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Abstract. This work addresses the problem of patch-based image denoising

through the unsupervised learning of a probabilistic high-dimensional mixture
models on the noisy patches. The model, named hereafter HDMI, proposes

a full modeling of the process that is supposed to have generated the noisy

patches. To overcome the potential estimation problems due to the high di-
mension of the patches, the HDMI model adopts a parsimonious modeling

which assumes that the data live in group-specific subspaces of low dimension-

alities. This parsimonious modeling allows in turn to get a numerically stable
computation of the conditional expectation of the image which is applied for

denoising. The use of such a model also permits to rely on model selection

tools, such as BIC, to automatically determine the intrinsic dimensions of the
subspaces and the variance of the noise. This yields a blind denoising algo-

rithm that demonstrates state-of-the-art performance, both when the noise
level is known and unknown.

1. Introduction

In the last decade, patch-based models have created a new paradigm in image
processing, leading to significant improvements both for classical image restoration
problems (denoising [8, 12, 25], inpainting [10, 30, 38], interpolation [41]) or for im-
age synthesis [16, 23] and editing [4, 18, 19]. Among these problems, image denois-
ing, which amounts to estimate an image from an observation degraded by additive
noise, is probably the one that has received the most attention over the past twenty
years. Inspired by the success of patch-based texture synthesis [16] and inpaint-
ing [11], the first non local denoising algorithms emerge in 2004 with the discrete
universal denoiser (DUDE) for binary images [31, 37], the UINTA filters [3] and
the now classical non-local means (NLMeans) [8]. Relying on the assumption that
similar patches can be seen as independent realizations of the same distribution, the
central idea of these approaches is to average these repeated structures to reduce
noise variance. These non local methods have inspired a considerable body of works
ever since, under the form of variants and improvements [21, 22], extensions to other
noise models [13, 15], or to more complex inverse problems [2, 9, 32]. In order to
overcome the ill-posedness of the denoising problem, most of the state-of-the-art
approaches [25, 36, 41, 42] rely on a probabilistic framework, which necessitates
good prior distributions on patches. Image patches can be seen as vectors in a
high-dimensional space (see fig. 1) and estimating prior distributions in such spaces
in practice is difficult. In this paper, we explore the use of parsimonious Gaussian
mixture models designed for high-dimensional data for this task. Let us mention
that a preliminary and short version of this work has appeared in french in [20].
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Figure 1. Image patches can be seen as vectors in a high-
dimensional space. Assuming a Gaussian mixture model for these
patches, and because the noise is also Gaussian, we can denoise
the patches and hence the original image.

Patch priors for image denoising. The classical denoising model can be expressed
in the patch space under the form

(1) Y = X + N,

where X is the unknown patch before degradation and Y is the observed patch,
degraded by some additive noise N. The noise N is usually assumed to follow a
Gaussian distribution N (0, σ2Ip), since the Anscombe transform permits to trans-
form the more realistic Poisson noise in a nearly Gaussian noise with fixed vari-
ance. While the question of the appropriate statistical prior for the image patches
remains essentially open, the most simple and surprisingly effective models used
to represent patches distributions are local Gaussian models [25] or mixtures of
Gaussians [36, 41, 42]. Under the latter models, the vector X is assumed to follow
a distribution

(2) p(x) =

K∑
k=1

πkN (x;µk,Φk),

with µk and Φk the mean and covariance of the group k, and πk is the probability

that X has been drawn from the group k (with
∑K
k=1 πk = 1). Assuming such a

known prior on X, and because the noise is also Gaussian and independent from
X, it is quite easy to derive the estimator minimizing the expected mean square
error (MSE) to the patch X. This estimator, given by the conditional expectation
E[X|Y], takes the form of a (non linear) combination of K linear filters:

(3) E[X|Y] =

K∑
k=1

ψk(Y)τk(Y),

where τk(Y) denotes the probability that, knowing Y, X comes from the group k,
and ψk the fixed filter

ψk(y) = µk + Φk(Φk + σ2Ip)
−1(y − µk).

The mixture model being known, each image patch can be denoised by this filter.
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Estimating the parameters of this Gaussian mixture model (GMM) from patches
is a complex task in practice. Indeed, since the patch sizes are typically greater
than 3×3, the dimensions of the corresponding patch spaces can be quite high and
estimation in such high-dimensional spaces is not trivial. In the denoising literature,
such Gaussian mixture models can be learned from the image itself or from a basis
of natural image patches and possibly adapted to each image [36, 41, 42]. This
learning stage is made more difficult when it is applied on the degraded patches.
Estimating the mixture model also presents other challenges, such as the choice of
the number K of mixture components, the choice of the relevant learning bases, and
of the inherent dimensions of each group. While recent approaches [36, 41] of the
denoising literature impose a fixed value for K and use covariance matrices with pre-
defined ranks, we explore in this paper ways to learn automatically these different
parameters. To this aim, we propose to explore recent model-based clustering
approaches that have been specifically developed for high-dimensional data. These
approaches have the great advantage of respecting the subspaces and the specific
intrinsic dimension of each Gaussian in the mixture. In the following paragraphs,
we start by briefly reviewing some key-methods in model-based clustering for high-
dimensional data.

Model-based clustering for high-dimensional data. Model-based clustering [17, 29]
with Gaussian mixtures is a popular approach which is renowned for its probabilis-
tic foundations and its flexibility. One of the main advantages of this approach
is the fact that the obtained partition can be interpreted from a statistical point
of view. For a data set of n observations in Rp that one wants to cluster into K
homogeneous groups, model-based clustering assumes that the overall population is
a realization of a mixture of K Gaussian distributions. Unfortunately, model-based
clustering methods show a disappointing behavior in high-dimensional spaces which
is mainly due to the fact that they are significantly over-parametrized. Since the
dimension of observed data is usually higher than their intrinsic dimension, it is
theoretically possible to reduce the dimension of the original space without loosing
any information. For this reason, dimension reduction methods are frequently used
in practice to reduce the dimension of the data before the clustering step. Feature
extraction methods, such as principal component analysis (PCA), or feature selec-
tion methods are very popular. However, dimension reduction techniques usually
provide a sub-optimal data representation for the clustering step since they imply
an information loss which could have been discriminative. To avoid the draw-
backs of dimension reduction, several recent approaches have been proposed to
allow model-based methods to efficiently cluster high-dimensional data. Subspace
clustering methods are searching to model the data in subspaces of much lower
dimension and, thereby, avoid numerical problems and boost clustering capability.
The mixture of probabilistic principal component analyzers (MPPCA, [34]) may be
considered as the earliest and the most popular subspace clustering method. In a
few words, MPPCA assumes that the data live in group-specific subspaces with a
common intrinsic dimensionality and that the noise has an isotropic variance. This
model has become popular in the past decades due, in particular, to its links with
PCA. It is worth noticing that the recent denoising approach [36] make use of this
model. The authors of [36] however noticed that the fact that all groups must have
the same intrinsic dimension in MPPCA is a limiting factor for image denoising.
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They consequently removed this constraint and arbitrally fixed the intrinsic dimen-
sions of the groups to be either 1, p/2 or p− 1. We refer to [6] for a recent review
of model-based clustering techniques for high-dimensional data.

Model-based clustering for image denoising and contributions of the paper. As ex-
plained before, model-based clustering has already been considered many times in
the image denoising literature. However, since Gaussian models on patches are usu-
ally over-parameterized, their inference requires huge quantities of samples. This
estimation is possible on external patch databases, as done in [42], but it becomes
completely ill-posed if we just rely on the patches extracted from an image to be
restored. In this latter case, regularization becomes essential. As we have seen in
the previous paragraph, a first possibility consists in imposing low rank constraints
on the groups. This not only makes the model easier to infer, but also reduces
the overall computational complexity. One of the first papers using this approach
is [36], but the authors impose fixed dimensions to the groups, which makes little
sense in practice. The low rank idea is also used in the very recent [14] to drastically
accelerate the computation time of [42]. Another possible regularization approach
consists in imposing an hyperprior on the GMM parameters. This is the strategy
investigated in [27], which first estimates a full GMM on an external patch database
(as in [42]) and uses this full GMM as an hyperprior to estimate a GMM on the
noisy image data. In this paper, we aim at a much simpler approach, relying only
on the noisy data.

Our contribution in this paper is three-fold. First, we propose a probabilis-
tic Gaussian mixture model for image denoising, called HDMI (High Dimensional
Mixture models for Image denoising), inspired by the family of models introduced
in [7]. The HDMI model proposes a full modeling of the process that is supposed
to have generated the noisy patches and adopts a parsimonious modeling to over-
come the potential estimation problems due to the high dimension of the data.
The parsimony of the model comes from the assumption that the patches live in
group-specific subspaces of low dimensionalities. Conversely to the MPPCA model,
the HDMI model allows each subspace to have its own intrinsic dimensionality and,
thus, proposes a finer modeling of the clusters. Second, we exhibit an expression of
the conditional expectation E[X|Y] which is based on explicit inverses of the group
covariance matrices. This results in a numerically stable computation of the denois-
ing rule for a given image. Finally, the use a full probabilistic model for the image
denoising problem also permits to rely on the model selection tools to determine
in an automatic way the intrinsic dimensions of the subspaces and the variance of
the noise. This results in a blind image denoising algorithm, that demonstrates
state-of-the-art performances both in situations where the level of noise is assumed
to be known or not.

It should be noted that the recent paper [40] builds on the same ideas, and
proposes to incorporate low rank constraints in a GMM for compressed sensing
and denoising applications. However, in [40], the low-rank assumption (including
a noise term) is assumed on the actual (unknown) image X, and inferred from the
observation Y . This makes the whole estimation process much more complex than
in our approach, since the authors maximize the marginal likelihood with the actual
signal marginalized out as a latent variable, while we maximize the classical log-
likelihood for the observed signal. In addition, the inference and denoising in their
model require the inversion of covariance matrices, while our model permits to infer
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Figure 2. Graphical summary of the HDMI model: the circled
nodes correspond to random variables whereas other nodes are
model parameters; the blue node denotes the observed variable;
non-filled variables are latent.

and denoise without matrix inversion. Finally, in HDMI, the intrinsic dimensions
of the different groups are inferred (in relation to noise variance) from the early
stages of the algorithm and these dimensions evolve during all the stages of the
algorithm, whereas in [40], these dimensions are estimated after several iterations
of the EM approach on a full GMM model.

Outline of the paper. The paper is organized as follows. In section 2, we present
the HDMI model that we introduce to model the generation process of the noisy
patches and the associated image denoising rule. Section 3 is devoted to the infer-
ence procedure and to model selection, including the estimation of group intrinsic
dimensionalities and noise variance. In section 4, we provide numerical experiments
that highlight the main features of our approach and demonstrate its effectiveness
for image denoising, along with comparisons with the state-of-the-art. Finally,
section 6 provides some concluding remarks and tracks for further work.

2. Model-based clustering for image denoising

In this section, we present a parsimonious and flexible statistical model for image
denoising. The links with existing models of the literature and the associated
denoising procedure are also discussed.

2.1. A parsimonious Gaussian model for image denoising. Let us consider
a data set of n observed noisy patches extracted from an image. These patches are
all square sub-images of size p = s× s, extracted from the noisy image and written
as vectors {y1, . . . yn} ∈ Rp. We assume that these patches are noisy versions of
unknown patches {x1, . . . xn} ∈ Rp. We consider the unknown patches {x1, . . . xn}
as independent realizations of a random vector X ∈ Rp following a Gaussian mixture
model with K groups. We model the unobserved group memberships as realizations
of a random variable Z ∈ {1, ...,K}. As pointed out in [36], it is reasonable to
assume that most groups in this model should not be full rank, and that each group
should have its own dimension. In order to take account of the dimensionality of
each group we assume that the random vector X is, conditionally to Z = k, linked
to a low-dimensional latent random vector T ∈ Rdk , of dimensionality dk, through
a linear transformation of the form:

(4) X|Z=k = UkT + µk,
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where Uk is a p× dk orthonormal transformation matrix and µk ∈ Rp is the mean
vector of the kth group. The dimension dk of the latent vector is such that dk <
p, ∀k = 1, ...,K (the choice of the intrinsic dimensionalities dk is discussed in
section 3). Besides, the unobserved latent factor T is assumed to be, conditionally
on Z, distributed according to a Gaussian density function such as:

T | Z = k ∼ N (0,Λk),

where Λk = diag(λk1, . . . , λkdk).
Under the degradation model (1) and assuming that the noise variable N is

Gaussian with a diagonal covariance matrix σ2Ip, not depending on the groups:

N ∼ N (0, σ2Ip),

the conditional distribution of Y is also Gaussian:

(5) Y | T,Z = k ∼ N (UkT + µk, σ
2Ip).

The marginal distribution of Y is therefore a mixture of Gaussians:

p(y) =

K∑
k=1

πkN (y;µk,Σk)

where πk is the mixture proportion for the kth component and Σk has a specific
structure:

(6) Σk = UkΛkU
t
k + σ2Ip.

The specific structure of Σk can be exhibited by considering the projected covariance
matrix ∆k = QtkΣkQk, where Qk = [Uk, Rk] is the p× p matrix made of Uk and an
orthonormal complementary Rk. With these notations, ∆k has the following form:

∆k =



ak1 0
. . .

0 akd

0

0

σ2 0
. . .

0 σ2



 dk

 (p− dk)

where akj = λkj+σ2 and akj > σ2 , for k = 1, . . . ,K and j = 1, ..., dk. The model is
therefore fully parametrized by the set of parameters θ = {πk, µk, Qk, akj , σ2, dk; k =
1, ...,K, j = 1, ..., dk} and will be referred to as the HDMI model hereafter. Figure 2
presents a graphical representation associated with this model.

2.2. Links with existing models. First, it is worth to notice that the model
presented above is a specialization of the classical Gaussian mixture model (GMM).
Indeed, if dk = p for k = 1, ...,K, then the HDMI model reduces to the usual
GMM. Second, it is possible to obtain less or more constrained models than the one
presented earlier, corresponding to weaker or stronger regularizations. In particular,
it is possible to relax the constraint that the noise variance is common between
groups. In this case, the model corresponds to the one presented in [7], and known as
[akjbkQkdk]. From this general model, it is also possible to constrain the dimensions
dk to be common between the groups, which exactly corresponds to the MPPCA
model proposed by [34]. Notice that the SPLE denoising approach [36] makes use of
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Model
Number of
parameters

Asymptotic
order

Nb of prms K = 4,
d = 10, p = 100

HDDC ([akjbkQkdk]) ρ+ τ̄ + 2K +D Kpd 4231
HDMI ([akjσ

2Qkdk]) ρ+ τ̄ +K +D + 1 Kpd 4228
MPPCA ([akjbkQkd]) ρ+K(τ +d+ 1) + 1 Kpd 4228
GMM full cov. ρ+Kp(p+ 1)/2 Kp2/2 20603
GMM common cov. ρ+ p(p+ 1)/2 p2/2 5453
GMM diagonal cov. ρ+Kp 2Kp 803

Table 1. Properties of the HD-GMM models and some classi-
cal Gaussian models: ρ = Kp + K − 1 is the number of pa-
rameters required for the estimation of means and proportions,

τ̄ =
∑K
k=1 dk[p − (dk + 1)/2] and τ = d[p − (d + 1)/2] are the

number of parameters required for the estimation of orientation

matrices Qk, and D =
∑K
k=1 dk. For asymptotic orders, the as-

sumption that K � d� p is made.

this latter model. However, the authors noticed that the use of an unique dimension
for the groups in MPPCA is a limiting factor for image denoising. In this view, the
model that we presented in the previous paragraph should be more appropriate for
image restoration problems. Let us finally notice that a family of 28 models was
proposed in [5, 7] to accommodate with different practical situations, from the most
complex to simple ones. Table 1 provides orders of magnitude for the complexity
(i.e. the number of parameters to estimate) of the HDMI model as well as some of
the models discussed above, in a comparison purpose.

2.3. Denoising with the HDMI model. With the assumptions of the HDMI
model, the best approximation of the original vector X can be estimated by comput-
ing the conditional expectation E[X|Y]. Due to the Gaussian mixture distributions,
this conditional expectation is a (non linear) combination of linear functions of Y,
with weights P[Z = k|Y]. These affine functions can be seen as Wiener filters, and
require to invert the group covariance matrices. The following proposition gives
both the (classical) closed form equation for this conditional expectation, and a
second formula which shows how to efficiently compute these filters in the HDMI
model case, avoiding numerically sensitive matrix inversions.

Proposition 1. Assume that the random vector X follows the model (4) and that
Y is obtained by the degradation model (1). Then

(7) E[X|Y] =

K∑
k=1

ψk(Y)τk(Y),

with τk(Y) = P[Z = k|Y] and

ψk(y) = µk + (Σk − σ2Ip)Σ
−1
k (y − µk),

where the covariance matrix Σk if defined as in Equation (6). Moreover, ψk(y) can
also be written

ψk(y) = µk + Q̃k(Ip − σ2∆−1
k )Q̃tk(y − µk),(8)
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where Q̃k = [Uk, 0p,p−dk ] is made of the matrix Uk of Equation (4), completed by
p− dk zeros columns.

Proof. If Z = k is known, then (X|Z=k,N) is a Gaussian random vector and so is
(X|Z=k,Y|Z=k). The conditional expectation E[X | Y,Z = k] can thus be written

E[X|Y,Z = k] = µk + (Σk − σ2Ip)Σ
−1
k (Y − µk) = ψk(Y ),

since Σk is the covariance of Y | Z = k and Σk−σ2Ip the covariance of (X|Z=k,Y|Z=k).
Thus, we can write

E[X | Y,Z] = ψZ(Y) =

K∑
k=1

ψk(Y)1Z=k.

It follows that

E[X|Y] = E[E[X | Y,Z] | Y] because σ(Z) ⊂ σ(Z,Y)

= E[ψZ(Y) | Y] =

K∑
k=1

E[ψk(Y)1Z=k | Y]

=

K∑
k=1

ψk(Y)E[1Z=k | Y] since ψk(Y) is σ(Y)-measurable.

As a consequence,

E[X|Y] =

K∑
k=1

ψk(Y)E[1Z=k | Y] =

K∑
k=1

ψk(Y)P[Z = k|Y].

Now, let Qk = [Uk, Rk] be the p × p matrix made of Uk and an orthonormal
complementary Rk. The projected covariance matrix ∆k = QtkΣkQk is diagonal
and can be written

∆k = diag(ak1, . . . , akdk , σ
2, . . . , σ2),

where aki > σ2 ∀i ∈ {1, . . . dk}.

It follows that

ψk(Y) = µk + (Σk − σ2Ip)Σ
−1
k (Y − µk) = µk + (Ip − σ2Σ−1

k )(Y − µk)

= Y − σ2Σ−1
k (Y − µk) = Y − σ2Qk∆−1

k Qtk(Y − µk).

We could stop here and be satisfied with this formula which is quite simple and easy
to compute. Nevertheless, it is possible to exploit the specific covariance structure
of the HDMI model to exhibit a formulation of ψk(Y) which is based on explicit

inverses of the group covariance matrices. Using the decomposition Qk = Q̃k +Qk,

where Q̃k is made of the dk first columns of Qk completed by p−dk zeros columns,
we obtain

Qk∆−1
k Qtk = Q̃k∆−1

k Q̃tk +Qk∆−1
k Q

t

k + Q̃k∆−1
k Q

t

k +Qk∆−1
k Q̃tk

= Q̃k∆−1
k Q̃tk +Qk∆−1

k Q
t

k + 0 + 0.

Thus

ψk(Y) = Y − σ2
(
Q̃k∆−1

k Q̃tk +Qk∆−1
k Q

t

k

)
(Y − µk).
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Now, if we take into account the structure of ∆k and the fact that the first dk
columns of Qk are composed of zeros, it follows easily that

Qk∆−1
k Q

t

k =
1

σ2
QkQ

t

k.

Since

Ip = QkQ
t
k = Q̃kQ̃

t
k +QkQ

t

k + Q̃kQ
t

k +QkQ̃
t
k = Q̃kQ̃

t
k +QkQ

t

k,

this yields Qk∆−1
k Q

t

k = 1
σ2 (Ip − Q̃kQ̃tk). It follows that

ψk(Y) = Y − σ2

(
Q̃k∆−1

k Q̃tk +
1

σ2
(Ip − Q̃kQ̃tk)

)
(Y − µk)

= Y −
(

Ip + Q̃k(σ2∆−1
k − Ip)Q̃

t
k

)
(Y − µk).

This allows to conclude. �

At this point, it is interesting to notice that the computation of E[X|Y] usually
requires the inversion of the empirical covariances matrices Σk. In recent denoising
methods such as [25, 41], there is nothing ensuring that these empirical covari-
ances estimate are full rank. To overcome this limitation, the authors of [41] use
a standard regularization Σk + εIp to ensure invertibility. For the HDMI model,
Equation (8) gives explicit and stable inverses of the covariance matrices and con-
sequently an efficient and numerically stable way of denoising the image, without
any further regularization.

3. Model inference and model selection

In this section, we discuss the inference procedure and model selection for the
HDMI model, including the estimation of the group intrinsic dimensions and the
noise variance.

3.1. Model inference. The inference of the HDMI model cannot be done in a
straightforward manner by maximizing the likelihood, which is unfortunately in-
tractable. To overcome this problem, the expectation-maximization (EM) algo-
rithm iteratively maximizes the conditional expectation of the complete-data log-
likelihood:

E [`c (θ; y, z) |θ∗] =

K∑
k=1

n∑
i=1

tik log (πkp (yi; θk)) ,

where tik = P [Z = k|yi, θ∗] and θ∗ is a given set of mixture parameters. From an
initial solution θ(0), the EM algorithm alternates two steps: the E-step and the M-
step. First, the expectation step (E-step) computes the expectation of the complete
log-likelihood E

[
`c (θ; y, z) |θ(q)

]
conditionally to the current value of the parameter

set θ(q). Then, the maximization step (M-step) maximizes E
[
`c (θ; y, z) |θ(q)

]
over

θ to provide an update for the parameter set. This algorithm therefore forms a
sequence

(
θ(q)
)
q

which is guaranteed to converge toward a local optimum of the

likelihood [39]. The reader may refer to [28] for further details on the EM algorithm.
The two steps of the EM algorithm are iteratively applied until a stopping criterion
is satisfied. The stopping criterion may be simply |`(θ(q); y) − `(θ(q−1); y)| < ε
where ε is a positive value to provide. Once the EM algorithm has converged, the
partition {ẑ1, . . . , ẑK} of the data can be deduced from the posterior probabilities
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tik = P(Z = k|yi, θ̂) by using the maximum a posteriori (MAP) rule which assigns
the observation yi to the group with the highest posterior probability.

Proposition 2. In the particular case of the HDMI model, the update formulas for
the M-step of the EM algorithm are as follows:

- the proportion πk and the the mean µk of the kth group are respectively
estimated by

π̂k =
1

n

n∑
i=1

tik, µ̂k =
1

nπ̂k

n∑
i=1

tikyi,

- the dk first columns of the orientation matrix Qk are estimated by the
eigenvectors associated with the dk largest eigenvalues of the empirical co-
variance matrix of the kth group

Sk =
1

nπ̂k

n∑
i=1

tik(yi − µ̂k)(yi − µ̂k)t,

- the variance akj of the data along the jth axis of the subspace of the kth
group is estimated by the jth largest eigenvalues âkj of Sk, j = 1, ..., dk.

Proof. Proof of these results is straightforward from the proof of Proposition 4.2.1
in [7]. �

It is worth noticing that these update formulas allow to see the strong link
between the HDMI model and the principal component analysis (PCA) method.
Indeed, since the dk first columns of the subspace orientation matrices Qk are
estimated by the eigenvalues of the associated empirical covariance matrices, one
can say that the method performs a sort of fuzzy PCA per group, but without
loosing any information.

3.2. Model selection. The use of the EM algorithm for parameter estimation
makes the method almost automatic, except for the estimation of its hyper-parameters:
the number K of groups, the group intrinsic dimensionalities dk and, if unknown,
the noise variance σ2. Indeed, those parameters cannot be determined by maxi-
mizing the likelihood since they control the model complexity. However, since the
methodology presented here has a sound statistical background, it is possible to
rely on model selection tools to select for instance the most appropriate combina-
tion of the number K of groups and the dimensionalities dk. Classical tools for
model selection includes the BIC [33] criterion which asymptotically approximates

the integrated likelihood. BIC penalizes the log-likelihood `(θ̂) as follows, for model
M:

(9) BIC(M) = `(θ̂)− ξ(M)

2
log(n),

where ξ(M) is the number of free parameters of the model and n is the number of
observations (here the patches). The value of ξ(M) is of course specific to the model
considered (cf. Table 1 which provides the complexity of the HDMI model). Hence,
BIC would allow the user to choose between using the HDMI model in place of the
MPPCA model, or using the HDMI model with different intrinsic dimensions. To
select the most appropriate configuration for the considered data, the EM algorithm
is run for all possible combinations of model parameters, and the one with the
highest BIC value is retained. Notice that, all configurations being independent,
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Algorithm 1 Intrinsic dimension estimation for a given value of σ2.

Require: K sets of the p eigenvalues λk1, ..., λkp for each group
Ensure: the dimensions dk for each k

for k from 1 to K do
dk ← argmind |mean(λkd+1, . . . , λkp)− σ|.

end for

the model selection can be done using parallel computing. Let us finally notice that
we do not expect that choosing the number K of groups with BIC, in the specific
context of image denoising, would yield the best denoising performance. Indeed,
BIC has a modeling objective and it is not aware of the denoising goal: it only aims
at selecting the most parsimonious model which best fits the data. We discuss in
section 4.1 the influence of K on the denoising performance.

3.3. Estimation of the intrinsic dimensions dk. Regarding the estimation of
the intrinsic dimensions dk, it is unfortunately impossible to test all the K-tuple of
dimensions in order to keep the better one in term of BIC. To avoid this drawback,
Bouveyron et al. proposed in [7] a strategy which avoids the exploration of all pos-
sible combinations of dimensions by relying on a unique threshold. The strategy
is based on the eigenvalues scree of the covariance matrices Σk of the groups. The
intrinsic dimension dk, k = 1, ...,K can be estimated by looking for a break in the
eigenvalues scree of Σk. For group k the selected dimension is the one for which all
subsequent eigenvalues differences are smaller than a threshold τ . The threshold τ
is common to all groups and is selected using BIC. However, in the context of im-
age restauration problems, it is expected that some groups have very low intrinsic
dimensionalities (uniform zones) whereas other groups have quite large dimension-
alities (highly structured zones) and this heuristic can not cover such a range of
dimensionalities. To take into account this specific properties of image restaura-
tion problems, we propose hereafter two alternatives for the situations where σ2 is
known or not.
Estimation of dk when σ2 is known. In the specific context of image denoising, it
may be of interest to denoise the image at hand at a specific level of noise. In
this case, the variance of the noise is assumed to be known and we propose the
heuristic of algorithm 1 to determine the intrinsic dimensions dk from the known
value of σ2. The idea of this heuristic is, for each group k = 1, ...,K, to search
the dimensionality dk such that the mean of the p − dk smallest eigenvalues of
the empirical covariance matrix Sk of the kth group is as close as possible to σ2.

The retained dimensionality d̂k for the kth group is the solution of the following
minimization problem:

d̂k = argmind

∥∥∥∥∥∥ 1

p− d

p∑
j=d+1

λkj − σ2

∥∥∥∥∥∥ ,
where λkj is the jth largest eigenvalue of the empirical covariance matrix Sk of the
kth group.
Estimation of dk when σ2 is unknown. In the case where the variance σ2 of the
noise is unknown (unsupervised image denoising), we simply propose to run the
above heuristic (algorithm 1) for a range of values for σ2 and compute the value of
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Original Noisy (σ = 30) HDMI (K = 40) HDMI (K = 90)

Figure 3. Influence of the number K of groups on the denoising
with HDMI of the Simpson image for σ = 30 (see text for details).

K 3 5 10 15 20 30 40
PSNR 37.38 37.39 38.19 38.45 38.59 38.72 38.83

K 50 70 100 140 200 400 600
PSNR 38.91 38.97 39.05 39.07 39.06 39.01 38.96

Table 2. Denoising performance (evaluated through the PSNR)
according to the number K of groups in HDMI on the Simpson
image with σ = 10.

BIC criterion for the associated model. The retained noise variance σ̂2 will be the
one which conduces to the highest BIC value.

3.4. Algorithm. Algorithm 2 summarizes the different steps of the inference pro-
cedure for the HDMI model, for given values of K and σ. Algorithm 3 describes the
whole unsupervised denoising procedure using HDMI. Let us notice that the for loop
on σ in algorithm 3 can be parallelized since the inferences of HDMI models with
different values σ are independent. In the supervised image denoising case (noise
standard deviation σ is known), algorithm 3 has to be run with σmin = σmax = σ.

4. Numerical experiments

In this section, we provide several numerical experiments to illustrate the charac-
teristics of the HDMI method and its ability to denoise images. The HDMI model
is also compared with recent state of the art denoising approaches. Comparison re-
sults are provided both under the form of PSNR tables and of visual experiments.
For the sake of completeness, let us recall that the PSNR is a way to measure the
quality of a restored image û in comparison to the original one u. For an image
with values between 0 and 255, the PSNR is given by the formula

PSNR(u, û) = 10 log10

2552|Ω|∑
x∈Ω(u(x)− û(x))2

,

where |Ω| is the number of pixels in u. All the following experiments are run with
patches of size 10× 10 (the space dimension is consequently p = 100).

4.1. Influence of the number K of groups. Let us first focus on the influence
of the number K of patch groups on the denoising result. We first consider the
denoising of a single 512× 512 image, Simpson, with the HDMI model for different
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Algorithm 2 The HDMI inference algorithm

Require: the noisy patches {y1, . . . , yn}, the number K of groups, the noise vari-
ance σ2.

Ensure: parameter estimates {µ̂k, Q̂k, âkj , d̂k; k = 1, ...,K, j = 1, ..., dk} and BIC
value for the HDMI model.
Initialisation Run the k-means algorithm for K groups on {y1, . . . , yn}.
Set tik = 1 if yi is in group k and 0 otherwise.
Set lex← −∞, dl←∞.
while dl > ε do

M step Update the estimates for θ = {πk, µk, Qk, akj , dk; k = 1, ...,K, j =
1, ..., dk}.

π̂k =
1

n

∑
i

tik, µ̂k =
1

nπ̂k

n∑
i=1

tikyi, (Q̂k, λ̂k) = eigendec(Sk).

where Sk = 1
nπ̂k

∑n
i=1 tik(yi − µ̂k)(yi − µ̂k)t.

Compute the intrinsic dimension d̂k thanks to algorithm 1.

Set âkj = λ̂kj for j = 1, . . . , dk. Set the p− dk last column of Q̂k to 0.

E step Compute the probabilities tik = P (Z = k|yi, θ̂) as follows

tik =
π̂kp(yi; θk)∑K
`=1 π̂`p(yi; θ`)

.

Update the likelihood l =
∑n
i=1 log

∑K
k=1 πkp(yi; θk) and compute the rel-

ative error between the two successive likelihoods dl = |l − lex|/|l|.
lex← l.

end while
Compute the BIC ← 2l−m log(n), where m is the number of free parameters of
the model.

Algorithm 3 The unsupervised HDMI image denoising algorithm.

Require: A noisy grey image u, a patch size s, a range [σmin, σmax] and a dis-
cretization step σstep for the noise standard deviation, a number of groups K.

Ensure: A denoised image û.
Patch Extraction Extract all s× s patches from u, to obtain {y1, . . . , yn}.
Inference and model selection
for σ from σmin to σmax with step σstep do

Model inference Run algorithm 2 to obtain θ̂σ and the corresponding BIC
value.

end for
Select the model θ̂ = θ̂σ with the largest BIC.
Denoising
for i = 1 to n do

compute ŷi =
∑K
k=1 π̂k

(
µ̂k +

ˆ̃
Qk(Ip − σ̂2∆̂−1

k )
ˆ̃
Q
t

k(yi − µ̂k)

)
,

end for
Aggregate all patches ŷi to compute û.
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values of K and for a noise level of σ = 10. Figure 3 shows the original Simpson
image, the noisy version with σ = 10 and two denoising results with HDMI at
K = 40 and K = 90.

Table 2 presents the PSNR values for different values of K. First, it is worth
noticing that, even when using extremely few mixture components, the denoising
with HDMI is rather satisfying. Indeed, the difference in PSNR between the best
result (K = 140) and the one with K = 3 is only 1.69 dB. This is an information
that can be useful if one would be interested in implementing a fast version of HDMI
since the computing time is almost linear in the number K of groups. Second,
table 2 confirms the expected behavior that using too much patch groups in HDMI
deteriorates the denoising performance. Indeed, even though a large number of
groups might better represents the diversity of patches in the image, this assertion
turns to be false when the number of groups become too large compared with the
data size. In this case, the model overfits the data. One can see that for values of K
larger than 200, the PSNR slowly decreases and goes back under 39 dB for K = 600
groups. Finally, one can observe on table 2 that, for a large range of K, the PSNR
has a plateau. Indeed, between K = 40 and K = 200 the observed PSNR values
do not vary more than 0.25dB (38.83 – 39.07). This allows us to conclude that
the number K of mixture components for HDMI is not a sensitive parameter and
that K = 40 may be recommended since it realizes a good compromise between
efficiency and performance.

Observe that we did not used the BIC criterion to select K. Indeed, this criterion
aims at selecting the most parsimonious model which best fits the data and does
not take into account the denoising goal. As a summary of these experiments, we
simply recommend to use a number K of groups for HDMI equal to 40 for good
and fast results, and equal to 90 for optimum results.

4.2. Role of the intrinsic dimensions dk. In this Section, we investigate both
the relevance of the clustering provided by the mixture model and the choice of the
intrinsic dimension dk for each group.

The computed mixture model naturally provides a clustering of all image patches.
Indeed, once the EM algorithm has converged, each patch yi of the original image
can be associated to the group k with the highest posterior probability tik. Figure 4
shows the resulting segmentation for several images, degraded with i.i.d. Gaussian
noise with σ = 20 and restored with HDMI for K = 40. In this experiment, each
color represents a group, and we assign this color to the central pixel of each patch
of the group. The clustering is shown on the third column of the Figure, and the
respective group dimensions are shown on the fourth column. In these experiments,
flat regions seem to be associated with groups of smaller dimensions: the wall in
the Simpson image, the shoulder of Lena, the floor of Barbara. Edges of similar
orientations also seem to be grouped together and associated to slightly larger group
dimensions (see for instance the top of the wall in Simpson). This is also the case for
some very regular textures, as the one present on the trousers in Barbara. Finally,
highly textured regions are usually grouped in groups of high dimensions. This is
particularly visible on Man and Alley, which both contain complex textures (the
feathers in Man, the brick walls in Alley).

Note that the ability of the HDMI model to infer automatically the dimension
of each group is a real novelty when compared to state of the art algorithms like
NL-Bayes [25] or SURE-PLE [36], which use an unrestricted Gaussian model (for
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Figure 4. From top to bottom, on the left column, the five im-
ages Simpson, Lena, Barbara, Man and Alley. On the second col-
umn, the same images degraded with i.i.d. Gaussian noise with
σ = 20. On the third column, the corresponding image segmen-
tation obtained with HDMI for K = 40. On the last column, the
corresponding maps of intrinsic dimensions for each group.

NLBayes) or a MPPCA with predefined group dimensions (for SURE-PLE), and
are forced to detect and treat flat patches separately. Observe also that unlike
traditional patch-based methods such as NLmeans [8], which were shown to work
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group of dimension 13 group of dimension 61

group of dimension 0 group of dimension 13

Figure 5. Examples of different groups: for each image, we show
on the left the patches belonging to the same group k, and on the
right 16 patches randomly sampled from the underlying Gaussian
model.

better by limiting the search neighborhood for similar patches, each patch is able
to collaborate with patches located everywhere in the image.

Figure 5 shows a selection of 4 different groups of various dimensions for the
images Barbara, Lena and Simpson. For each group, we also show 16 patches
randomly sampled from the group Gaussian model. As expected, the Gaussian
model inferred from the top edge wall in Simpson generates patches representing
more or less horizontal edges. For the group of dimension 61 in Barbara, the
model generates textured patches which look very similar to the texture present
on the trousers. The model of dimension 0 in Simpson produces flat patches.
Finally, we show a group of dimension 13 on Lena which seems to group together
flat patches and poorly contrasted but slightly textured ones (from Lena’s hat for
instance). Unfortunately, this group results in a slightly textured model which is
not perfectly adapted to denoise flat regions. When this happens, small artifacts
can be introduced in the denoising results. This tends to happen when the chosen
number of groups K is too small.

At this point, let us stress out that the intrinsic dimensions dk act as a regular-
ization for the clustering. Indeed, we might wonder what happens when the EM
algorithm is run without dimension reduction, with the reduction applied afterward.
In the HDMI model, the dimension reduction is performed from the beginning of
the EM algorithm and updated at each iteration, and thus influences the under-
lying clustering from the E-step. Figure 6 presents two clusterings of the same
image, obtained with the same initialization. The first one is obtained by applying
a standard GMM model to the patches, and the second one is obtained with the
HDMI model. As one can observe on the top of Figure 6, the full GMM clustering
turns out to be quite fuzzy and the associated denoising result is not convincing
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Figure 6. First line: Denoising with a full GMM model (50
groups) on all the patches and the HDMI dimension regular-
ization done after the EM algorithm. The clustering (left) is
quite fuzzy and the denoising result (middle) is not very good
(PSNR: 28.92dB). Second line: Denoising with the HDMI model
(50 groups) with intrinsic dimension regularization during the EM
process. The clustering (left) is smoother and the denoising yields
better results (PSNR: 29.28dB). The noise variance is σ = 30 and
a zoom on the denoising results is proposed in the left column.

(PSNR: 28.92dB). Alternatively, as shown on the bottom of the figure, the HDMI
clustering is smoother and the denoising yields better results (PSNR: 29.28dB).

Figure 7 shows the evolution of the intrinsic dimensions during the EM algorithm
in HDMI. In this example, for the sake of simplicity, we use only K = 10 on the
Simpson image. There is a clear stabilization of the intrinsic dimensions at some
point in the algorithm. The regularization induced by these smaller dimensions
plays a crucial role in the final clustering result.

4.3. Selection of σ for unsupervised denoising. In this section, we study how
the BIC criterion can be used in order to select the unknown noise standard de-
viation σ. For unsupervised denoising, we run the HDMI algorithm for different
σi within a given range of values, and we choose the model with the largest BIC
criterion. Figure 8 illustrates the evolutions of the BIC and PSNR when σi changes,
for the two images Lena and Simpson, for σ = 10 and 20. Observe that the form
of the BIC curve suggests that the optimal value might be estimated very fast in
practice, for instance by dichotomy. In these experiments, the PSNR obtained with
the selected model is in practice very close to the best denoising performance (the
difference is always smaller than 0.2 dB). Interestingly, the standard deviation
estimated by the BIC is always slightly larger than the one used for the synthetic
additive noise. This is also confirmed by table 3, which provides the selected σi for
three different images and three different values of σ. This slight overestimation can
be explained by the mere fact that the original images also contain a small amount
of intrinsic noise, which seems to be taken into account in the model selection.



18 ANTOINE HOUDARD & CHARLES BOUVEYRON & JULIE DELON

Figure 7. Evolution of the dimensions during the iterations of
the EM algorithm in HDMI, with a small number of classes (K =
10) and 100 iterations. Each group of 100 colored bars represents a
class and the 100 bars in each group represent the iterations. The
vertical axis represents the dimension.

Table 3. Dimensions selection and noise estimation with BIC

Artificial noise std Estimated noise std
Lena Simpson Barbara

10 11 10.5 11
20 21 20.5 21.5
30 31 31.5 31.5

4.4. Effect of the subsampling on the computing time. Even though the
inference can be parallelized over σ2 and K, the HDMI algorithm, that we propose
in this paper, remains computationally intensive in its unsupervised version (algo-
rithm 3) for large images. Nevertheless, the fact that the HDMI method relies on
a sound statistical model allows us to first infer model parameters from a small
proportion of the data and to classify afterward the remaining observations to the
estimated groups. Indeed, the mixture model fitted by the EM algorithm can be

used to compute the posterior probabilities P (Z = k|y; θ̂) for any new observation
y.

In order to figure out the potential gain in computing time and the quality of the
denoising in a subsampling scenario, we denoise the Lena image, degraded with a
noise of standard deviation σ = 10, with the HDMI model fitted from subsamples
of the image patches: 1, 2, 5, 10, 20, 30, 50 and 100% of the data. Figure 9 shows
the evolution of the PSNR (left panel) and of the computation time (right panel)
according to the sampling ratio for the HDMI model with K = 20 groups. First,
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Figure 8. Model selection for unsupervised denoising. We
run the HDMI algorithm for different σi within a given range of
values. The different curves show the evolution of the BIC and of
the PSNR with σi. Top: image Simpson. Bottom: image Lena.
Left column: σ = 10. Right column: σ = 20.

the left panel shows that the computing time of the HDMI algorithm is quasi-linear
in the number of observations, ranging from less than 10 seconds for 1% of the
data to almost 12 minutes for the whole patches. Second, it is worth to notice that
even with 1% of the patches the denoising quality is surprisingly good: PSNR of
35.1 dB with 1% whereas the denoising with all patches has a PNSR of 35.8 dB.
Finally, as indicated by the vertical dashed lines on both panels of fig. 9, one can
notice that there is a relative plateau of the PSNR curve after a sampling ratio of
20%. The denoising result that we obtained with 20% of the patches turns out to
be a good compromise between performance and computing time: 0.04 dB less in
PSNR than HDMI with 100% of the patches, obtained in 2 minutes instead of 12
minutes for all patches. As a summary, this experiment shows that we can safely
run the algorithm on only 20% of the patches to obtain a scalable algorithm on
large images without loosing much denoising performance.
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Figure 9. Effect of the subsampling on the computing time and
the denoising performance with HDMI (K = 20) on Lena with
σ = 10. Left: Evolution of the PSNR versus the sampling size.
Right: evolution of the computation time versus the same sampling
size. The dotted-lines correspond to a subsampling of 20% of the
image patches.

4.5. Influence of the initialization. As mentioned earlier, the EM algorithm
only converges toward a local maximum of the likelihood. This local maximum may
therefore depends on the choice of the initialization. In this section, we experiment
four different strategies for initializing the HDMI algorithm:

• Random: The patches are uniformly assigned to the K groups;
• Local : The patches are grouped locally in the image space;
• K-means: We run a K-means algorithm on the patches and use it as ini-

tialization;
• K++: We use the initialization of the K-means++ algorithm.

Figure 10 presents the obtained denoising results for these four initialization
strategies. As we can observe, although the final grouping is different, it groups the
same kind of structures and the denoising results are quite similar, both visually
and in term of PSNRs (standard deviation of 0.01). As a summary, this experiment
shows that the choice of the initialization procedure is not discriminant for the
purpose of denoising with HDMI.

5. Benchmark and comparison with state-of-the-art methods

We finally focus on the denoising performance of HDMI, and provide a compar-
ison with state-of-the-art approaches. Section 5.1 and Section 5.2 are respectively
devoted to grey-scale and color images. In Section 5.3, we propose a more precise
discussion about the pros and cons of HDMI.

5.1. Results for grey-scale images . Table 4 presents the PSNR results for grey-
scale images of HDMI with both known and unknown noise standard deviation σ,
for two number of groups K = 40 and K = 90, and this for the five images (Lena,
Barbara, Simpson, Alley, Man) which have been noised with σ = 10, 20, 30. In
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Figure 10. Influence of the initialization on the HDMI result.
Each line corresponds to a different initialization strategy, on the
same noisy image. The left column shows the clustering used to
initialize the EM algorithm. The middle column shows the fi-
nal clustering obtained by the HDMI model. The right column
is the corresponding denoising result. Random: 27.36dB, Local :
27.37dB, K-means: 27.35dB, K++: 27.37dB.

a comparison purpose, table 4 also provides for these scenarios the results of NL-
Bayes [25], with and without the “flat area trick”, and the results of SURE-PLE [36],
which shares some similarities with HDMI, as explained in the introduction.

As a summary of the comparison, one can first notice that HDMIsup (σ known)
outperforms SPLE and NLBayes without the “flat area trick” in almost all the
scenarios. It is interesting to notice that removing the constraints on the group
intrinsic dimensions of SPLE and estimating them through our proposal allows
to clearly improve the denoising. Second, HDMIsup turns out to also compare
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Table 4. Comparison of HDMI, NL-Bayes [26], SURE-PLE [35]
and BM3D [24] for grey-scale images.

Supervised denoising Unsupervised
Image σ NL-Bayes S-PLE BM3D HDMIsup HDMIunsup

original no flat K = 40 K = 90 K = 40 K = 90

Lena
10 35.85 35.57 35.34 35.91 35.78 35.83 35.59 35.23
20 32.90 32.40 32.34 33.00 32.82 32.90 32.75 32.87
30 31.20 30.49 30.46 31.16 30.99 31.04 30.94 30.93

Barbara
10 34.93 34.77 33.89 34.79 34.77 35.01 34.71 34.67
20 31.52 31.29 30.37 31.59 31.32 31.61 31.11 31.31
30 29.72 29.44 28.22 29.61 29.31 29.49 29.10 28.92

Simpson
10 38.76 37.59 38.16 38.98 38.80 38.98 38.89 39.07
20 34.74 33.72 34.08 35.05 34.74 34.91 34.81 34.79
30 32.53 31.54 31.53 32.72 32.33 32.50 32.19 32.40

Alley
10 32.53 32.50 32.05 32.46 32.40 32.47 31.95 31.94
20 29.10 29.07 28.67 29.15 29.03 29.07 28.89 28.96
30 27.43 27.37 26.92 27.51 27.31 27.39 27.19 27.17

Man
10 34.14 34.01 33.61 33.99 33.85 33.91 33.59 33.49
20 30.63 30.49 30.15 30.63 30.44 30.47 30.32 30.23
30 28.81 28.65 28.32 28.89 28.65 28.71 28.58 28.56

equally to NL-bayes and BM3D with an advantage for the two last methods in
term of PSNR. Let us finally emphasize that, even if HDMIunsup is not aware of
the actual noise level and has to estimate it, HDMIunsup also performs results close
to the NLBayes, BM3D and HDMIsup ones (which are supervised methods). This
emphasize the efficiency of our approach for blind image denoising.

Figure 11 finally provides a visual comparison of the different approaches on the
four different images Alley, Barbara, Lena and Man when σ = 30 (images should be
seen at full resolution on the electronic version of the paper). Although the PSNR
values are very close, visual results are quite different in practice. While constant
regions are better handled by the flat area trick of NL-Bayes and SURE-PLE, some
fine geometrical structures (for instance the wall and textures in the Alley image)
are clearly better preserved by HDMI and oversmoothed by the other methods.

5.2. Results on color images. Most recent denoising approaches, when applied
to color images, first convert RGB images to a different color space, and then denoise
each channel independently. The space conversion is applied to avoid creating color
artifacts by applying the denoising independently on each channel. HDMI can
easily be applied directly on RGB images, by considering color patches as points
in a space of dimension 3 × p (p = s × s is the patch spatial size). Figure 12
and Table 5 show color denoising results for several images and methods. The
HDMI algorithm outperforms state-of-the-art denoising methods in most of these
experiments. In practice, on color images, HDMI results often better preserve image
details than concurrent methods. However, when the noise variance increases, some
low-frequency noise or slight residual textures seem to appear in flat areas. We
discuss this issue in the following section.
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Figure 11. Comparative results on the grey-scale images Alley,
Barbara, Lena and Man with σ = 30. For each column, from top
to bottom: original image, noisy image, NL-Bayes [25], SURE-
PLE [36], HDMI. Images should be seen at full resolution on the
electronic version of the paper.

5.3. Discussion. In this part, we propose discuss some of the advantages and
limitations of our approach. Figure 13 proposes closer views on the denoising
results for the color images Alley, Traffic and Dice. The first column of Figure 13
is a zoom on the wires in the top of Alley. This really thin structure is difficult
to reconstruct from a noisy image, especially when the noise is strong (in this
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Figure 12. Compared results for the RGB images Alley, Traffic,
Dice and Flowers. The S-PLE, NL-bayes and BM3D methods are
run with default settings and the HDMI method uses K = 50
groups. The noise variance is set to σ = 50. Images should be seen
at full resolution on the electronic version of the paper.

experiment, σ = 30). In the NL-bayes and S-PLE results, this structure has almost
completely vanished, whereas HDMI is able to recover the major part of these
wires. A closer view on the house shutters in Alley is shown on the second column
of Figure 13. The shutters present texture patterns that are partially smoothed by
NL-Bayes and S-PLE. In contrast, HDMI seems to restore much more precisely this
textured area. Finally, the third column of Figure 13 shows a closer view of the
denoising results in the tree area of Traffic. In this case, HDMI also appears to yield
a more precise restoration than NL-bayes and S-PLE. Now, one could argue that
this better structure preservation is done at the expense of a good regularization in
flat regions. Indeed, the last column of Figure 13 shows a closer view on a flat part
of the Dice image and shows that the NL-bayes and the S-PLE methods produce
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Table 5. Comparison of HDMIsup, NLBayes, SURE-PLE and
BM3D for color images. The HDMI algorithm is performed with
K = 50 and the NL-Bayes, SURE-PLE and BM3D algorithms
are run from www.ipol.im with default settings. The PSNRs are
averaged on five noise realization and rounded at precision 10−2.

Image σ NL-bayes S-PLE BM3D HDMIsup

Alley

10 34.83 34.36 34.82 34.85
20 31.17 30.71 31.18 31.22
30 29.14 28.84 29.30 29.37
40 27.75 27.61 28.04 28.16
50 27.14 26.74 27.10 27.25

Dice

10 43.20 42.51 43.11 43.69
20 40.17 39.73 39.98 40.89
30 37.95 37.95 38.01 39.10
40 36.14 36.51 36.52 37.58
50 36.50 35.30 35.19 36.47

Flower

10 39.57 39.19 39.49 40.33
20 36.14 35.44 35.89 36.87
30 33.82 33.29 33.74 34.81
40 32.16 31.78 32.13 33.40
50 31.89 30.57 30.94 32.25

Traffic

10 35.16 34.34 34.54 35.12
20 31.23 30.56 30.81 31.29
30 29.02 28.53 28.83 29.28
40 27.51 27.17 27.45 27.97
50 26.85 26.16 26.43 27.03

Lena

10 36.94 36.88 37.46 37.61
20 34.24 33.98 34.59 34.72
30 32.50 32.30 32.93 33.13
40 31.12 31.01 31.70 31.97
50 30.85 29.97 30.72 31.02

nicer results in this region. In the same vein, observe that HDMI can sometimes
create undesired artifacts in flat regions. For example, the first column of Figure 14
presents a closer view on the background of Barbara. In this case, the NL-bayes
and the S-PLE methods perform better than HDMI which seems to add undesired
structure to this flat region. We discuss further this limitation in the following
paragraphs.
The usual denoising cuisine. Most really powerful image denoising methods use
tricks or hacks to improve their performances. A striking example is the special
treatments reserved to flats regions in NL-bayes and S-PLE. NL-bayes detects flat
patches by comparing their standard deviation to the noise standard deviation
(multiplied by a constant c close to 1). S-PLE defines a group of dimension 1
that will encode flat patches. In the case of HDMI, a group of flat regions is
sometimes merged with a group of weakly contrasted textures, especially when the
noise is strong. This result in the introduction of textured artifacts in smooth image
areas. To avoid this behaviour, a flat area trick can be easily added to HDMI
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Figure 13. Closer views on some details from the RGB images
Alley, Traffic and Dice. The S-PLE and NL-bayes methods are run
with default settings and the HDMI method uses K = 50 groups.
The noise variance is set to σ = 50.

by replacing patches detected as flat (those patches whose standard deviation is
smaller than σ) by a constant patch whose value is the average value of the patch.
The center of Figure 14 shows how this simple trick removes most of the annoying
residual textures introduced by HDMI. Another explanation for the addition of
slight textures in the flat regions is the overestimation of the intrinsic dimensions
in the case of the supervised version of HDMI. Indeed, the clean images we use here
do contain a small residual noise. The synthetic value σ used for the dimension
estimation is thus below the real image noise level. As a consequence, residual noise
is treated as structure and is matched with some existing texture in the image. To
illustrate this point, the third line of Figure 14 shows the result for HDMIunsup,
where the noise variance, and hence the dimensions, are estimated with the BIC
criterion. In this case, the slight residual noise is treated as noise and the residual
texture issue tends to disappear.
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Figure 14. Result of HDMI denoising with K = 40 groups for the
image Barbara with noise σ = 30. Left HDMI (PSNR = 29.35dB),
middle HDMI with the flat area trick (PSNR = 29.36dB), right
unsupervised HDMI (PSNR = 29.11dB).

6. Conclusion

In this paper, it is shown that a probabilistic high-dimensional Gaussian mixture
model can be learned efficiently on the patches of a noisy image, and used to obtain
a blind patch-based denoising. The resulting model HDMI shows state of the art
denoising performances, both in the supervised and unsupervised cases. Contrary
to previous approaches, this model automatically detects the groups of low dimen-
sionalities within the data. We also provide a numerically stable computation of
the conditional expectation for patch denoising, overcoming the traditional limi-
tation encountered in the denoising literature when inverting empirical covariance
matrices. We show how to use model selection to automatically estimate the in-
trinsic dimension of the groups and the noise variance. This work opens several
perspectives. The first one concerns the possibility to extend the previous approach
to several patch sizes in parallel. Another possible extension is the generalization of
the previous model to more general restoration problems. In this case, a nice possi-
bility would be to include hyperpriors in order to stabilize the estimation procedure,
as was recently shown in [1].
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