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a b s t r a c t 

In modern sheet metal forming processes, such as hydroforming and single point incremental forming, sheet met- 

als are often subjected to out-of-plane compressive stresses in addition to traditional in-plane stresses. However,

the effect of these out-of-plane stresses on the onset of plastic strain localization is not considered when classic

necking criteria are used, as the latter are generally formulated based on the plane stress assumption. The main

objective of the present investigation is to overcome this limitation by developing numerical tools and analytical

relations that allow considering the influence of these compressive stresses on the prediction of localized neck- 

ing. In the different tools developed, and for comparison purposes, finite strain versions of both the deformation

theory of plasticity and the rigid-plastic flow theory are used to describe the mechanical behavior of the metal

sheet. Furthermore, both the bifurcation theory and the initial imperfection approach are employed to predict the

onset of strain localization. Various numerical predictions are reported to illustrate the effect of normal stress on

the occurrence of localized necking in sheet metals. From these different results, it is clearly demonstrated that

out-of-plane stresses may notably enhance sheet metal formability and, therefore, this property can be effectively

used to avoid the initiation of early strain localization.

1. Introduction

The localization of deformation is often regarded as one of the most 

detrimental defects encountered in sheet metal forming operations. This 

phenomenon is considered as the main factor that limits the formability 

of sheet metals. To evaluate this ductility limit, the concept of form- 

ing limit diagram (FLD), originally developed in the pioneering work of 

Keeler and Backofen [1] , has been widely employed. Because the exper- 

imental procedures for estimating the forming limit strains reveal to be 

time consuming and costly, various analytical and/or numerical models 

and tools have been set up to predict the occurrence of strain localiza- 

tion, among which the bifurcation theory [2] , Marciniak and Kuczyn- 

ski’s analysis [3] , and the perturbation approach [4] . In most cases, these 

different theoretical models are based on the plane stress assumption. 

Although justified for most press-forming operations, where the criti- 

cal portion of the sheet is almost free from out-of-plane forces at both 

sides of its surface, this plane stress assumption should not be general- 

ized. Indeed, in some modern sheet metal forming operations, such as 

hydroforming and incremental forming processes, non-zero normal and 

through-thickness stresses may be observed. In the current contribution, 

attention is restricted to the effect of normal compressive stress on sheet 

metal formability, while the impact of out-of-plane shear stresses is dis- 

regarded. This assumption is motivated by the low magnitude of these 

out-of-plane shear stresses, as compared to the magnitude of the clas- 

sic out-of-plane compressive stress observed in real sheet metal forming 

processes. Indeed, in the case of hydroforming process, the out-of-plane 

shear stresses are identically equal to zero and only the stress component 

normal to the sheet is different from zero. In other forming processes, 

such as deep-drawing, through-thickness shear stresses arise most com- 

monly from the friction between the sheet and the tool. Hence, when 

friction is considered, these through-thickness shear stresses are propor- 

tional to the pressure normal to the plane of the sheet by a factor much 

smaller than unity in most sheet forming applications. Since frictional 

effects are usually purposely minimized in these forming applications, 

they are expected to be an order of magnitude smaller than the contact 

pressure in typical manufacturing processes, where the friction coeffi- 

cient is of the order of 0.1, and the maximum through-thickness shear 

stresses would be expected to be of the order of 10% of the out-of-plane 

compressive stress. Therefore, it makes sense to consider the case of 

non-zero normal stress along with zero through-thickness shear stresses 

as a first good approximation before considering the more general case 

of fully three-dimensional stress conditions. In this context, several au- 
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thors have extended some strain localization criteria to account for the 

effect of stress component, along the normal to the sheet plane, on the 

prediction of FLDs. In this regard, one may quote Gotoh et al. [5] , who 

extended both the Swift criterion [6] and the Hill criterion [7] to a 3D 

stress state, so as to investigate the effect of normal stress on the onset 

of diffuse and localized necking, respectively. More recently, Allwood 

and Shouler [8] have extended the Marciniak and Kuczynski approach 

to account for the effect of normal stress component on the predicted 

limit strains. In this latter analysis, an isotropic rigid-plastic flow theory 

has been used to describe the mechanical behavior of the studied sheet. 

As a result of this earlier investigation, a new generalized forming limit 

diagram has been proposed, which highlights the influence of normal 

stress component on the formability limit. Note that a specifically de- 

signed linear paddle testing apparatus has been used in [9] to experi- 

mentally assess the increase in formability limits due to the application 

of normal compressive stresses. It is shown in this latter study that the 

use of simplifying assumptions, such as plastic isotropy, results in some 

discrepancies between numerical predictions and experimental results. 

To avoid this drawback, Fatemi and Dariani [9] extended the approach 

developed in [8] , by taking into account the plastic anisotropy of the 

sheet via the application of Hill ’48 yield criterion. Another extension 

of the Marciniak and Kuczynski approach has been developed in [10] . 

This extension has been validated on the basis of several experimental 

results for AA6011 and STKM-11A materials. Note also that, within the 

Marciniak and Kuczynski approach, the effect of through-thickness nor- 

mal stress on the forming limits has been investigated using other yield 

criteria (see, e.g., [11,12] , where the Barlat and the YLD2003 yield crite- 

ria have been used, respectively). More recently, the concepts of stress- 

based forming limit diagram (FLSD) and extended forming limit stress 

diagram (XFLSD) have been adopted in [13] to investigate the effect of 

through-thickness normal stress on the formability limit. For all of these 

studied materials, the numerical predictions are found to be quantita- 

tively consistent with the available experimental results. 

Building on this insight, the current paper aims to develop an ex- 

tension of some numerical tools, while accounting for the effect of the 

stress component along the direction normal to the sheet plane. These 

numerical tools have been originally developed in [14] and recently 

revisited and improved in [15] . In these tools, two main strain localiza- 

tion criteria have been used to predict the occurrence of localized neck- 

ing: the bifurcation theory and the Marciniak and Kuczynski approach 

(also referred to as the initial imperfection approach). As previously 

assumed, the impact of out-of-plane shear stresses (and consequently 

out-of-plane shear strains) on the formability prediction is neglected. 

Therefore, a 2D formulation can be followed to formulate the bifurca- 

tion theory and the initial imperfection approach. In this case, the set 

of governing equations can be expressed in the plane of the sheet and 

the necking band remains normal to the sheet plane during the strain- 

ing. Such a formulation is very similar to the one used when the plane 

stress state is assumed. Consequently, the predictions obtained with the 

application of non-zero normal compressive stress can be naturally com- 

pared with predictions obtained under the plane stress assumption. In 

situations when the out-of-plane shear stress components cannot be ne- 

glected, this simple 2D (plane) formulation cannot be preserved any 

more, and the prediction of localized necking becomes a relatively com- 

plex task [16] . In the current work, each of the above-discussed strain 

localization approaches has been coupled with two constitutive frame- 

works, namely a rigid-plastic finite strain version of the J 2 deformation 

theory of plasticity (shortly designated in what follows as “deformation 

theory ”) and of the J 2 flow theory of plasticity (shortly called hereafter 

“flow theory ”). The major conclusion of the present investigation is that 

the presence of positive compressive stress, normal to the sheet plane, 

may substantially delay the onset of localized necking. It is also shown 

that the limit strains predicted by the initial imperfection approach tend 

towards those computed by the bifurcation theory, when the size of the 

geometric imperfection tends towards zero. 

The remainder of the paper is structured as follows: 

• Section 2 provides a short description of the different constitutive

frameworks, which are adopted for the modeling of the mechanical

behavior of the studied sheet metal.
• Section 3 details the main equations on which the different localiza- 

tion criteria are based.
• In Section 4 , the influence of constant normal stress on the occur- 

rence of localized necking is emphasized through various numeri- 

cal predictions and results. The effect of variable normal stress on

formability is analyzed in Appendix B .

Notations, conventions and abbreviations
The list of notations, conventions and abbreviations used in this pa- 

per are clarified in the box bellow. Additional notations will be provided 

when needed. 

Bold letters are used to represent vector and tensor variables. 

Thin letters are used to represent scalar variables and param- 

eters. 

Einstein’s summation convention is used. 

The range of the dummy (resp. free) index is given after (resp. 

before) the corresponding equation. 

∙̇ deri vati ve of • with respect to time 

I 2 second-order identity tensor 

∙⃗⊗ ∙⃗ tensor product of two vectors ( = 

•
i
•

j) 
•

I quantity • evaluated at the initial time 

∙̃ in-plane part of vector or second-order tensor •

defined as ( •1 
•

2 ) or 

( 

∙11 ∙12
∙21 ∙22

) 

, respectively 

coth (∙) hyperbolic cotangent of •
•B quantity • within the band 

•S quantity • within the safe zone 

2. Constitutive equations

As previously stated, for the sake of comparison, the investigations 

carried out in the present paper adopt two constitutive frameworks: the 

flow theory of plasticity and the total deformation theory. 

2.1. Flow theory 

The elasticity of the sheet metal is neglected. This choice is justi- 

fied by the fact that strain localization occurs at relatively large strains. 

Hence, the mechanical behavior of the material is modeled by an asso- 

ciative rigid-plastic flow theory. Accordingly, the normality flow rule is 

used to obtain the expression of the strain rate tensor �̇� (the symmetric 

part of the velocity gradient G ) 

�̇� = �̇� 𝑒𝑞 
𝜕𝜎eq

𝜕 𝝈
, (1)

where: 

�̇� eq is the equivalent strain rate. 

𝜎eq is the equivalent stress. 

𝝈 is the Cauchy stress tensor. 

Furthermore, plasticity is assumed to be isotropic and the von Mises 

criterion is used to predict material yielding. Consequently, the equiva- 

lent strain rate and stress measures �̇� eq and 𝜎eq are related to tensors �̇� 

and 𝝈 by the following relations, respectively: 

�̇� eq = 

√
( 2∕3 ) ̇𝜺 ∶ �̇� ; 𝜎eq = 

√
( 3∕2 ) 𝐒 ∶ 𝐒 , (2)

where S is the deviatoric part of 𝝈. 



Fig. 1. Schematic representation of the loading applied to a small element of the sheet.

By substituting Eq. (2) into Eq. (1), the normality rule can be equiv- 

alently rewritten as 

�̇� = 

3 
2 
�̇� eq 

𝜎eq 
𝐒 ⇔ 𝐒 = 

2 
3 
𝜎eq 

�̇� eq 
�̇� . (3)

On the other hand, the equivalent strain 𝜀 eq is related to the equivalent 

stress 𝜎eq by the Hollomon hardening law 

𝜎eq = 𝐾 𝜀 𝑛 eq where 𝜀 eq = ∫
𝑡

0 
�̇� eq d 𝑡, (4)

with n and K being hardening parameters. 

2.2. Deformation theory 

The constitutive equations governing the J 2 deformation theory of 

plasticity have been initially formulated in the frame of the principal 

strain directions. This original formulation is restricted to isotropic ma- 

terials [14] , where the frame of principal strain directions is aligned 

with that of principal stress directions. In this formulation, the logarith- 

mic strains 𝜀 i and the principal deviatoric stresses S i are related by the 

following equation: 

∀ 𝑖 = 1 , 2 , 3 ∶ 𝑆 𝑖 = 

2 𝜎eq 

3 𝜀 eq 
𝜀 𝑖 . (5)

Eq. (5) has been subsequently generalized in [15] to a tensor form, 

which is valid for any coordinate system 

𝐒 = 

2
3 
𝐸 𝑆 ln 𝐕 , (6)

where E S and ln V are the secant modulus and the natural logarithmic 

of the left Cauchy–Green stretch tensor V , respectively. The secant mod- 

ulus E S is defined as 

𝐸 𝑆 = 

𝜎𝑒𝑞

𝜀 𝑒𝑞 
. (7)

Similar to the case of flow theory, hardening is modeled by the Hol- 

lomon law. Accordingly, the secant modulus E S is obtained by inserting 

Eq. (4) 1 into Eq. (7) , which gives 

𝐸 𝑆 = 𝐾 𝜀 𝑛 −1 𝑒𝑞 . (8)

2.3. Consideration of non-zero constant normal stress 

The studied sheet is subjected to biaxial stretching in the 1 and 2 

directions ( Fig. 1 ). Additionally, a non-zero principal stress 𝜎33 ( = − 𝛼) 

acts in the out-of-plane direction (i.e., in the 3-direction), where 𝛼 is 

assumed to be a non-negative constant pressure. The validity of this 

assumption (constant pressure) has been proven in the case of hydro- 

forming processes (see, e.g., [17,18] ). This pressure is also assumed to 

be uniformly distributed within the plane and the thickness of the sheet. 

Under these loading conditions, the Cauchy stress tensor 𝝈 can be 

expressed as follows: 

𝝈 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝜎11 0 0

0 𝜎22 0

0 0 − 𝛼

⎞ ⎟ ⎟ ⎟ ⎠ . (9)

Tensor 𝝈 is related to its deviatoric part S by 

𝐒 = 𝝈 − ( 1∕3 ) tr ( 𝝈) 𝐈 2

= ( 1∕3 ) 
⎛ ⎜ ⎜ ⎜ ⎝ 
𝛼 + 2 𝜎11 − 𝜎22 0 0 

0 𝛼 − 𝜎11 + 2 𝜎22 0

0 0 −2 𝛼 − 𝜎11 − 𝜎22 

⎞ ⎟ ⎟ ⎟ ⎠ . 
(10)

By inverting this relation, one can obtain the expressions of 𝜎11 , 𝜎22 and 

𝜎33 as functions of S 11 , S 22 and 𝛼

𝜎11 = 2 𝑆 11 + 𝑆 22 − 𝛼;

𝜎22 = 2 𝑆 22 + 𝑆 11 − 𝛼;

𝜎33 = − 𝛼. (11)

The constitutive equations for both material models are summarized by 

Eqs. (3) , ( 4 ), ( 6 ) and ( 11 ). These equations will be combined with the 

localized necking criteria in order to numerically determine the FLDs. 

3. Localized necking criteria

As earlier mentioned, two strain localization approaches are utilized 

to predict the onset of localized necking: the bifurcation theory, devel- 

oped by Rudnicki and Rice [2] , and the imperfection approach, orig- 

inally developed by Marciniak and Kuczynski [3] for positive strain 

paths, and subsequently extended by Hutchinson and Neale [14] to the 

whole range of strain paths. Consistent with most studies devoted to the 

prediction of FLDs, the following assumptions are adopted in the current 

numerical investigations: 

• The studied metal sheet is assumed to be thin.
• The mechanical behavior is taken to be incompressible and, hence,

the strain component 𝜀 33 is equal to − ( 𝜀 11 +𝜀 22 ).
• The necking band is assumed to remain normal to the sheet plane

during straining.

As a consequence of the above assumptions, most of the following 

governing equations will be recast into a 2D in-plane formulation. 

3.1. Bifurcation theory 

3.1.1. Main equations governing the bifurcation theory 
The sheet is subjected to proportional loading. Consequently, the 

velocity gradient G , which is equal to �̇� in this particular case, is given 

by the following expression: 

𝐆 = �̇� = 

⎡ ⎢ ⎢ ⎢ ⎣ 
�̇� 11 0 0 

0 𝜌 �̇� 11 0

0 0 − ( 1 + 𝜌) �̇� 11 

⎤ ⎥ ⎥ ⎥ ⎦ , (12)

where 𝜌 is the strain-path ratio ranging from − 1/2 (uniaxial tensile state) 

to 1 (equibiaxial tensile state). 

As demonstrated earlier in [2] and [19] , the bifurcation criterion 

states that localized necking occurs when the acoustic tensor ⃗̃𝖭 . ̃ . ⃗̃𝖭
becomes singular. This criterion is mathematically expressed as follows: 

𝑑𝑒𝑡 ( ⃗̃𝖭 . ̃ . ⃗̃𝖭 ) = 0 , (13)

where: 



• ⃗̃𝖭 = ( cos 𝜃, sin 𝜃) is the unit vector normal to the localization band

(where 𝜃 is the angle between vector ⃗̃𝖭 and the major strain direc- 

tion). 
• ̃ is the in-plane analytical tangent modulus relating the in-plane

velocity gradient �̃� to the in-plane nominal stress rate ̇̃𝐍 : 

̇̃𝐍 = ̃ ∶ �̃� . (14)

The above tangent modulus ̃ is defined by the following expression: 

̃ = ̃𝐋 − ̃𝐋 1 − ̃𝐋 2 , (15)

where ̃𝐋 1 and ̃𝐋 2 are fourth-order tensors that convey the effect of con- 

vective Cauchy stress components. They are expressed in the following 

index forms (see, e.g., [15] ): 

∀ 𝑖, 𝑗, 𝑘, 𝑙 = 1 , 2 ∶ �̃� 1 ijkl = 

1 
2 
[
𝛿ik 𝜎lj + 𝛿il 𝜎kj 

]
; 

�̃� 2 ijkl = 

1 
2 
[
𝜎ik 𝛿lj − 𝜎il 𝛿jk 

]
.

(16)

As to tensor ̃𝐋 , it designates the in-plane instantaneous modulus relating 

the in-plane strain rate tensor ̇̃𝜺 to the Jaumann co-rotational derivative 

𝝈
J of the in-plane Cauchy stress tensor �̃�

𝝈
J = ̃𝐋 ∶ ̇̃𝜺 . (17)

By virtue of the coaxiality of the Cartesian base vectors (1, 2) with the 

principal stress axes ( 𝜎11 , 𝜎22 ), Eq. (17) reduces to ⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎𝐽 11 = �̃� 11 �̇� 11 + �̃� 12 �̇� 22
𝜎𝐽 22 = �̃� 12 �̇� 11 + �̃� 22 �̇� 22
𝜎𝐽 12 = 2 �̃� 𝑆 �̇� 12 .

(18)

The components �̃� 11 , �̃� 22 , �̃� 12 and �̃� 𝑆 of the in-plane instantaneous 

modulus ̃𝐋 will be explicitly expressed for the different behavior models 

in the following subsections. 

3.1.2. Instantaneous modulus for the flow theory 
In this case, the expression of �̃� may be derived starting from an 

elasto-plastic constitutive framework, in which the elastic deformation 

is taken into account in addition to its plastic counterpart. The rigid- 

plastic behavior may be treated as a limiting case of the elasto-plastic 

behavior, when the Young modulus E tends towards + ∞. As established 

by Hutchinson and Neale [14] , the 3D constitutive law of the elasto- 

plastic flow theory can be expressed by the following index form: 

∀𝑖, 𝑗 = 1 , 2 , 3 ∶ 

𝜎J ij = 

2 𝐸 

3 
[
�̇� ij − 𝛽 𝑆 ij 𝑆 kl �̇� kl 

]
+ 𝛿ij tr 

(
𝝈
J ); 𝑘, 𝑙 = 1 , 2 , 3 , (19)

where: 

𝝈
J is the Jaumann co-rotational derivative of 𝝈. 

𝛽 is a scalar equal to ( 3∕( 2 𝜎2 𝑒𝑞 ) ) ( 1 − ( 𝐸 𝑇 ∕ 𝐸 ) ) .
E T is the tangent modulus equal to d 𝜎eq / d 𝜀 eq . For the particular case 

of the Hollomon hardening law, E T is equal to 𝑛 𝐾 𝜀 𝑛 −1 𝑒𝑞 .

𝛿 is the Kronecker delta. 

Exploiting the fact that 𝜎J 33 is equal to zero (as 𝜎33 is constant

during the loading), and by virtue of the incompressibility condition 

( ̇𝜀 33 = − �̇� 11 − �̇� 22 ), we can formulate Eq. (19) in the form of Eq. (18) .

In this case, the following expressions for the components �̃� 11 , �̃� 22 , �̃� 12 
and �̃� 𝑆 can be derived: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
�̃� 11 = 

4
3 
𝐸 − ( 𝐸 − 𝐸 𝑇 ) 

( 

2 𝑆 11 + 𝑆 22 
𝜎𝑒𝑞 

) 2 

; �̃� 22 = 

4
3 
𝐸 − ( 𝐸 − 𝐸 𝑇 ) 

( 

𝑆 11 + 2 𝑆 22 
𝜎𝑒𝑞 

) 2 

�̃� 12 = 

2
3 
𝐸 − ( 𝐸 − 𝐸 𝑇 ) 

( 

(2 𝑆 11 + 𝑆 22 )( 𝑆 11 + 2 𝑆 22 ) 
𝜎2 
𝑒𝑞 

) 

; �̃� 𝑆 = 

𝐸

3 
.

( 20)

These components �̃� 11 , �̃� 22 , �̃� 12 and �̃� 𝑆 can also be expressed in terms 

of 𝜎11 and 𝜎22 as follows: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
�̃� 11 = 

4
3 
𝐸 − ( 𝐸 − 𝐸 𝑇 ) 

( 

𝜎11 + 𝛼

𝜎𝑒𝑞 

) 2 
; �̃� 22 = 

4 
3 
𝐸 − ( 𝐸 − 𝐸 𝑇 ) 

( 

𝜎22 + 𝛼

𝜎𝑒𝑞 

) 2

�̃� 12 = 

2
3 
𝐸 − ( 𝐸 − 𝐸 𝑇 ) 

( 

( 𝜎11 + 𝛼)( 𝜎22 + 𝛼)
𝜎2 𝑒𝑞

) 

; �̃� 𝑆 = 

𝐸

3 
.

(2 1)

The expressions above for the components �̃� 11 , �̃� 22 , �̃� 12 and �̃� 𝑆 may be 

viewed as extension of the developments carried out by Hutchinson and 

Neale [14] , which are only valid under the plane stress assumption. 

3.1.3. Instantaneous modulus for the deformation theory 
To obtain the expression of ̃𝐋 for the J 2 deformation theory of plas- 

ticity, the developments of Hutchinson and Neale [14] will be adapted 

to the case when 𝜎33 is different from zero (but remains constant dur- 

ing deformation). In this case, the components �̃� 11 , �̃� 22 , �̃� 12 and �̃� 𝑆 are 

given by the following relations: 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

�̃� 11 = 

4
3 
𝐸 𝑆 − ( 𝐸 𝑆 − 𝐸 𝑇 ) 

( 

2 𝑆 11 + 𝑆 22
𝜎𝑒𝑞 

) 2 
; 

�̃� 22 = 

4
3 
𝐸 𝑆 − ( 𝐸 𝑆 − 𝐸 𝑇 ) 

( 

𝑆 11 + 2 𝑆 22
𝜎𝑒𝑞 

) 2 

�̃� 12 = 

2
3 
𝐸 𝑆 − ( 𝐸 𝑆 − 𝐸 𝑇 ) 

( 

(2 𝑆 11 + 𝑆 22 )( 𝑆 11 + 2 𝑆 22 )
𝜎2 𝑒𝑞

) 

; �̃� 𝑆 = 

𝐸 𝑆 

3 
+ 𝑄, 

(2 2)

where scalar Q is defined as follows: 

𝑄 = 

1
3 
𝐸 𝑆 [( 𝜀 11 − 𝜀 22 ) coth ( 𝜀 11 − 𝜀 22 ) − 1] . (23)

Similar to Eq. (21) , the components of �̃� given in Eq. (22) can be for- 

mulated in terms of 𝜎11 , 𝜎22 and pressure 𝛼 as follows: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
�̃� 11 = 

4
3 
𝐸 𝑆 − ( 𝐸 𝑆 − 𝐸 𝑇 ) 

( 

𝜎11 + 𝛼

𝜎𝑒𝑞 

) 2 
; �̃� 22 = 

4
3 
𝐸 𝑆 − ( 𝐸 𝑆 − 𝐸 𝑇 ) 

( 

𝜎22 + 𝛼

𝜎𝑒𝑞 

) 2 

�̃� 12 = 

2
3 
𝐸 𝑆 − ( 𝐸 𝑆 − 𝐸 𝑇 ) 

( 

( 𝜎11 + 𝛼)( 𝜎22 + 𝛼)
𝜎2 𝑒𝑞

) 

; �̃� 𝑆 = 

𝐸 𝑆 

3 
+ 𝑄. 

(2 4)

3.1.4. Algorithmic treatment 
By analyzing the expression of the in-plane analytical tangent mod- 

ulus ̃ , and its different components for each plasticity theory, one can 

easily notice that this modulus is a function of the following parameters 

and variables: hardening parameters K and n , major strain 𝜀 11 , strain- 

path ratio 𝜌, and pressure 𝛼. On the other hand, vecto r ⃗̃𝖭 is completely 

determined once 𝜃 is known. Consequently, the acoustic tensor ⃗̃𝖭 . ̃ . ⃗̃𝖭
is dependent on K, n , 𝜌, 𝜀 11 , 𝛼 and 𝜃: 

⃗̃𝖭 . ̃ . ⃗̃𝖭 ̂= ⃗̃𝖭 ( 𝜃) . ̃ (K, 𝑛, 𝜌, 𝜀 11 , 𝛼) . ⃗̃𝖭 ( 𝜃) . (25)

When K, n and 𝛼 are known, the acoustic tensor ⃗̃𝖭 . ̃ . ⃗̃𝖭 becomes only 

dependent on 𝜌, 𝜀 11 and 𝜃: 

⃗̃𝖭 . ̃ . ⃗̃𝖭 ̂= ⃗̃𝖭 ( 𝜃) . ̃ ( 𝜌, 𝜀 11 ) . ⃗̃𝖭 ( 𝜃) . (26)

The algorithm developed to numerically determine the FLD is defined 

by two nested loops: 

• For each strain-path ratio 𝜌 ranging from − 1/2 to 1, with Δ𝜌= 0.1.

○ For each band orientation 𝜃 ranging from 0° to 90°, at user- 

defined intervals of 1°.

– Solve Eq. (13) with respect to its only unknown 𝜀 11 . The ob- 

tained root is referred to as the critical strain 𝜀 ∗ 11 correspond- 

ing to the strain-path ratio 𝜌 and to the band orientation 𝜃.



Fig. 2. Illustration of the M–K analysis (initial geometry and band orientation).

The smallest critical strain over all possible band orientations 

𝜃 and the associated angle define, respectively, the localization 

limit strain 𝜀 𝐿 11 and the necking band inclination, which corre- 

spond to the strain-path ratio 𝜌. 

3.2. Initial imperfection approach 

This approach postulates the preexistence of a small initial imperfec- 

tion in the form of a narrow band across the sheet ( Fig. 2 ). 

The different notations used in Fig. 2 are explained below: 

• ℎ 𝐵 
𝐼 

: initial thickness of the band B. 
• ℎ 𝑆 

𝐼 
: initial thickness of the safe zone S (outside the band). 

•
→
𝖭 𝐼 : initial unit vector normal to the band. 

• 𝜃I : initial band inclination.

3.2.1. Governing equations for the initial imperfection approach 
The initial imperfection approach is characterized by the following 

main equations: 

• The kinematic compatibility condition at the interface between the

safe zone and the band. This condition allows expressing the jump

in the velocity gradient across the band:

�̃� 

𝐵 = �̃� 

𝑆 + 

.
→

�̃� ⊗
→

�̃� , (27)

where ⃗̃𝖭 and 

.
→

�̃� are the current in-plane unit vector normal to the band 

and the in-plane jump vector, respectively. The velocity gradient in the 

safe zone G 

S has the same form as in Eq. (12) . By inserting Eq. (12) into 

Eq. (27) , one can derive the following expression for G 

B : 

𝐆 

𝐵 = 

⎡ ⎢ ⎢⎣
�̇� 11 + �̇� 1 𝖭 1 �̇� 1 𝖭 2 0 

�̇� 2 𝖭 1 𝜌 �̇� 11 + �̇� 2 𝖭 2 0 
0 0 −(1 + 𝜌) �̇� 11 − �̇� 1 𝖭 1 − �̇� 2 𝖭 2 

⎤ ⎥ ⎥ ⎦ . (28)

• The expressions of the initial and current imperfection ratios denoted

by 𝜉I and 𝜉, respectively, and defined by

𝜉𝐼 = 1 − 

ℎ 𝐵 
𝐼 

ℎ 𝑆 
𝐼

; 𝜉 = 1 − 

ℎ 𝐵 

ℎ 𝑆 
. (29)

The current thickness h B (resp. h S ) is related to ℎ 𝐵 
𝐼 

(resp. ℎ 𝑆 
𝐼 

) by 

ℎ 𝐵 = ℎ 𝐵 
𝐼 
𝑒 
𝜀 𝐵 33 ; ℎ 𝑆 = ℎ 𝑆 

𝐼 
𝑒 
𝜀 𝑆33 , (30)

where 𝜀 𝐵 33 and 𝜀 𝑆 33 are the 33 components of the logarithmic strain in

the band and in the safe zone, respectively. By combining Eqs. (29) and 

( 30 ), ratios 𝜉I and 𝜉 can be related by the following equation: 

𝜉 = 1 − (1 − 𝜉𝐼 ) 𝑒 
( 𝜀 𝐵 33 − 𝜀 

𝑆 
33 ) . (31)

• The evolution of the band orientation:

Tan ( 𝜃) = 𝑒 
( 𝜀 𝑆 11 − 𝜀 

𝑆 
22 ) Tan ( 𝜃𝐼 ) = 𝑒 

(1− 𝜌) 𝜀 𝑆 11 Tan ( 𝜃𝐼 ) . (32)

Table 1

Hardening parameters for the used materials.

Low-carbon steel (annealed) 304 stainless steel (annealed)

K (MPa) n K (MPa) n
600 0.21 1400 0.43

• The equilibrium balance at the interface between the safe zone and

the band:

ℎ 𝐵 𝝈𝐵 . 

→

�̃� = ℎ 𝑆 𝝈𝑆 . 

→

�̃� . (33)

• The through-thickness normal stress is assumed to be the same in

both zones B and S. This allows simplifying the following analysis.

Furthermore, this prescribed stress component is taken to be nega- 

tive and kept constant during straining:

𝜎𝐵 33 = 𝜎𝑆 33 = − 𝛼 with pr essur e 𝛼 ≥ 0 . (34)

• The constitutive equations describing the mechanical behavior, as

detailed in Section 2 .

3.2.2. Algorithmic treatment 
The generic algorithm used to numerically determine the FLD is 

based on the following three nested loops: 

• For each strain-path ratio 𝜌 ranging between − 1/2 and 1, with

Δ𝜌= 0.1.

○ For each initial band orientation 𝜃I spanning the admissible range

of inclination angles (i.e., between 0° and 90°), at user-defined

intervals of 1°.

– For each time increment [ t k , t k + 1 ], integrate the governing

equations detailed in Section 2 by applying an implicit in- 

cremental algorithm very similar to the one developed and

used in [15] . The application of this incremental integration

scheme is continued until satisfying the following criterion:

�̇� 𝐵 33 ∕ ̇𝜀 
𝑆 
33 ≥ 10 . (35)

The strain component 𝜀 𝑆 11 , thus obtained once criterion

( 35 ) is satisfied, is considered to be the critical strain 𝜀 ∗11 
corresponding to the current band inclination 𝜃 and to the

strain-path ratio 𝜌.

The smallest critical strain, over all initial angles 𝜃I , solution of the 

previous algorithm defines the necking limit strain 𝜀 𝐿 11 corresponding to

the strain-path ratio 𝜌. 

4. Numerical predictions and results

In this section, numerical predictions are carried out for two steel 

grades: the annealed low-carbon steel (shortly designated in the fol- 

lowing "LCS") and the annealed 304 stainless steel (called shortly here- 

after "304SS"). The hardening parameters for these grades are defined 

in Table 1 . 

To better emphasize the difference between the mechanical re- 

sponses of LCS and 304SS, the stress–strain responses for both steel 

grades are displayed in Fig. 3 . 

The remainder of this section is divided into two main sections; the 

first corresponds to the results obtained by the application of the bifur- 

cation theory, while the second contains the results yielded by the initial 

imperfection approach. 

4.1. Bifurcation theory predictions 

Before analyzing the influence of pressure 𝛼 on the onset of bifurca- 

tion for the whole range of strain paths, attention is first confined to the 

particular case of plane strain state ( 𝜌= 0). In this case, the evolution 

of the limit strain 𝜀 11 versus pressure 𝛼 is plotted in Fig. 4 (a). For this 

particular strain path, the limit strain computed on the basis of the flow 



Fig. 3. Stress–strain curves: comparison between low-carbon steel and 304 stainless steel.

theory is exactly the same as that yielded by the deformation theory, 

irrespective of the steel grade and pressure level. This preliminary ob- 

servation generalizes the results reported in [14] and [15] , which were 

only established for the particular case of plane stress conditions. It is 

also found that the limit strain is equal to the value of the hardening 

exponent n when pressure 𝛼 is equal to 0 (which corresponds to a plane 

stress state). This result is quite expectable and can also be recovered 

by the Hill criterion [7] . From Fig. 4 , it is revealed that 𝜀 11 increases 

with pressure 𝛼. In order to better understand the effect of pressure 𝛼

on the limit strain 𝜀 11 , the bifurcation condition given by Eq. (13) is 

further developed for the case of plane strain tension. In this particular 

case, the necking band orientation 𝜃 is equal to 0°, as demonstrated in 

several investigations (see, for instance, [14] and [15] ), and confirmed 

in the current work through numerical predictions. Hence, the unit nor- 

mal vector 
⃗̃𝖭 i s equal to (1, 0). Consequently, Eq. (13) reduces to the 

following equation: 

𝑑𝑒𝑡 ( 𝐂 ) = 0 where ∀ 𝑖, 𝑗 = 1 , 2 ∶ 𝐶 𝑖𝑗 = ̃ 1 𝑖𝑗1 . (36)

From Eq. (36) , and considering the previously derived expressions for 

the analytical tangent modulus, the components C 12 and C 21 are equal 

to 0. Consequently, det ( C ) is equal to the product C 11 C 22 . After some 

straightforward derivations, components C 11 and C 22 can be expressed 

in the following form: 

𝐶 11 = 𝛼 + 3 − 
( 1+ 𝑛 ) 
2 2 1+ 𝑛

( 

𝑛

𝜀 11 
− 1 

) 

𝐾 𝜀 𝑛 11 ;

𝐶 22 = 2 −1+ 𝑛 3 − 
( 1+ 𝑛 ) 
2 𝐾 𝜀 𝑛 11

(
1 + coth 

(
𝜀 11 

))
.

(37)

As clearly shown in Eq. (37) 2 , component C 22 is always strictly pos- 

itive (as 𝜀 11 > 0) and independent of pressure 𝛼. Hence, the onset of 

bifurcation corresponds to the vanishing of component C 11 : 

𝐶 11 = 0 ⇔ 𝜀 11 =
𝑛

1 − 3 
1+ 𝑛 
2 2 −1− 𝑛 𝛼

𝐾 𝜀 𝑛11

. (38)

For the studied case of plane strain tension, the equivalent stress 𝜎eq is 

related to the strain component 𝜀 11 by the following equation: 

𝜎𝑒𝑞 = 𝐾 

2 𝑛

3 
𝑛
2
𝜀 𝑛 11 . (39)

The insertion of Eq. (39) into Eq. (38) leads to the following expression: 

𝐶 11 = 0 ⇔ 𝜀 11 =
𝑛

1 − 

√
3 
2 

𝛼

𝜎𝑒𝑞

. (40)

From Eqs. (38) and ( 40 ), one can easily observe that 𝜀 11 increases with 

pressure 𝛼. Therefore, Eq. (38) shows the sensitivity of the evolution of 

the limit strain 𝜀 11 as a function of pressure 𝛼 to the adopted sheet metal 

parameters K and n . By analyzing Eq. (38) and comparing the curves of 

Fig. 4 (a), one can easily conclude that the limit strain of the low-carbon 

steel is more affected by the level of pressure 𝛼 than the limit strain 

of 304 stainless steel is. This result is also expectable, considering the 

difference in the hardening behavior of the two steel grades (see Fig. 3 ). 

Indeed, for a given equivalent strain, the equivalent stress of the LCS 

material is lower than that of the 304SS material. This reveals that the 

impact of pressure 𝛼 on 𝜎eq is more important for the 304SS than for the 

case of LCS. To further emphasize this aspect, the evolution of 𝜀 11 as a 

function of pressure 𝛼 normalized by 𝜎eq is displayed in Fig. 4 (b). The 

resulting evolution is almost the same for both alloys, which confirms 

the observation made on Fig. 4 (a). 

It has been observed in practice that applying a normal pressure 

during forming of a sheet improves its formability. This effect is suc- 

cessfully captured by numerical predictions, as demonstrated in Fig. 5 , 

Fig. 4. Evolution of the limit strain 𝜀 11 (for plane strain tension) as a function of: (a) pressure 𝛼, (b) ratio 𝛼/ 𝜎eq . 



Fig. 5. Effect of pressure 𝛼 on the FLDs, as obtained by bifurcation theory: (a) LCS; (b) 304SS.

where simulations are performed with different values for the normal 

pressure: 0 MPa (which corresponds to a plane stress state), 100 MPa, 

and 200 MPa. This figure confirms, and extends to other strain paths, 

the observation that the limit strains of low-carbon steel are more sen- 

sitive to the amount of normal pressure 𝛼 than those of 304 stainless 

steel, as already observed in Fig. 4 for the plane strain tension loading 

path. Other important conclusions, pertaining to each of the adopted 

constitutive frameworks, may be drawn on the basis of these simulation 

results: 

• Flow theory of plasticity : bifurcation cannot occur in the biaxial ten- 

sion range ( 𝜌 > 0), irrespective of the steel grade and pressure level.

In the negative 𝜌 range, however, bifurcation is predicted at realistic

levels of limit strains. In order to validate our numerical predictions,

the well-known Hill criterion [7] , which is valid in its original form

under the plane stress assumption, is generalized in the present case

to a more general stress state that includes a non-zero normal stress.

After some lengthy derivations detailed in Appendix A , the following

analytical relation is obtained for the limit strain (major strain):

𝜀 11 =
2 𝑛 +1 𝜀 𝑛 11 𝐾 𝑛 ( 𝜌2 + 𝜌 + 1)

𝑛 +2
2

− 3 
𝑛 +1 
2 𝛼 ( 𝜌 + 1) 2

√
𝜌2 + 𝜌 + 1 + 2 𝑛 +1 𝜀 𝑛 11 𝐾 ( 𝜌 + 1) ( 𝜌2 + 𝜌 + 1)

𝑛 +2
2

.

( 41)

Usually, the values of parameters K, n , 𝜌 and 𝛼 are fixed and, hence, 

Eq. (41) may be viewed as a non-linear equation for the principal un- 

known 𝜀 11 . This limit strain 𝜀 11 can then be determined by solving this 

equation with an iterative procedure. The associated minor strain 𝜀 22 
is simply computed by multiplying the obtained solution 𝜀 11 by 𝜌. The 

FLDs determined by solving the analytical Eq. (41) are represented in 

Fig. 5 by dotted graphs with symbols ( •). One can easily verify from this 

figure that the numerical predictions follow exactly the solution of the 

analytical formula ( 41 ). This comparison proves the suitability and the 

accuracy of the proposed numerical tools. 

By analyzing Eq. (41) , one can observe that, when pressure 𝛼 is differ- 

ent from 0, the limit strain 𝜀 11 (and hence 𝜀 22 ) depends on the material 

parameters K, n as well as on the strain-path ratio 𝜌. This is a main dif- 

ference with the case of a plane stress state, where the limit strain only 

depends on 𝜌 and n . Eq. (41) also reveals that the impact of pressure 𝛼

on the limit strain is more important for low values of K and/or n . This 

remark provides another justification to the fact that the limit strain of 

low-carbon steel grade is more sensitive to the amount of pressure 𝛼

than the limit strain of 304 stainless steel grade. 

When pressure 𝛼 is set to 0 (which corresponds to the case of plane 

stress state), the well-known Hill formula is obviously recovered from 

Eq. (41) 

𝜀 11 = 

𝑛 

( 𝜌 + 1) 
. (42)

For plane strain tension ( 𝜌= 0), and for a general stress state ( 𝛼 ≠ 0), the 

following equation can be readily derived from Eq. (41) : 

𝜀 11 =
2 𝑛 +1 𝜀 𝑛 11 𝐾 𝑛

−3 
𝑛 +1 
2 𝛼 + 2 𝑛 +1 𝜀 𝑛 11 𝐾

. (43)

By fixing the values of the hardening parameters K and n , one can estab- 

lish from Eq. (43) a non-linear relation between the limit strain 𝜀 11 and 

pressure 𝛼. Therefore, one can plot the evolution of 𝜀 11 as a function of 

𝛼. This evolution is identical to that already reported in Fig. 4 . 

• J 2 deformation theory : unlike the flow theory, the application of the

J 2 deformation theory in conjunction with the bifurcation approach

leads to finite and realistic limit strains in the biaxial tension range

( 𝜌 > 0). For negative strain paths ( 𝜌 < 0), the limit strains computed

by the deformation theory are always lower than their counterparts

predicted by the flow theory. The equality of the limit strains pre- 

dicted by both plasticity theories is only observed for the case of

plane strain tension. Similar to the case of flow theory, the appli- 

cation of normal pressure 𝛼 increases the limit strain when the de- 

formation theory is used as behavior model. To more closely ana- 

lyze the influence of pressure 𝛼 on the level of the limit strain 𝜀 11 ,

Eq. (13) is further developed for positive strain paths ( 𝜌 > 0). Similar

to the case of plane strain tension ( 𝜌= 0), the necking band orienta- 

tion 𝜃 is equal to 0° for positive strain paths. This result is also con- 

firmed in the current work through numerical predictions. Hence,

vector ⃗̃𝖭 is equal to (1, 0), which allows the following analytical 

relation to be derived from criterion ( 13 ): 

− 3 
𝑛 +1 
2 𝛼 ( 𝜌2 + 𝜌 + 1) 2 + 2 𝑛 −1 𝐾 𝜀 𝑛 −1 11 ( 𝜌2 + 𝜌 + 1) 

𝑛 +1 
2 
(
−3 𝜌2 − 𝑛 ( 𝜌 + 2) 2

+ 2 𝜀 11 ( 𝜌 + 2)( 𝜌2 + 𝜌 + 1)
)
= 0 . (44 )

The limit strain 𝜀 11 can then be determined by solving the non-linear 

Eq. (44) via an iterative numerical scheme. The forming limit diagrams 

obtained by solving Eq. (44) are provided in Fig. 5 (dotted graphs with 

symbol ×). By comparing the right-hand side of the FLDs reported in 

Fig. 5 , it is clear that the FLDs based on Eq. (44) are identical to those 

given by the numerical tool developed in Section 3 , which provides an 

additional validation for the latter. 



Fig. 6. Effect of pressure 𝛼 on the plots of necking band orientation 𝜃 versus strain-path ratio 𝜌, as determined by the bifurcation theory: (a) LCS; (b) 304SS.

Moreover, in the particular case of plane stress state ( 𝛼=0), Eq. 

(44) provides directly the associated limit strain in the following form: 

𝜀 11 = 

3 𝜌2 + 𝑛 ( 𝜌 + 2) 2

2 ( 𝜌 + 2)( 𝜌2 + 𝜌 + 1) 
. (45)

Eq. (45) above is the well-known Stören and Rice formula [19] , which 

provides the major limit strain at localized necking based on the defor- 

mation theory of plasticity in conjunction with plane stress conditions. 

Again, an observation similar to that made in the case of flow the- 

ory applies here. Indeed, the limit strain 𝜀 11 associated with a non-zero 

normal pressure ( 𝛼 ≠ 0, see Eq. (44) ) depends on 𝜌, K and n , while it 

only depends on 𝜌 and n in the case of plane stress state (see Eq. (45) ). 

The plots of the necking band orientation 𝜃 versus the strain-path ra- 

tio 𝜌 are displayed in Fig. 6 for both plasticity theories (i.e., flow theory 

and deformation theory of plasticity). Note that for 𝜌 < 0, the inclina- 

tion of the band 𝜃, which results from the analysis, is that minimizing 

the critical strain 𝜀 ∗ 11 for all possible band orientations. For the posi- 

tive 𝜌 range, it is demonstrated from the different simulations that the 

necking band orientation 𝜃 is always equal to 0° for the deformation 

theory, while no bifurcation is predicted when the flow theory is used. 

Consequently, the plots of localization band angle 𝜃 are only presented 

in the negative 𝜌 range (see Fig. 6 ). The above observations hold true 

regardless of the value of pressure 𝛼. For both theories of plasticity, the 

necking band orientation increases with the absolute value of the strain- 

path ratio 𝜌. In the case of the deformation theory, the value of this band 

orientation is dependent on the amount of pressure 𝛼, and it increases 

with the latter (the lowest value of band orientation being obtained in 

the case of plane stress state ( 𝛼=0)). However, when the flow theory is 

applied, the necking band inclination 𝜃 reveals to be independent of 𝛼. 

In this latter case, one can easily verify through numerical simulations 

that 𝜃 is related to 𝜌 by the following formula: 

𝜃 = arctan 
√
− 𝜌, (46)

which is exactly the same formula as that given by Hill’s localized neck- 

ing analysis [7] , within the framework of rigid-plastic flow theory and 

plane stress conditions. This result is an additional validation of our de- 

veloped numerical tools. 

The analytical and numerical results established in this section for 

the case of constant normal stress, on the basis of bifurcation theory, 

will be extended in Appendix B to the case of variable normal stress, 

which is taken proportional to the equivalent stress. 

4.2. M–K analysis predictions 

Before examining in detail the effect of normal pressure 𝛼 for the 

whole range of strain paths, attention is first focused on the particular 

case of plane strain tension ( 𝜌= 0). For this particular strain path, the 

initial orientation 𝜃I for the necking band is equal to 0° (i.e., the one that 

minimizes the limit strain over all possible initial band inclinations). 

Using the update Eq. (32) , it is easy to demonstrate that the necking 

band orientation 𝜃 remains equal to 0° during straining. Consequently, 

the normal vector ⃗�̃� keeps its initial value (1, 0) all along loading. Hence, 

the equilibrium Eq. (33) reduces to the following scalar equation: 

ℎ 𝐵 𝜎𝐵 11 = ℎ 𝑆 𝜎𝑆 11 . (47)

It is also well known that, for this particular loading path of plane strain 

tension, the strain path remains proportional during deformation both 

in the band and in the safe zone (see, e.g., [14] ). Accordingly, 𝛆 𝐵 and 

𝛆 𝑆 can be expressed in the following generic forms: 

𝛆 𝐵 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝜀 𝐵 11 0 0

0 0 0 

0 0 − 𝜀 𝐵 11 

⎞ ⎟ ⎟ ⎟ ⎠ ; 𝛆 𝑆 = 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝜀 𝑆 11 0 0

0 0 0 

0 0 − 𝜀 𝑆 11 

⎞ ⎟ ⎟ ⎟ ⎠ . (48)

The corresponding equivalent strains 𝜀 𝐵 𝑒𝑞 and 𝜀 𝑆 𝑒𝑞 are easily obtained 

from Eq. (48) 

𝜀 𝐵 eq = 

√ 

( 2∕3 ) 𝜺 𝐵 ∶ 𝜺 𝐵 = 

2 √
3 
𝜀 𝐵 11 ;

𝜀 𝑆 eq =
√ 

( 2∕3 ) 𝜺 𝑆 ∶ 𝜺 𝑆 = 

2 √
3 
𝜀 𝑆 11 . (49)

Because the prescribed particular loading path (i.e., plane strain tension) 

results in a strain path that remains linear in both zones, the normality 

law ( 3 ) corresponding to the flow theory and the constitutive Eq. (6) cor- 

responding to the deformation theory become strictly equivalent. In this 

case, S B and S S can be related to 𝛆 𝐵 and 𝛆 𝑆 , respectively, by the following 

relations: 

𝐒 𝐵 = 

2 
3 

𝜎𝐵 eq 

𝜀 𝐵 eq 

𝜺 
𝐵 ; 𝐒 𝑆 = 

2 
3 

𝜎𝑆 eq 

𝜀 𝑆 eq 

𝜺 
𝑆 . (50)

Because the components 𝜀 𝐵 22 and 𝜀 𝐵 22 are equal to zero (see Eq. (48) ), it

comes from Eq. (50) that 

𝑆 𝐵 22 = 0; 𝑆 𝑆 22 = 0 . (51)



Fig. 7. Evolution of ratio 𝜀 𝐵 11 ∕ 𝜀 
𝑆 
11 versus 𝜀 𝑆 11 for plane strain tension ( 𝜌= 0, 𝜉I = 10 − 3 ): (a) LCS; (b) 304SS. 

The combination of the above equation with Eq. (10) allows the expres- 

sions of 𝜎𝐵 22 and 𝜎𝑆 22 to be derived as follows:

𝜎𝐵 22 = 

𝜎𝐵 11 − 𝛼

2 
; 𝜎𝑆 22 = 

𝜎𝑆 11 − 𝛼

2 
. (52)

Then, the equivalent stresses 𝜎𝐵 𝑒𝑞 and 𝜎𝑆 𝑒𝑞 are expressed in the following 

forms: 

𝜎𝐵 𝑒𝑞 = 

√ 

𝛼2 + ( 𝜎𝐵 11 ) 
2 − 𝜎𝐵 11 𝜎

𝐵 
22 + ( 𝜎𝐵 22 ) 

2 + 𝛼 ( 𝜎𝐵 11 + 𝜎𝐵 22 )

𝜎𝑆 𝑒𝑞 = 

√ 

𝛼2 + ( 𝜎𝑆 11 ) 
2 − 𝜎𝑆 11 𝜎

𝑆 
22 + ( 𝜎𝑆 22 ) 

2 + 𝛼 ( 𝜎𝑆 11 + 𝜎𝑆 22 ) . (5 3)

Substituting Eq. (52) into Eq. (53) leads to the following expressions: 

𝜎𝐵 𝑒𝑞 = 

√
3 
2 

( 𝜎𝐵 11 + 𝛼); 𝜎𝑆 𝑒𝑞 = 

√
3 
2 

( 𝜎𝑆 11 + 𝛼) , (54)

which are equivalent to 

𝜎𝐵 11 = 

2 √
3 
𝜎𝐵 𝑒𝑞 − 𝛼; 𝜎𝑆 11 = 

2 √
3 
𝜎𝑆 𝑒𝑞 − 𝛼. (55)

Using the Hollomon hardening law ( 4 ) and Eqs. (49), (55) can also be 

rewritten in the following form: 

𝜎𝐵 11 =

( 

2 √
3 

) 𝑛 +1 

𝐾
(
𝜀 𝐵 11

)𝑛 − 𝛼; 

𝜎𝑆 11 =

( 

2 √
3 

) 𝑛 +1 

𝐾
(
𝜀 𝑆 11

)𝑛 − 𝛼. (56)

The following form of the equilibrium equation can be obtained by in- 

serting the above expressions for 𝜎𝐵 11 and 𝜎𝑆 11 into Eq. (47) :

ℎ 𝐵 
⎛ ⎜ ⎜ ⎝ 
( 

2 √
3 

) 𝑛 +1 

𝐾 ( 𝜀 𝐵 11 ) 
𝑛 − 𝛼

⎞ ⎟ ⎟ ⎠ = ℎ 𝑆 
⎛ ⎜ ⎜ ⎝ 
( 

2 √
3 

) 𝑛 +1 

𝐾 ( 𝜀 𝑆 11 ) 
𝑛 − 𝛼

⎞ ⎟ ⎟ ⎠ . (57)

Taking into account Eqs. (29) , ( 31 ) and ( 48 ), the equilibrium Eq. 

(57) can be rearranged as follows: 

(
1 − 𝜉𝐼 

)
𝑒 
− 𝜀 𝐵 11 

⎛ ⎜ ⎜ ⎝ 
( 

2 √
3 

) 𝑛 +1 

𝐾
(
𝜀 𝐵 11

)𝑛 − 𝛼

⎞ ⎟ ⎟ ⎠ = 𝑒 
− 𝜀 𝑆 11 

⎛ ⎜ ⎜ ⎝ 
( 

2 √
3 

) 𝑛 +1 

𝐾
(
𝜀 𝑆 11

)𝑛 − 𝛼

⎞ ⎟ ⎟ ⎠ . 
(58)

The strain component 𝜀 𝐵 11 is varied between 0 and 1, with an increment

size of 10 − 3 . For each strain value 𝜀 𝐵 11 , Eq. (58) is solved by using an

iterative procedure, thus providing the corresponding value of 𝜀 𝑆 11 . The

evolution of ratio 𝜀 𝐵 11 ∕ 𝜀 
𝑆 
11 versus the strain component 𝜀 𝑆 11 is plotted in

Fig. 7 for different values of normal pressure 𝛼. In these simulations, the 

initial imperfection factor 𝜉I is set to 10 − 3 . The crosses marked on the

different curves indicate the maximum value that can be reached for 𝜀 𝑆 11 .

This value also corresponds to the limit strain 𝜀 11 . The different curves 

reported in Fig. 7 indicate that the predicted limit strain increases with 

the normal pressure 𝛼. This result, which is demonstrated here for the 

particular case of plane strain tension, will be confirmed and generalized 

in what follows to the whole range of strain paths. 

The combined effect of initial geometric imperfection ratio 𝜉I and of 

pressure 𝛼 on the evolution and the level of the limit strain 𝜀 11 is ana- 

lyzed through the curves of Fig. 8 . The results reported in this figure, 

using the M–K approach, confirm the analyses carried out in Fig. 4 , on 

the basis of bifurcation theory: namely, pressure 𝛼 enhances the ductil- 

ity of both steel grades. Moreover, it is again revealed that this enhance- 

ment is more significant for low-carbon steel than it is for 304 stainless 

steel. This difference is due to the contrast in the hardening parameters 

( Table 1 ) and, hence, in the stress–strain response ( Fig. 3 ). Furthermore, 

an increase in the initial imperfection ratio 𝜉I leads to a reduction in the 

level of limit strain 𝜀 11 . 

The evolution of the critical strain 𝜀 ∗ 11 versus the band orientation

𝜃, which corresponds to the current band inclination determined at the 

onset of strain localization, for uniaxial tension strain path ( 𝜌= − 0.5) is 

displayed in Fig. 9 for different values of pressure 𝛼. The initial imper- 

fection ratio 𝜉I is set to 10 − 2 for the different simulations. The crosses 

reported on the different curves indicate the value of the limit strain 𝜀 11 

and the associated necking band orientation. As can be noticed from Fig. 

9 , the critical strains predicted by the flow theory are more sensitive to 

the value of the band orientation than are those determined by the ap- 

plication of the deformation theory. This observation is valid whatever 

the amount of pressure 𝛼. Also, the value of the necking band orien- 

tation 𝜃 seems to very slightly increase with pressure 𝛼 when the flow 

theory is applied along with the M–K analysis, as reflected by Fig. 9 (a) 

and (c). This observation marks a slight difference with the result ob- 

tained when the bifurcation theory is used in conjunction with the flow 

theory. Indeed, in this latter case, it was demonstrated (see Fig. 6 ) that 

the necking band orientation 𝜃 is independent of the value of pressure 

𝛼. On the other hand, the increase in the necking band orientation with 

pressure 𝛼 is more noticeable when the deformation theory is used (see 

Fig. 9 (b) and (d)). This increase in the necking band orientation with 

the applied pressure, revealed by the M–K analysis, is fully consistent 

with the results obtained with the bifurcation theory (see Fig. 6 ). 



Fig. 8. Evolution of 𝜀 11 versus pressure 𝛼 for plane strain tension ( 𝜌= 0), as predicted by the M–K analysis: (a) LCS; (b) 304SS. 

Fig. 9. Evolution of the critical strain 𝜀 ∗ 11 versus the necking band orientation 𝜃 for uniaxial tension strain path ( 𝜌= − 0.5), as predicted by the M–K analysis ( 𝜉I =10 − 2 ): (a) LCS (Flow 

theory); (b) LCS (Deformation theory); (c) 304SS (Flow theory); (d) 304SS (Deformation theory).



Fig. 10. Effect of pressure 𝛼 on the predicted FLDs: (a) LCS (Flow theory); (b) LCS (Deformation theory); (c) 304SS (Flow theory); (d) 304SS (Deformation theory).

The respective effects of pressure 𝛼 and of initial imperfection ra- 

tio 𝜉I on the shape and location of the predicted FLDs are reflected in 

Fig. 10 . More specifically, comparisons between the predictions given 

by both plasticity theories are shown with two amounts of pressure: 0 

and 200 MPa, and two values for 𝜉I : 10 − 3 and 10 − 2 . The predictions

obtained with the initial imperfection approach are also compared with 

those yielded by the bifurcation theory. Four main conclusions may be 

drawn in view of the presented simulation results: 

• As revealed from Fig. 10 , which is also consistent with the intermedi- 

ate results already shown for some particular strain paths, the larger

the applied normal pressure 𝛼, the higher the limit strains. This re- 

sult is valid for both plasticity theories and whatever the value of

initial imperfection 𝜉I .
• For a given amount of normal pressure prescribed to the sheet metal,

the limit strain decreases with the size of the initial imperfection

ratio. Again, this result holds true whatever the amount of applied

normal pressure, and is valid for both plasticity theories, namely

flow theory and deformation theory of plasticity.
• In the range of positive strain paths, plastic strain localization occurs

at realistic strain levels when predicted based on the deformation

theory of plasticity, which is not the case when the flow theory is

adopted as constitutive framework. This is made possible thanks to

the yield-surface vertex structure inherent in the use of the deforma- 

tion theory of plasticity.
• It is found that the FLD predicted by bifurcation theory sets an up- 

per limit to the FLDs obtained with the initial imperfection anal- 

ysis. Moreover, this result is valid for both plasticity theories, and 

whatever the amount of prescribed normal pressure 𝛼. Indeed, Fig. 

10 demonstrates that the limit strains computed by the M–K ap- 

proach tend towards those determined by bifurcation theory when 

the size of initial imperfection 𝜉I tends towards zero. In other words, 

the effect of an increase in the amount of initial imperfection is es- 

sentially to shift the FLD downwards. Considering the similarity in 

the mathematical formulation of the two strain localization criteria, 

this trend is quite expectable: the initial imperfection approach ob- 

viously reduces to the bifurcation analysis if the amount of initial 

imperfection is set to zero. This conclusion is valid irrespective of 

the value of pressure 𝛼. 

To further validate the developed numerical tools, we compare in 

what follows our predictions with the results published by Wu et al. 

[20] . In this latter work, the considered sheet metal was assumed to be 

isotropic with rate-independent elasto-plastic behavior. Also, the Young 

modulus E , the Poisson ratio 𝜈 and the hardening parameters K and 

n have been set to 500, 0.3, 3 and 0.22, respectively. The Marciniak–

Kuczynski imperfection analysis has been used to predict the onset of 

localized necking. For the application of this approach, the initial im- 

perfection ratio 𝜉I has been set to 10 − 2 . To compare the results reported

in [20] with our numerical predictions, we use the modeling approach 

based on the coupling between the rigid-plastic flow theory and the ini- 

tial imperfection analysis. The hardening parameters and the initial im- 

perfection ratio taken as inputs in our simulations are the same as those 

used in [20] . It must be noted that, contrary to the model used in [20] , 



Fig. 11. Comparison between the numerical results reported in [20] and our numerical predictions: (a) Effect of normal stress 𝛼 on the limit strain 𝜀 11 for three strain paths ( 𝜌= − 0.5, 

𝜌= 0 and 𝜌= 1); (b) Effect of normal stress 𝛼 on the FLDs. 

elasticity is neglected in our constitutive modeling. This choice is justi- 

fied by the fact that strain localization occurs at relatively large strains. 

The suitability of this choice will be discussed hereafter. The compar- 

isons between our numerical predictions and the results reported in 

[20] are shown in Fig. 11 . The solid lines represent the results obtained 

by our numerical tool, while the dotted graphs with symbol ( ●) corre- 

spond to those published in [20] . It is clear that both results match per- 

fectly, which provides additional validations of our developed numerical 

tools. Furthermore, the perfect correspondence between our predictions 

and those presented in [20] confirms that the impact of elasticity on the 

predictions of localized necking is negligible, which justifies our choice 

of rigid-plastic constitutive framework. 

5. Conclusions

Various theoretical and numerical tools have been developed in this 

paper in order to thoroughly analyze the influence of through-thickness 

normal compressive stress on the onset of plastic strain localization in 

thin metal sheets. For the sake of comparison, the mechanical behavior 

of the studied sheet metals has been taken to follow the flow theory or, 

alternatively, the deformation theory of plasticity. In the same way, in 

order to allow for various cross comparisons, the initiation of plastic 

strain localization is predicted using both the bifurcation theory and 

the initial imperfection approach. The main conclusions based upon the 

current investigation may be summarized as follows: 

• The developed theoretical and numerical tools, based on the cou- 

pling of two localized necking criteria with two constitutive theories

of plasticity, predict an increase in the formability limit with com- 

pressive normal stresses. This trend confirms the results obtained

in earlier contributions from the literature. Therefore, compressive

normal stresses may be used advantageously to effectively avoid the

initiation of early localized necking in sheet metal forming.
• The various numerical results show a more significant increase in

terms of formability limits when the values of hardening parameters

are relatively small.
• When the size of the initial imperfection involved in the M–K im- 

perfection analysis tends towards zero, the corresponding FLDs tend

towards the bifurcation-based FLD. This result is valid for both plas- 

ticity theories and whatever the value of pressure 𝛼.
• Several cross comparisons with some analytical expressions and for- 

mulas, specifically derived for the prediction of localized necking,

served as additional validations for the proposed numerical tools.

Appendix A. Extension of Hill’s localized necking criterion to 

non-zero constant out-of-plane compressive stress state 

It has been theoretically demonstrated in [5] that out-of-plane stress, 

even as small as one tenth of the yield stress, may notably raise the form- 

ing limit strain. In the latter work, the classical Hill localized necking 

criterion was applied within the J 2 rigid-plastic flow theory of plasticity. 

Also, isotropic hardening has been modeled by the Hollomon hardening 

law (identical to Eq. (4) ). The authors have demonstrated in [5] that 

the major strain 𝜀 11 and the minor strain 𝜀 22 are related, at the onset of 

localized necking, by the following relation: 

𝜀 11 + 𝜀 22 = 

𝑛 

1 − 𝛽
, (A.1)

where scalar 𝛽 is expressed as follows: 

𝛽 = 

1
2 

𝑚 

′ (2 𝑚 

′ + 𝑚 + 1) 
( 𝑚 

2 − 𝑚 + 1) + 𝑚 

′ ( 𝑚 

′ + 𝑚 + 1) 
. (A.2)

As to factors m and m ′ , these are given by the following expressions: 

𝑚 = 

𝜎22 
𝜎11 

; 𝑚 

′ = − 

𝜎33 
𝜎11 

= 

𝛼

𝜎11 
. (A.3)

The expressions of 𝜎11 and 𝜎22 can be derived by making use of 

Eqs. (3) , (4) and (11) 

𝜎11 =
− 𝛼

√
𝜌2 + 𝜌 + 1 + 3 − 

𝑛 +1 
2 2 𝑛 𝐾 ( 𝜌 + 2) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛 
2√

𝜌2 + 𝜌 + 1 

𝜎22 =
− 𝛼

√
𝜌2 + 𝜌 + 1 + 3 − 

𝑛 +1 
2 2 𝑛 𝐾 (2 𝜌 + 1) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛
2√

𝜌2 + 𝜌 + 1 
. (A.4)

The insertion of expressions (A.4) for the stress components 𝜎11 and 𝜎22 

into Eq. (A.3) provides the following forms of factors m and m ′ : 

𝑚 = 

− 𝛼
√
𝜌2 + 𝜌 + 1 + 3 − 

𝑛 +1 
2 2 𝑛 𝐾 (2 𝜌 + 1) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛 
2

− 𝛼
√
𝜌2 + 𝜌 + 1 + 3 − 

𝑛 +1 
2 2 𝑛 𝐾 ( 𝜌 + 2) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛
2

𝑚 

′ =
𝛼
√
𝜌2 + 𝜌 + 1 

− 𝛼
√
𝜌2 + 𝜌 + 1 + 3 − 

𝑛 +1 
2 2 𝑛 𝐾 ( 𝜌 + 2) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛
2

. (A.5)

By inserting the above expressions of m and m ′ into Eq. (A.2) , factor 𝛽

can be expressed as follows: 

𝛽 = 

2 − 𝑛 −1 3 
𝑛 +1 
2 𝛼 ( 𝜌 + 1) 𝜀 − 𝑛 11 ( 𝜌

2 + 𝜌 + 1) − 
𝑛
2

𝐾
√
𝜌2 + 𝜌 + 1 

. (A.6)



Table A.1

Specialization of the different equations to the particular case of a plane

stress state.

Equation Plane stress form

(A.1) 𝜀 11 + 𝜀 22 = 𝑛 
(A.2) 𝛽=0 

(A.3) m = 𝜎22 / 𝜎11 ; m ′ = 0 

(A.4) 𝜎11 = 
3 − 

𝑛 +1
2 2 𝑛 𝐾( 𝜌+2) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌+1) 𝑛 √
𝜌2 + 𝜌+1

; 𝜎22 = 
3 − 

𝑛 +1
2 2 𝑛 𝐾(2 𝜌+1) 𝜀 𝑛 11 ( 𝜌

2 + 𝜌+1) 𝑛 √
𝜌2 + 𝜌+1

(A.5) 𝑚 = 2 𝜌+1 
𝜌+2 

; 𝑚 ′ = 0 
(A.8) , (A.9) 𝜀 11 = 𝑛 ∕(1 + 𝜌) 

For linear strain paths, 𝜀 22 is related to 𝜀 11 by the following relation: 

𝜀 11 = 𝜌 𝜀 22 . (A.7)

The combination of Eqs. (A.1) and (A.7) gives 

𝜀 11 =
𝑛

(1 − 𝛽) (1 + 𝜌) 
. (A.8)

The insertion of expression (A.6) for factor 𝛽 into Eq. (A.8) allows ob- 

taining the final analytical expression for 𝜀 11 

𝜀 11 =
2 𝑛 +1 𝜀 𝑛 11 K 𝑛 ( 𝜌2 + 𝜌 + 1)

𝑛 +2
2

− 3 
𝑛 +1 
2 𝛼 ( 𝜌 + 1) 2

√
𝜌2 + 𝜌 + 1 + 2 𝑛 +1 𝜀 𝑛 11 K ( 𝜌 + 1) ( 𝜌2 + 𝜌 + 1)

𝑛 +2
2

.

(A. 9)

In order to further emphasize the impact of pressure 𝛼 on the main equa- 

tions of this Appendix, Table A.1 summarizes the form of these equations 

in the particular case of a plane stress state ( 𝛼=0). 

Appendix B. Extension of the bifurcation approach to the case of 

variable normal stress 

In the previous sections, we assumed that the prescribed normal pres- 

sure is constant and independent of the evolution of the stress state 

during the deformation. In fact, we made this assumption because it 

accurately describes the stress state involved in hydroforming processes 

(sheet hydroforming or tube hydroforming). Indeed, during these form- 

ing processes, the applied fluid pressure is assumed to be constant dur- 

ing the loading. This assumption has been adopted in several investiga- 

tions devoted to the prediction of forming limit diagrams by the M–K 

approach (see, e.g., [ 11 , 12 , 17 , 18 ]). The validity of this assumption, in 

the context of hydroforming processes, has been checked by compar- 

ing the numerical predictions with the experimental results (see, e.g., 

[ 11 , 12 , 17 , 18 ]). However, this assumption seems to be inappropriate 

for other forming processes, such as deep-drawing or single incremental 

forming processes. Indeed, the normal stress 𝜎33 is generally dependent 

on the stress state in these processes. This stress component is generally 

assumed to be proportional to the in-plane major stress 𝜎11 (see, e.g., 

[ 8 , 9 ]) or to the equivalent stress 𝜎eq (see, e.g., [ 10 , 13 ]). In the previ- 

ous investigations, which considered that the normal stress component 

evolves during the deformation, it has been mostly demonstrated that 

this normal stress enhances formability. To enlarge the numerical in- 

vestigations carried out in the previous sections, we extend here the 

developed numerical tools by assuming that the normal stress may pro- 

portionally evolve as a function of the equivalent stress 𝜎eq . To this end, 

we introduce the normalized normal stress parameter 𝛾, which can be 

defined as the ratio of the opposite of the normal stress to the equiv- 

alent stress ( − 𝜎33 / 𝜎eq ). Similar to the case of constant out-of-plane 

stress, both localization criteria (namely, the bifurcation theory and the 

M–K approach) are applied here within the two constitutive frameworks 

(namely, the flow theory and the deformation theory of plasticity). 

When the bifurcation approach is used in conjunction with the defor- 

mation theory of plasticity, the following relation can be derived from 

the bifurcation criterion ( 13 ): 

𝜀 11 =
√
3 (3 𝜌2 + 𝑛 ( 𝜌 + 2) 2 )

2(1 + 𝜌 + 𝜌2 )(2 
√
3 + 

√
3 𝜌 − 3 𝛾

√
1 + 𝜌 + 𝜌2 ) 

. (B.1)

It must be noted that Eq. (B.1) is only applicable to the range of positive 

strain paths ( 𝜌 ≥ 0), where the necking band orientation 𝜃 is equal to 0. 

This Eq. (B.1) may be viewed as the counterpart of Eq. (44) in the case 

of variable normal stress. When parameter 𝛾 is set to 0 (which corre- 

sponds to the particular case of plane stress state), Eq. (45) is obviously 

recovered. 

We extend in what follows Hill’s localized necking criterion to the 

case of variable out-of-plane compressive stress state (which is the coun- 

terpart of the developments carried out in Appendix A for constant nor- 

mal stress). In this case, factors m and m ′ (see Eq. (A.4) ) are given by 

the following expressions: 

𝑚 = 

𝜎22 
𝜎11 

; 

𝑚 

′ = − 

𝜎33 
𝜎11 

= 

2 𝑛 3 − 
𝑛 
2 𝛾 𝐾𝜀 𝑛 11 

(
𝜌2 + 𝜌 + 1 

) 𝑛
2

𝜎11 
. (B.2)

The stress components 𝜎11 and 𝜎22 are given by the following equations 

(the counterpart of Eq. (11) ): 

𝜎11 = 2 𝑆 11 + 𝑆 22 − 𝛾𝜎eq ;

Fig. B.1. Effect of parameter 𝛾 on the FLDs, as obtained by bifurcation theory: (a) LCS; (b) 304SS.



𝜎22 = 2 𝑆 22 + 𝑆 11 − 𝛾𝜎eq . (B.3)

By using Eqs. (3) and ( 4 ), these stress components can be expressed after 

some straightforward calculations as 

𝜎11 = 2 𝑛 3 − 
2+ 𝑛 
2 K𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛 −1 
2 
(√

3 ( 𝜌 + 2) − 3 𝛾
√
𝜌2 + 𝜌 + 1 

)
𝜎22 = 2 𝑛 3 − 

2+ 𝑛 
2 K𝜀 𝑛 11 ( 𝜌

2 + 𝜌 + 1) 
𝑛 −1 
2 
(√

3 (2 𝜌 + 1) − 3 𝛾
√
𝜌2 + 𝜌 + 1 

)
. (B.4)

By inserting the above expressions of 𝜎11 and 𝜎22 into Eq. (B.2) , one 

obtains 

𝑚 = 

√
3 ( 2 𝜌 + 1 ) − 3 𝛾

√
𝜌2 + 𝜌 + 1 √

3 ( 𝜌 + 2 ) − 3 𝛾
√
𝜌2 + 𝜌 + 1 

; 

𝑚 

′ =

√
3 
√
𝜌2 + 𝜌 + 1 

( 𝜌 + 2 ) − 3 𝛾
√
𝜌2 + 𝜌 + 1 

. (B.5)

The expression of factor 𝛽, introduced in Eq. (A.2) , can be put in a more 

compact form by using Eq. (B.2) , which gives 

𝛽 = 

√
3 𝛾 ( 𝜌 + 1) 

2 
√
𝜌2 + 𝜌 + 1 

. (B.6)

The major limit strain 𝜀 11 can be finally derived by inserting expression 

(B.6) for factor 𝛽 into Eq. (A.8) 

𝜀 11 =
2 
√
3 𝑛 

√
𝜌2 + 𝜌 + 1 

( 𝜌 + 1) 
(
−3 𝛾 ( 𝜌 + 1) + 2 

√
3 
√
𝜌2 + 𝜌 + 1 

) . (B.7)

This Eq. (B.7) may be viewed as the counterpart of Eq. (A.9) in the case 

of variable normal stress. When scalar 𝛾 is set to 0, the well-known Hill 

localized necking criterion is obviously recovered 

𝜀 11 =
𝑛

( 𝜌 + 1) 
. (B.8)

By analyzing Eqs. (B.1) and (B.7) , one can notice that the limit strain 

𝜀 11 is independent of the hardening parameter K , which is not the case 

when the normal stress is assumed to be constant (see Eqs. (41) and 

( 44 )). 

The effect of parameter 𝛾 on the limit strains predicted by the bi- 

furcation approach for the whole range of strain paths is shown in 

Fig. B.1 (which may be viewed as the counterpart of Fig. 5 in the case 

of variable normal stress). The forming limit diagrams given by Eq. 

(B.1) (respectively, Eq. (B.7) ) are represented by dotted graphs with 

symbol × (respectively, symbol ●). The results reported in Fig. B.1 con- 

firm the validity of the analytical formulas (B.1) and (B.7) . 

References 

[1] Keeler SP , Backofen WA . Plastic instability and fracture in sheets stretched over rigid

punches. Trans ASM 1963;56:25–48 .

[2] Rudnicki JW , Rice JR . Conditions for localization of deformation in pressure-sensi- 

tive dilatant materials. J Mech Phys Solids 1975;23:371–94 .

[3] Marciniak Z , Kuczynski K . Limit strains in the processes of stretch-forming sheet

metal. Int J Mech Sci 1967;9:609–20 .

[4] Fressengeas C , Molinari A . Instability and localization of plastic flow in shear at high

strain rates. J Mech Phys Solids 1987;35:185–211 .

[5] Gotoh M , Chung T , Iwata N . Effect of out-of-plane stress on the forming limit strain

of sheet metals. JSME Int J Ser A 1995;38:123–32 .

[6] Swift H . Plastic instability under plane stress. J Mech Phys Solids 1952;1:1–18 .

[7] Hill R . On discontinuous plastic states, with special reference to localized necking

in thin sheets. J Mech Phys Solids 1952;1:19–30 .

[8] Allwood JM , Shouler DR . Generalised forming limit diagrams showing increased

forming limits with non-planar stress states. Int J Plast 2009;25:1207–30 .

[9] Fatemi A , Dariani BM . Forming limit prediction of anisotropic material subjected to

normal and through thickness shear stresses using a modified M–K model. Int J Adv

Manuf Tech 2015;80:1497–509 .

[10] Assempour A , Nejadkhaki HK , Hashemi R . Forming limit diagrams with the existence

of through-thickness normal stress. Comput Mater Sci 2010;48:504–8 .

[11] Zhang F , Chen J , Chen J . Forming limit model evaluation for anisotropic sheet metals

under through-thickness normal stress. Int J Mech Sci 2014;89:40–6 .

[12] Zhang F , Chen J , Chen J . Effect of through-thickness normal stress on forming limits

under Yld2003 yield criterion and M–K model. Int J Mech Sci 2014;89:92–100 .

[13] Mirfalah-Nasiri SM , Basti A , Hashemi R . Forming limit curves analysis of aluminum

alloy considering the through-thickness normal stress, anisotropic yield functions

and strain rate. Int J Mech Sci 2016;116:93–101 .

[14] Hutchinson JW , Neale KW . Sheet necking – II. Time-independent behavior. In:

Koistinen DP, Wang NM, editors. Mechanics of sheet metal forming. Plenum; 1978.

p. 127–53 .

[15] Ben Bettaieb M , Abed-Meraim F . Investigation of localized necking in substrate-sup- 

ported metal layers: comparison of bifurcation and imperfection analyses. Int J Plast

2015;65:168–90 .

[16] Eyckens P , Van Bael A , Van Houtte P . Marciniak–Kuczynski type modelling of the

effect of through-thickness shear on the forming limits of sheet metal. Int J Plast

2009;25:2249–68 .

[17] Hashemi R , Assempour A , Khalil Abad EM . Implementation of the forming limit

stress diagram to obtain suitable load path in tube hydroforming considering M–K

model. Mater Des 2009;30:3545–53 .

[18] Hashemi R , Abrinia K . Analysis of the extended stress-based forming limit curve

considering the effects of strain path and through-thickness normal stress. Mater

Des 2014;54:670–7 .

[19] Stören S , Rice JR . Localized necking in thin sheets. J Mech Phys Solids

1975;23:421–41 .

[20] Wu PD , Embury JD , Lloyd DJ , Huang Y , Neale KW . Effects of superimposed hydro- 

static pressure on sheet metal formability. Int J Plast 2009;25:1711–25 .

http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0001
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0001
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0001
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0002
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0002
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0002
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0003
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0003
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0003
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0004
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0004
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0004
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0005
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0005
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0005
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0005
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0006
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0006
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0007
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0007
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0008
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0008
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0008
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0009
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0009
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0009
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0010
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0010
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0010
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0010
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0011
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0011
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0011
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0011
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0012
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0012
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0012
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0012
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0013
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0013
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0013
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0013
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0014
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0014
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0014
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0015
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0015
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0015
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0016
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0016
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0016
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0016
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0017
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0017
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0017
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0017
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0018
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0018
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0018
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0019
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0019
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0019
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0020
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0020
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0020
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0020
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0020
http://refhub.elsevier.com/S0020-7403(16)30977-8/sbref0020

	Theoretical and numerical investigation of the impact of out-of-plane compressive stress on sheet metal formability
	1 Introduction
	2 Constitutive equations
	2.1 Flow theory
	2.2 Deformation theory
	2.3 Consideration of non-zero constant normal stress

	3 Localized necking criteria
	3.1 Bifurcation theory
	3.1.1 Main equations governing the bifurcation theory
	3.1.2 Instantaneous modulus for the flow theory
	3.1.3 Instantaneous modulus for the deformation theory
	3.1.4 Algorithmic treatment

	3.2 Initial imperfection approach
	3.2.1 Governing equations for the initial imperfection approach
	3.2.2 Algorithmic treatment


	4 Numerical predictions and results
	4.1 Bifurcation theory predictions
	4.2 M-K analysis predictions

	5 Conclusions
	Appendix A Extension of Hill's localized necking criterion to non-zero constant out-of-plane compressive stress state
	Appendix B Extension of the bifurcation approach to the case of variable normal stress
	 References




