 

Symmetry boundary conditions are applied on the channel axis at y=0: 

 

        (9) 

 

On the gas side of the impermeable wall at y=H/2 (denoted by the subscript g below), zero normal 

velocity is applied and, for the tangential velocity, the rarefaction effects are modelled using the first-

order Maxwell slip velocity and thermal creep boundary conditions (see Zhang et al. [2012] and 

Kandlikar [2013]): 

 

                 (10) 

 

 

 

 

                 (11) 

 

where λg is the mean free path at the wall defined as: 

 



                 (12) 

 

and σµ and σθ are the viscous and thermal slip coefficients [Sharipov 2011]. In the present numerical 

applications, σµ = σθ = 1 which corresponds to fully accommodating walls (diffuse scattering walls). 

 

For a channel with a uniform wall temperature Tw, the thermal boundary condition writes: 

 

                 (13) 

 

 

 

where ξT is the temperature jump coefficient [Sharipov 2011]. In the present applications, ξT = 2. 

 

When the Knudsen number and the wall slip are not zero, the total heat flux qw at the walls must be 

calculated as: 

 

                 (14) 

 

 

 

where kg(x) = k(Tg(x)) and µg(x) = µ(Tg(x)) are the gas conductivity and viscosity at Tg(x). The 

expression (14) of the wall heat flux was presumably introduced by Maslen [1958] then used by 

Sparrow and Lin [1962]. Since then, only a few authors have taken into account the power of the 

viscous stress at the wall (second R.H.S. term) in their analysis of heat transfer. So, as most of the 

authors neglected this contribution, it was eventually forgotten. Hong and Asako [2010] reiterated its 

importance in a recent paper. We are going to analyse this contribution and show that it allows to 

recover the experimental results on very low values of the Nusselt numbers by Demsis et al. [2009, 

2010]. 

 

 

DIMENSIONAL ANALYSIS 

 

Reference quantities  The equations are made dimensionless using the following variables: 

 

                 (15) 
 

 

                 (16) 

 

where ����, ρin, pin and Tin are the mean velocity, density, pressure and temperature in the inlet section. 

µ in, Cp,in and kin are the inlet viscosity, specific heat and thermal conductivity evaluated at Tin. In micro 

channels, the streamwise pressure gradient balances the viscous term, so the equality of these two 

terms in the Navier-Stokes equation allows defining the reference pressure difference as: 

 

                 (17) 

 

where ε=Dh/L is a small parameter for most micro channels. For a uniform wall temperature, Tw, the 

reference temperature difference is chosen as: 

 

 ∆Tref = Tw − Tin                (18) 

 

 



Dimensionless equations and boundary conditions  After introducing the dimensionless variables, 

the governing equations (1)-(6) take the following form: 

 

 

                 (21) 

 

 

 

 

                 (22) 

 

 

 

 

 

 

                 (23) 

 

 

 

 

 

 

                 (24) 

 

 

 

where Φv is the dimensionless form of the viscous dissipation term (Eq. (5)): 

 

 

                 (25) 

 

 

The equation of state (6) becomes: 

 

                 (26) 

 

 

In these equations, Rein= ρin����Dh/µ in, Prin= µ inCp,in/kin and Ecin = ����
� /Cp,in∆Tref  are the Reynolds, 

Prandtl and Eckert numbers at the inlet section. 

 

The energy equation (24) shows that the pressure work (PW) and viscous dissipation terms (VD) (the 

last two terms) are both in the order of Ecin/Rein, considering that, from the continuity equation (21), 

V∼ε in the PW term. The ratio PW/VD is therefore of the order of −1 since PW is negative and VD is 

positive. Furthermore, by introducing the Mach number Main
2
 = ρin����

� /γpin = ����
� /γrTin and the 

Knudsen number Knin = λin/Dh at inlet, the sum of PW and VD is proportional to the product MainKnin 

since it can be shown that: 

 

                 (27) 

 

Thus PW and VD can be neglected at the same time only when the gas flow is incompressible or 

weakly compressible (Main<<1) and for no slip gas flows (Knin<<1). 



 

The dimensionless form of the boundary conditions is: 

 

 

 

 

 

 

 

 

 

 

 

                 (28) 

 

 

 

 

 

 

 

 

 

                 (29) 

 

 

 

 

 

 

                 (30) 

 

 

As it can be shown that:  

 

                 (31) 

 

 

                 (32) 

 

where the Mach number is a function of the Reynolds and Knudsen numbers : 

 

                 (33) 

 

then the number of independent parameters in the above dimensionless conservation equations and 

boundary conditions is 10: 

 

                 (34) 

 

Note that due to the conservation of the mass flow rate, the Reynolds number is constant in the whole 

channel: Re=Rein. On the other hand, Ma and Kn vary along the flow such as, from Eq. (33): Ma/Main 

= Kn/Knin. 



 

Dimensional analysis of PW, VD, VSP and TC  The order of magnitude of the pressure work (PW), 

viscous dissipation (VD), viscous stress power (VSP) and thermal creep (TC) terms in the 

mathematical model can be evaluated as a function of the rarefaction effect (represented by Knin) and 

the compressibility effect (represented by Main), for different heating rates (represented by ∆Tref/Tin). 

This analysis is limited to subsonic low rarefied gas flows: Prin ∼ 1, Main < 1 and 10
−3

 ≤ Knin ≤ 0.1, for 

relative pressure and temperature differences such that ∆Pref/pin ≤ 1 and ∆Tref/Tin ≤ 1, where ∆Pref and 

∆Tref are defined by Eqs. (17) and (18). The typical micro-flows considered here are gas flows through 

long micro channels of hydraulic diameter Dh ∼ 1 to 10 µm and length L ∼ 0.1 to 10 mm. The inverse 

of the longitudinal aspect ratio is therefore a small parameter: 10
−4

 ≤ ε = Dh/L ≤ 0.1. 

 

As already discussed in Eqs. (24)-(25), PW and VD are both of the order of Ecin/Rein. In Eq. (30), VSP 

is of the order of Ecin/Rein and, in Eq. (28), TC is of the order of εReinKnin
2
/Ecin but with a quite small 

constant in factor of this term since 2σθ(γ−1)/πγ ∼ 0.1 to 0.2. Thus, by comparing the order of 

magnitude of these different terms (in terms of power of the small parameterε) with the other terms in 

the equation in which they appear, it can be shown that, whatever Knin for O(ε2
) ≤ Knin ≤ O(ε1/2

), PW, 

VD and VSP are negligible for Main ≤ O(ε); this approximately corresponds to Rein ≤ O(1). On the 

other hand, TC is negligible for Main ≥ O(ε), that is for approximately Rein > O(1).  
 

ANALYTICAL SOLUTION OF THE ASYMPTOTIC MODEL 

 

Solutions for the velocity and pressure fields  In this section, following the asymptotic analyses by 

Arkilic et al. [1997] and Cai et al. [2007], analytical solutions of simplified asymptotic models for long 

micro channels are calculated in micro channels in the case of isothermal walls. The asymptotic 

analysis is carried out for Main ∼ O(ε) and ∆Tref/Tin ≤ O(1), for Knin ≤ O(ε1/2
). It can be shown from 

Eqs. (31) and (33) that this corresponds to O(ε1/2
) ≤ Rein ≤ O(ε-1

) and ∆Pref/pin ≤ O(ε1/2
). This parameter 

range is chosen because, from the previous section, the TC, PW, VD and VSP terms could potentially 

be negligible and simplify the solution. 

 

Considering weakly rarefied flows with small temperature variations, the dimensionless quantities can 

be written as asymptotic expansion of ε as follows: 

 

 

                 (35) 

 

For isothermal walls, the dimensionless temperature is supposed constant, equal to θ = 1, at the zero 

order of ε. The temperature expansions are thus compatible with flows at constant or slowly varying 

temperature. As a consequence and to simplify the analytical solution of the asymptotic equations, the 

physical properties are considered as constant:  

 

                 (36) 

 

Next, the asymptotic expansions (35) are injected into the dimensionless conservation equations and 

boundary conditions (21)-(30). Then they can be written at the zero or first order in ε, and simplified by 

accounting for the ranges of variations of the dimensionless parameters expressed as a function of ε. It 

can be shown that the asymptotic model to compute the velocity and pressure fields of the present 

problem is nearly identical to the asymptotic model in the case of a fully isothermal flow solved by 

Arkilic et al. [1997]. Thus by noting 

 

                 (37) 

the state equation for the ideal gas becomes: 



 

                 (38) 

 

The analytical solutions for the velocity and pressure fields are V0=0 and: 

 

                 (39) 

 

 

                 (40) 

 

 

                 (41) 

 

with : 

 

                 (42) 

 

 

                 (43) 

 

To allow the integration of the x-momentum equation to get the solution (39-43), the convective term 

and the thermal creep term were neglected. The asymptotic analysis indicates that the first 

approximation is a priori valid for Rein ≤ O(1).  

 

Solution for the temperature field  The asymptotic solution of the temperature field for an isothermal 

wall micro channel was computed by Cai et al. [2007]. This solution is adapted here to the present non-

dimensional formalism. For Rein ≤ O(1), it can be shown that the convective term and the PW, VD and 

VSP terms are all at least one order smaller than the diffusive term of the energy equation. However, 

the simplified problem, reduced to a pure diffusion problem is not compatible with the boundary 

conditions and cannot be solved. So the asymptotic thermal problem is relaxed by taking into account 

the PW, VD and VSP terms. Thus the energy equation for θ1(X, Y) is taken as follows: 

 

                 (44) 

 

 

The symmetry boundary condition is considered on channel axis (at Y=0) and the temperature jump 

condition at the wall (at Y=1/4): 

 

 

                 (45) 

 

 

Then the temperature solution is given by: 

 

                 (46) 

 

                 (47) 

 

 

                 (48) 

 

                 (49) 



 

                 (50) 

 

 

                 (51) 

 

 

Solution for the Nusselt number  For a constant wall temperature Tw, the local Nusselt number can be 

defined as: 

 

                 (52) 

 

 

where, from Eq. (30), the heat flux at the walls is given by: 

 

                 (53) 

 

and  

 

                 (54) 

 

 

Therefore 

 

                 (55) 

 

 

From Eq. (46), it can be shown that the conductive part of Nu(X) is equal to: 

 

                 (56) 

 

 

and, from Eq. (39), the VSP part of Nu(X) is equal to: 

 

                 (57) 

 

 

It is remarkable that the viscous stress power at the wall is the opposite of the conduction heat flux 

(compare Eqs. (56) and (57)): both terms have opposite behaviours or vanish at the same time. This 

can be explained by the simplification of the energy equation (44) resulting from the asymptotic 

analysis. The convective term is not considered in (44) and, as a consequence, the thermal entrance 

effects and the streamwise variation of the temperature from inlet are neglected. When Knin = 0 the two 

terms (56) and (57) vanish because A = 0 (see Eq. (50)). In this case, the power of the viscous stress at 

the wall is zero (no slip) and, as shown previously, the PW and VD terms compensate each other. 

Therefore, the temperature is equal to the wall temperature Tw in the whole micro channel when A=0. 

On the other hand, when Knin ≠ 0, the conduction heat flux close to the wall and the power of the 

viscous stress at the wall are not zero due to the slip and the temperature jump.  

 

The other consequence of the opposite values of (56) and (57) is that the total heat flux at the wall (Eq. 

(53)) and the total Nusselt number (Eq. (55)) are zero: 

 

 qw = 0     and     Nu(X)=0              (58) 



That is, for rarefied forced convection in micro-channels at constant wall temperature (for Knin > 0), 

even if the conduction heat flux and the power of the viscous stress at the wall do not vanish, the total 

heat flux and the Nusselt number always vanish. This is valid far from the thermal entrance effects that 

can exist on a very short length. This asymptotic analysis could then explain the very small values of 

the Nusselt numbers measured by Demsis et al. [2009, 2010] in their experiments. For four rarefied gas 

flows (nitrogen, oxygen, argon and helium) in the ranges of Knudsen number 0.0022−0.032 and 

Reynolds numbers 0.13−14.7, the measured Nusselt numbers vary between 6.2×10
−5

 and 2.8×10
−2

 

which is four to five orders of magnitude smaller than the corresponding values in the continuum 

regime (when convection prevails). Till now, these very small values of the Nusselt number had never 

been explained theoretically because only the contribution of the diffusion heat flux at the wall was 

considered in the Nusselt number definition. 

 

COMPARISON OF THE ANALYTICAL AND NUMERICAL SOLUTIONS 

 

Numerical method. An in-house finite volume code is used to solve the full model (Eqs. (1-14)) 

discretized on a Cartesian grid. A second order centered scheme is used for the diffusive and 

convective terms because the maximum Reynolds number is Remax<15 and the cell Reynolds 

number is Re∆x<1 (no numerical oscillation is observed in the discrete solutions). The discrete 

nonlinear steady equations are solved in a coupled way by Newton's algorithm. The mesh size on 

each space direction is Nx×Ny= 6000×60 for a 100-aspect-ratio computational domain. The mesh is 

uniform on x-direction and refined near the wall on y-direction, with a size ratio of two successive 

cells equal to 0.97. A sensitivity analysis to mesh refinement has shown that the solutions are well 

converged in all simulated cases. The code has been validated through comparisons with 

experimental and numerical results [Tchekiken 2014, Tchekiken et al. 2013, 2014]. 

 

Studied cases  To compare the analytical and numerical solutions, the numerical simulations are 

performed for a nitrogen flow at Tin=270 K in a micro-channel of length L=100 µm and height H=3 

µm, with walls at Tw = 300 K. The physical properties of the gas are considered as constant. Their 

values considered at Tw are gathered in Table 1. Three cases, presented in Table 2, are simulated:  

 - case (a) is at low pressure and corresponds to a quasi incompressible flow but with a strong slip 

velocity at the walls all along the channel (relatively large Kn values at inlet and outlet); 

 - case (b) is at a large pressure difference between inlet and outlet and corresponds to a strongly 

compressible flow (Maout=0.6554) and a strong slip at channel outlet (Knout=0.1135); 

 - case (c) is at high pressure and corresponds to an incompressible flow with a very low slip 

along the channel (small Kn values at inlet and outlet). 

 

Table 1 

Nitrogen physical properties at Tw=300 K 

 

k 

[W/m.K] 

Cp 

[J/kg.K] 
µ.10

5
 

[Pa.s] 

Pr r 

[J/kg.K] 
γ=Cp/Cv σµ σθ ξT 

0.024712 1032.48 1.6588 0.693 296.8 1.4 1 1 2 

 

Table 2 

Imposed inlet conditions and computed outlet conditions of each simulated case 

 

Case pin 

[bar] 

pout 

[bar] 

∆pio 

[bar] 

Knin 

 

Rein= 

Reout 

Maout Knout 

 

Nuav 

(a) 0.5 0.1 0.4 0.0196 1.038 0.0886 0.1031 0.108 

(b) 1.5 0.1 1.4 0.00654 7.833 0.6554 0.1135 0.147 

(c) 5 4.6 0.4 0.00196 12.05 0.0272 0.00225 0.221 



Table 3 

L2-norm of the relative errors on u, p, and T between the analytical and numerical solutions 

 

Case pin 

[bar] 

pout 

[bar] 

eu 

(%) 

eT 

(%) 

ep 

(%) 

(a) 0.5 0.1 0.31 0.43 0.04 

(b) 1.5 0.1 6.3 0.52 0.60 

(c) 5 4.6 0.57 0.54 0.0007 

 

Comparisons of the velocity and temperature fields  The comparison of the analytical and 

numerical solutions of the horizontal, u, and transversal, v, velocity components and the temperature, 

T, are presented in Figures 2-4 for the cases (a)-(c) respectively. Table 3 presents the L2-norm of the 

relative error on u, p, and T between the analytical and numerical solutions. Globally, the analytical and 

numerical solutions for u, p and T are in a good accordance since the maximum relative error is 6.3% 

on u in case (b). The absolute values and errors on v are very small in the present problem. The errors 

are globally located at the channel entrance and exit regions: in the former case it is due to the 

analytical solution that does not take into account the entrance effects and, in the latter case, it is due to 

the zero gradient outflow boundary condition applied in the numerical simulation which is not adapted 

for small Reynolds numbers.  

 

Figs 2-4 show a good agreement between the solutions except at the inlet for the temperature field and 

at the outlet in the compressible case (b). In the latter case, as the Reynolds and Mach number are large 

(Rein =7.8 and Maout = 0.66), the validity domain of the asymptotic analysis (Rein ~ O(1), Main ~ O(ε)) 

is not satisfied and the analytical solution is no longer accurate. In the former case, there is a thermal 

entrance length in the numerical solution since the inlet temperature is Tin=270 K, while this thermal 

entrance is not taken into account by the analytical solution. Using Figures 2-4 and the Nusselt number 

profiles, it is observed that the length of the thermal entrance is very short, equal to 3H at minimum in 

the low Reynolds number case (a) (Figure 5) and to 5H at maximum in the higher Reynolds number 

case (c) (Figure 7).  

 

Analysis of the Nusselt number  The local wall Nusselt number, Nu = Nudiff + NuVSP, is defined by 

Eq. (55). It is the sum of two contributions: the first R.H.S term of Eq. (55), Nudiff, is due to the 

diffusive flux in the wall boundary layer and the second R.H.S term, NuVSP, is due to the power of the 

viscous stress at the walls. The average of Nu along the wall is denoted by Nuav and its values are given 

in Table 2. They are very low (Nuav ~ 0.1) compared with the well-known value of Nu=7.541 

calculated for a fully-established incompressible flow at large Péclet numbers between two isothermal 

parallel plates.  

 

Figures 5-7 show that the absolute values of the magnitudes of both Nudiff and NuVSP increase by 

increasing the Knudsen number (see the downstream part of Figure 5 where Kn increases and compare 

Figures 5 and 7) and increase with increasing Mach numbers (see the downstream part of Figure 6 

where Ma increases and compare Figures 6 and 7). On the other hand, the total Nusselt number, Nu = 

Nudiff + NuVSP, is very small in the whole channel except in the entrance where the flow is not locally 

thermally-established and close to the outlet section due to the outlet B.C. perturbations. In the channel 

core, Nu nearly vanishes because NuVSP is nearly the opposite of Nudiff (note that it is “-Nudiff” that is 

plotted on Figures 5-7). These graphs could then explain why a vanishing Nusselt number is measured 

in the experiments by Demsis et al. [2009, 2010] in case of rarefied flows at small Reynolds numbers.  

 

 

 



 
 

Figure 2.  Comparison of the analytical solution (black isolines) and numerical solution (color fields) 

for u, v and T, in case (a). 

 

 

 
 

Figure 3.  Same as Figure 2 but for case (b) and with a zoom on the outlet zone for each field (see 

coordinates on the abscissa axes). 

 

 

 
 

Figure 4.  Same as Figure 2 but for case (c). 



 
 

Figure 5.  Profiles of the total (Nu), diffusive (Nudiff) and VSP (NuVSP) contributions of the Nusselt 

number with respect to X=x/L, simulated in case (a) and zoom on the Nu profile (on the right). 

 

 

 
 

Figure 6.  Profiles of the total (Nu), diffusive (Nudiff) and VSP (NuVSP) contributions of the Nusselt 

number with respect to X=x/L, simulated in case (b) and zoom on the Nu profile (on the right). 

 

 

 
 

Figure 7.  Profiles of the total (Nu), diffusive (Nudiff) and VSP (NuVSP) contributions of the Nusselt 

number with respect to X=x/L, simulated in case (c) and zoom on the Nu profile (on the right). 

x 

Nu 

Nu 

Nu 



CONCLUSION 

 

In this communication, the mathematical model usually used for weakly rarefied flows with first order 

slip and thermal jump at the walls has been analysed in the case of the forced convection of gas in long 

micro channels between two isothermal infinite plates. The order of magnitude of the pressure work 

(PW) and viscous dissipation (VD) in the bulk flow and the order of magnitude of the power of the 

viscous stress and thermal creep at the walls have been determined with respect to the flow parameters 

(Re, Ma, Kn) and the small parameter ε=Dh/L. It has been shown that PW and VD have the same order 

of magnitude and cannot be neglected when the Mach number is high and the wall slip is important.  

 

The analytical asymptotic solutions of the flow and thermal fields established by Cai et al. [2007] for 

isothermal wall micro-channels is compared with the solution of the full model by a finite volume 

method. This numerical solution takes into account the first order slip and thermal jump conditions at 

the walls, the power of the viscous forces, the thermal creep, the pressure work and the viscous 

dissipation. Three different flow types have been simulated: the first one is very slipping, the second 

highly compressible and the last one incompressible and non-slipping. In the three cases the analytical 

and simulated solutions agree well except the spanwise velocity due to entrance and outflow effects.  

 

The analytical and numerical solutions are used to analyse the Nusselt number values and profiles. A 

thorough analysis of the total heat flux at the walls shows that the contribution of the power of the 

viscous stress at the walls must not be neglected because it is opposite to and of the order of magnitude 

of the diffusive flux at the walls. As a consequence, the total wall heat flux and Nusselt number tend to 

zero all the more so as rarefaction effects are important and the Reynolds number is small. This could 

then explain the very small values of the Nusselt number measured in the experiments by Demsis et al. 

(2009, 2010).  
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