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Abstract. A conceptual clustering is a set of formal concepts (i.e.,
closed itemsets) that defines a partition of a set of transactions. Finding
a conceptual clustering is an NP-complete problem for which Constraint
Programming (CP) and Integer Linear Programming (ILP) approaches
have been recently proposed. We introduce new CP models to solve this
problem: a pure CP model that uses set constraints, and an hybrid model
that uses a data mining tool to extract formal concepts in a preprocessing
step and then uses CP to select a subset of formal concepts that defines
a partition. We compare our new models with recent CP and ILP ap-
proaches on classical machine learning instances. We also introduce a
new set of instances coming from a real application case, which aims at
extracting setting concepts from an Enterprise Resource Planning (ERP)
software. We consider two classic criteria to optimize, i.e., the frequency
and the size. We show that these criteria lead to extreme solutions with
either very few small formal concepts or many large formal concepts, and
that compromise clusterings may be obtained by computing the Pareto
front of non dominated clusterings.

1 Introduction

Clustering is a non-supervised classification approach which aims at partitioning
a set of objects into homogeneous clusters. Conceptual clustering provides, in
addition to clusters, a description of clusters by means of formal concepts [15,5].
In this paper, we introduce new Constraint Programming (CP) models to solve
this problem, and we evaluate these models on classical academic instances, but
also on a new set of instances that comes from a real application case.

Presentation of the applicative context. Enterprise Ressource Planning (ERP)
softwares are generic softwares for managing companies. They address many
functional goals ranging from commercial management to production or stock
management [11]. While the same ERP can be used by many companies, it has to
be customized specifically to fit each company needs. This is done thanks to pa-
rameters which are used to customize the ERP functionalities to each company
depending on his structural and organizational needs. However, the large range
of functional goals makes the customization process complex and time consum-
ing. We have studied the customization process of the Copilote ERP, developed



by Infologic and specialized in food industry management. As pointed out in
[21], it appears that most of the time of the customization process is dedicated
to the parameterization step: this step basically involves assigning values to pa-
rameters in such a way that the ERP fulfills the client needs. The complexity
of this step comes from the fact that the ERP has a large number of parame-
ters with strong implicit interactions. Moreover, several studies have shown that
this time-consuming parameterization step is less important than human factors
(user training, personalized support, for example) [16,1]. Therefore, an impor-
tant challenge is to reduce the time needed to parameterize an ERP in order to
spend more time on human factors.

To reduce the time needed to parameterize an ERP, our goal is to (partially)
automate this step. To this aim, we have collected a database of existing pa-
rameter settings, corresponding to recent installations of the Copilote ERP for
400 clients. We propose to identify relevant groups of parameter settings, and
to associate them with functional needs. As many functional needs are common
to several clients, these parameter setting groups will be reused when customiz-
ing the ERP for a new client with similar needs. To identify relevant parameter
setting groups, we propose to partition the database of parameter settings into
clusters. As we do not have a relevant measure to evaluate the similarity of dif-
ferent parameter settings, and as most parameters are symbolic ones, we propose
to use conceptual clustering to achieve this task: this approach does not assume
that there exists a similarity measure, and allows us to describe each cluster by a
set of parameter values which are shared by all parameter settings in the cluster.

Contributions and organization of the paper. We introduce the background on
conceptual clustering in Section 2. In particular, we describe two declarative
approaches which have been recently proposed: [4], that uses Constraint Pro-
gramming (CP), and [17], that uses Integer Linear Programming (ILP). These
declarative approaches are very relevant in our applicative context because they
allow us to easily model new constraints or objective functions: a main issue is
to find relevant objective functions and constraints to extract setting concepts
which make sense for our ERP experts.

In Section 3, we introduce two new CP models to compute optimal conceptual
clusterings: the first one is a full CP model; the second one is an hybrid model
that uses a dedicated tool to extract formal concepts and uses CP to select the
subset of formal concepts that defines an optimal partition.

We experimentally evaluate these models in Section 4. This evaluation is
done on some classical academic instances. We also introduce a new benchmark
composed of seven instances that have been extracted from our database of
parameter settings. In this first evaluation, we mainly consider two objective
functions to optimize: the size of the concepts (corresponding to the number
of parameters that are common to several clients), and the frequency of the
concepts (corresponding to the number of clients that share a common setting).
We evaluate scale-up properties of the different approaches when the number of
clusters is fixed and when it is not fixed, for each of these objectives separately.



Table 1. Left: Example of transactional dataset with m = 5 transactions and n = 4
items. Right: Set F of formal concepts for this dataset.

i1 i2 i3 i4
t1 1 0 0 1
t2 1 0 1 1
t3 0 1 0 1
t4 0 1 1 0
t5 1 0 1 0

C intent extent freq. size
c1 {i1} {t1, t2, t5} 3 1
c2 {i2} {t3, t4} 2 1
c3 {i3} {t2, t4, t5} 3 1
c4 {i4} {t1, t2, t3} 3 1
c5 {i1, i3} {t2, t5} 2 2

C intent extent freq. size
c6 {i1, i4} {t1, t2} 2 2
c7 {i2, i3} {t4} 1 2
c8 {i2, i4} {t3} 1 2
c9 {i1, i3, i4} {t2} 1 3

The two objective functions that we consider are complementary and are
related to the number of clusters: when maximizing concept sizes, optimal clus-
terings have many clusters of small frequencies; when maximizing concept fre-
quencies, optimal clusterings have very few clusters of small sizes. In Section 5,
we propose to compute the Pareto front of all non-dominated solutions, and we
introduce and compare different ways for achieving this with our CP models.

2 Background on Conceptual Clustering

Formal Concepts. Formal Concept Analysis is a way of grouping together objects
sharing a same set of attribute values [5]. In this paper, we use the transactional
database terminology: objects are called transactions, and attribute values are
called items. More formally, let T be a set of m transactions (numbered from 1 to
m), I a set of n items (numbered from 1 to n), and R ⊆ T ×I a binary relation
that relates transactions to items: (t, i) ∈ R denotes the fact that transaction
t has item i. We note itemset(t) the set of items associated with t, i.e., ∀t ∈
T , itemset(t) = {i ∈ I : (t, i) ∈ R}. Given a set E, we note P(E) the set of all
its subsets, and #E its cardinality.

The intent of a subset T ⊆ T of transactions is the intersection of their
itemsets, i.e., intent(T ) = ∩t∈T itemset(t). The extent of a set I ⊆ I of items is
the set of transactions whose itemsets contain I, i.e., extent(I) = {t ∈ T : I ⊆
itemset(t)}. These two operators induce a Galois connection between P(T ) and
P(I), i.e., ∀T ⊆ T ,∀I ⊆ I, T ⊆ extent(I)⇔ I ⊆ intent(T ). A formal concept is
a couple (T, I) ∈ P(T )× P(I) such that T = extent(I) and I = intent(T ). We
note F the set of all formal concepts. The frequency of a formal concept (T, I)
is the number of transactions, i.e., freq(T, I) = #T , and its size is the number
of items, i.e., size(T, I) = #I.

For example, we display in table 1 a transactional dataset and its associated
set F of formal concepts. The couple ({t1, t2}, {i1}) is not a formal concept be-
cause intent({t1, t2}) = {i1, i4} 6= {i1} and extent({i1}) = {t1, t2, t5} 6= {t1, t2}.

Formal concepts and closed itemset mining. Formal concepts correspond to
closed itemsets [18] and the set F may be computed by using algorithms dedi-
cated to the enumeration of frequent closed itemsets, provided that the frequency
threshold is set to 1. In particular, LCM [24] is able to extract all formal concepts



of F in linear time with respect to #F . As there is usually a huge number of
closed itemsets, we may add constraints or optimization criteria to identify rele-
vant concepts. For example, we may search for closed itemsets whose frequency
is greater than some threshold and whose size is maximal. We may also combine
several criteria, and search for the Pareto front of non dominated formal con-
cepts (where a concept c1 is dominated by another concept c2 if c2 is at least as
good as c1 on all criteria but one, and strictly better on this last criterion). This
Pareto front is also called the skyline [2].

CP for itemset mining. Using CP to model and solve itemset search problems
is a topic which has been widely explored during the last ten years [20,12,8,7].
Indeed, CP allows one to easily model various constraints on the searched item-
sets, corresponding to application-dependent constraints for example. These con-
straints are used to filter the search space during the mining process, and allow
CP to be competitive with dedicated mining tools such as LCM. Most recently,
[14] introduced a global constraint for extracting frequent closed itemsets. This
global constraint enforces domain consistency in polynomial time, and it is quite
competitive with LCM: if it is an order slower on basic queries, it is more effi-
cient for complex queries where extra constraints are added. Also, [23] proposed
to use CP to extract skyline patterns, i.e., non-dominated patterns according to
several criteria: they use a dynamic approach, where constraints are added each
time a new solution is found in order to forbid solutions dominated by it.

Conceptual Clustering. Clustering is an unsupervised classification approach the
goal of which is to group objects into homogeneous clusters. Conceptual clus-
tering provides, in addition to clusters, a description of clusters by means of
formal concepts: each cluster corresponds to a formal concept. More precisely,
a conceptual clustering is a set of k formal concepts C = {(T1, I1), . . . , (Tk, Ik)}
such that {T1, . . . , Tk} is a partition of the set T of transactions.

Different optimization criteria may be considered. In this article, we consider
two classical criteria : minFreq, to maximize the minimal frequency of a cluster;
and minSize, to maximize the minimal size of a cluster. For example, let us
consider the set F of formal concepts displayed in table 1. Two examples of
clusterings are P1 = {c1, c2} and P2 = {c1, c7, c8}. According to minFreq, the
best clustering is P1 (as the minimal frequency is 2 for P1 and 1 for P2). According
to minSize, both clusterings are equivalent as their minimal size is 1.

The number k of clusters is an important parameter which has a great influ-
ence on the size and the frequency of the clusters: small values for k favor clusters
with larger frequencies and smaller sizes, whereas large values favor clusters with
smaller frequencies and larger sizes.

CP for conceptual clustering. Conceptual clustering is related to closed itemset
mining, as each cluster corresponds to a closed itemset. However, the goal is
no longer to find closed itemsets that satisfy some constraints or optimize some
criteria, but to find a subset of closed itemsets which partitions the set of trans-
actions and optimizes some criteria. Conceptual clustering is a special case of



k-pattern set mining, as introduced in [9]: the conceptual clustering problem is
defined by combining a cover and a non-overlapping constraint, and a CP model
based on boolean variables is proposed to solve this problem.

[3] describes a CP model for clustering problems where a dissimilarity mea-
sure between objects is provided. In this case, the goal is to find a partition of
the objects which satisfies some constraints and optimizes an objective function
defined by means of this dissimilarity measure. This CP model has been ex-
tended to conceptual clustering in [4]. Experimental results reported in [4] show
that this model outperforms the binary model of [7]. This model assumes that
the number of clusters is defined by a constant k. There is an integer variable
Gt for each transaction t ∈ T : Gt represents the cluster of t and its domain
is D(Gt) = [1, k]. Symmetries (due to the fact that cluster numbers may be
swapped) are broken by adding a precede(G, [1, k]) constraint [13]. Each cluster
is enforced to have at least one transaction by the constraint: atLeast(1, G, k).
For each cluster c ∈ [1, k], a set variable Intentc represents the intent of the set
of transactions in c, i.e., the intersection of their itemsets. Its domain is the set of
all possible itemsets, i.e., D(Intentc) = P(I). The extent constraint is expressed
by: ∀c ∈ [1, k],∀t ∈ T , Gt = c⇔ Intentc ⊆ itemset(t). It is implemented thanks
to k ×m reified constraints (with m = #T ). The intent constraint is expressed
by: ∀c ∈ [1, k], Intentc = ∩t∈T ,Gt=citemset(t). It is implemented thanks to k
constraints, and each of these k constraints needs n reified domain constraints
to build the set of all transactions in cluster c, and a set element global con-
straint to select the corresponding itemsets and intersect them. An objective
variable is introduced. Depending on the optimization criterion, this variable is
constrained to be equal either to the minimal cardinality of all Intentc variables
(minSize), or the minimal number of G variables assigned to a same cluster
thanks to atLeast(obj,G, c) constraints (minFreq).

The model proposed in [4] assumes that the number of clusters is fixed to a
constant value k. It may easily be extended to the case where this number is not
known, by introducing an integer variable k, whose domain is bounded between
2 and m− 1. However, performance is degraded when k is not fixed.

ILP for Conceptual Clustering. [17] proposes to compute conceptual clusterings
by combining two exact techniques: in a first step, a dedicated closed itemset
mining tool (i.e., LCM [24]) is used to compute the set F of all formal concepts
and, in a second step, ILP is used to select a subset of F that is a partition of the
set T of transactions and that optimizes some given criterion. More precisely,
for each formal concept f ∈ F , there is a binary variable xf such that xf = 1 iff
f is selected. The subset of selected formal concepts is constrained to define a
partition of T by posting the constraint: ∀t ∈ T ,

∑
f∈F atfxf = 1, where atf = 1

if transaction t belongs to the extension of concept f , and 0 otherwise. Contrary
to the CP approaches of [7,3], the number of clusters is not fixed and it is a
variable k which is constrained to be equal to the number of selected concepts
by posting the constraint: k =

∑
f∈F xf . In [17], the goal is to maximize the

sum of the sizes of the selected concepts. Therefore, the objective function to
maximize is:

∑
f∈F vfxf where vf is the size of the concept f . If the case is not



explicitly discussed in [17], we may easily extend this ILP model to maximize the
minimal size (resp. frequency) of the selected concepts: we introduce a variable
vmin and enforce this variable to be smaller than or equal to the size (resp.
the frequency) of the selected concepts by adding the constraint ∀t ∈ T, vmin ≤
vfxf+M(1−xf ), whereM is a positive constant greater than the largest possible
size (resp. frequency), and vf is the size (resp. frequency) of the concept f .

3 New CP models

In this section, we introduce two new CP models for computing optimal concep-
tual clusterings. The first model (described in Section 3.1) may be seen as an
improvement of the CP model of [3]. The second model (described in Section
3.2) follows the two step approach of [17]: the first step is exactly the same; the
second step uses CP to select formal concepts. These models are experimentally
evaluated and compared with the approaches of [3] and [17] in Section 4.

For both models, we do not assume that the number of clusters is fixed: k
is a variable whose domain is [kmin, kmax], where kmin and kmax are two given
bounds such that 2 ≤ kmin ≤ kmax < m.

3.1 New full CP model

Like the CP model of [3], we use Gc integer variables to model clusters. However,
we associate the Intent set variables to transactions instead of associating them
to clusters. This simplifies the propagation of the intent constraint. Another
reason for associating Intent set variables to transactions instead of clusters is
that, when k is strictly lower than kmax, each Intentc set variable such that
c > k should be empty. This would imply to use reification to compute the
minimal intent size, as we must not consider Intentc variables such that c > k
(otherwise, the minimal size would be equal to 0 whenever k < kmax). Also, we
introduce new set variables to explicitly model extents and these set variables are
associated with transactions to ease the computation of the minimal frequency.
Finally, we introduce redundant set variables which model concept extents and
are associated with clusters: these variables are used to add a redundant partition
constraint which improves the solution process.

More formally, we use the following variables:

– an integer variable k (with D(k) = [kmin, kmax]), which represents the num-
ber of clusters;

– for each transaction t ∈ T :
• an integer variable Gt (with D(Gt) = [1, kMax]), which represents the

cluster of t;
• a set variable Intentt (with D(Intentt) = P(itemset(t))), which repre-

sents the set of items in the intent of the cluster of t;
• a set variable Extentt (with D(Extentt) = P(T )), which represents the

set of transactions in the extent of the cluster of t;



– for each cluster c ∈ [1, kmax], a set variable ExtentClusterc (with
D(ExtentClusterc) = P(T )), which represents the set of transactions in c;

– two integer variablesminFreq (withD(minFreq) = [1,m−1]) andminSize
(with D(minSize) = [1, n− 1]), which represent the minimal frequency and
size, respectively.

As proposed in [4,3], we break symmetries (due to the fact that clusters may be
swapped) by posting the constraint: precede(G, [1, kmax]).

We relate extentt and extentClusterc variables by posting the constraint:
∀t ∈ T , Extent[t] = ExtentCluster[Gt], and we relate ExtentClusterc and Gt

variables by posting the constraint

∀t ∈ T ,∀c ∈ [1, kmax], t ∈ ExtentClusterc ⇔ Gt = c

We add a redundant partition constraint that enforces extent to be a partition
of T : partition(ExtentCluster, T ). This constraint is redundant because each
transaction is already enforced to belong to exactly one cluster by G variables.
However, its propagation both reduces the search space and the CPU time.

We reify m(m−1)/2 equality constraints between G variables to ensure that
two transactions are in a same cluster iff they have the same intent, and this
intent is included in their itemsets: ∀{t1, t2} ⊆ T

(Gt1 = Gt2)⇔ (Intentt1 = Intentt2)⇔ (Intentt1 ⊆ itemSet(t2))

This constraint ensures the extent property as any transaction t1 such that
itemset(t1) ⊇ Intentt2 is constrained to be in the same cluster as t2. However,
this constraint only partially ensures the intent property: for each transaction t, it
ensures Intentt ⊆ ∩t′∈T ,Gt=Gt′ itemset(t′) whereas the intent property requires
that Intentt is equal to the itemset intersection. However, given any solution
that satisfies the constraint Intentt ⊆ ∩t′∈T ,Gt=Gt′ itemset(t′), we can easily
transform it to ensure that it fully satisfies the intent property by adding to
Intentt every item i ∈ (∩t′∈T ,Gt=Gt′ itemset(t′)) \ Intentt. Hence, each time a
solution is found, for each cluster c, we compute its actual intent by intersecting
the intersection of all its transaction itemsets. This ensures that each cluster
actually is a formal concept, and therefore this ensures correction. Completeness
is ensured by the fact that our constraint is a relaxation of the initial constraint.

Finally, we compute the minimal size and frequency by posting the con-
straints: minSize = mint∈T #Intentt and minFreq = mint∈T #Extentt.

The search strategy depends on the objective function: if the goal is to max-
imize minFreq, then we first assign k to its lower values (as a smaller number
of clusters usually leads to concepts with larger frequencies), whereas if the goal
is to maximize minSize, then we first assign k to its higher values (as a larger
number of clusters usually leads to concepts with larger sizes).

3.2 New hybrid model

This model solves the problem in two steps as in [17]: in a first step, we extract
the set F of all formal concepts with a dedicated tool (LCM), and in a second
step we use CP to select the subset of F forming an optimal clustering.



We have designed and compared several CP models for this second step. In
particular, we have designed a model that associates a set variable Extentc with
each cluster c (such that Extentc contains all transactions in the extent of c),
and then post a partition global constraint on these variables to ensure that
they form a partition of T . This model is always outperformed by the model
described below.

Our CP model for the second step uses the following variables:

– an integer variable k (with D(k) = [kmin, kmax]), which represents the num-
ber of clusters (i.e., the number of selected concepts);

– a set variable P (with D(P ) = P(F)), which represents the set of selected
formal concepts that define an optimal clustering;

– for each transaction t ∈ T , an integer variable Conceptt (withD(Conceptt) =
{f ∈ F | t ∈ extent(f)}), which represents the concept that contains t in its
extent (each transaction must belong to exactly one selected concept);

– two integer variablesminFreq (withD(minFreq) = [1,m−1]) andminSize
(with D(minSize) = [1, n− 1]), which represent the minimal frequency and
size, respectively.

To ensure that Conceptt belongs to P , for each transaction t ∈ T , we post the
constraint: ∀t ∈ T ,member(Conceptt, P ).

To ensure that the selected concepts define a partition of T , we ensure that
each transaction t is contained in the extent of exactly one selected formal con-
cept. To this aim, we compute, for each transaction t, the set CF (t) of all the
concepts of F that contain t in their extent, i.e.,

∀t ∈ T , CF (t) = {f ∈ F : t ∈ extent(f)}

and we ensure that the set variable P contains exactly one element of CF (t) by
posting the constraint: ∀t ∈ T ,#(CF (t)) ∩ P ) = 1.

Finally, we compute the minimal size and frequency by posting the con-
straints: minSize = mint∈T #intent(Ct) and minFreq = mint∈T #extent(Ct).

The number of clusters of the solution is constrained in two different ways
according to the objective function:

– If the goal is to maximize minFreq, optimal solutions often have a small
number of clusters and, in this case, we ensure that k is equal to the number
of distinct values contained in C by posting the constraint: nV alue(C, k).

– If the goal is to maximizeminSize, optimal solutions often have a large num-
ber of clusters and, in this case, we ensure that k is equal to the cardinality
of P by posting the constraint #P = k.

The search strategy also depends on the objective function. The idea is to first
select concepts with large sizes (resp. frequency) when the goal is to maximize
minSize (resp. minFreq). To this aim, we sort formal concepts by decreasing
size (resp. frequency), and use this order as value ordering heuristic for Ct. We
use a First fail strategy to select the variable with the smallest domain as next
variable.



Table 2. Test instances: each row gives the number of transactions (#T ), the number
of items (#I), the density (d), the number of formal concepts (#F), and the CPU
time (in seconds) spent by LCM to extract all formal concepts.

Instance # T # I d(%) # F Time
ERP1 50 27 48 1 580 0.01
ERP2 47 47 58 8 1337 0.03
ERP3 75 36 51 10 835 0.03
ERP4 84 42 45 14 305 0.05
ERP5 94 53 51 63 633 0.28
ERP6 95 61 48 71 918 0.45
ERP7 160 66 45 728 537 5.31

Instance # T # I d(%) # F Time
zoo 59 36 44 4 567 0.01
vote 341 48 34 227 031 0.54

tic-tac-toe 958 27 33 42 711 0.05
soybean 303 116 29 817 534 6.7

Furthermore, when the goal is to maximize minFreq, we use the ObjectiveS-
trategy proposed by Choco [19], which performs a dichotomous branching over
the domain of minFreq.

4 Experimental comparison for single objective problems

We compare our new models with the CP model of [3] and the ILP model of [17]
for computing conceptual clusterings that optimize a single objective.

Experimental protocol. All experiments were conducted on Intel(R) Core(TM)
i7-6700 with 3.40GHz of CPU and 65GB of RAM. The approach of [4] (called
FullCP1) is implemented in Gecode v4.3. The approach of [17] (called ILP ) uses
LCM to extract formal concepts and Cplex v12.7 to solve the selection problem.
Our CP model described in Section 3.1 (called FullCP2) is implemented in Choco
v.4.0.3 [19]. Our hybrid approach described in Section 3.2 (called HybridCP) uses
LCM v5.3 to extract formal concepts and Choco v.4.0.3 to solve the selection
problem. We have limited the CPU time of each run to 1000 seconds.

Test instances. We consider four classical machine learning instances, coming
from the UCI database: zoo, vote, tic-tac-toe, and soybean. We also introduce
seven new instances (called ERPi, with i ∈ [1, 7]) that have been extracted from
our ERP database. Our ERP database contains 400 parameter settings: each
setting corresponds to the customization of the ERP for a different client, and
specifies the values of almost 450 different parameters. Each parameter can only
take a finite number of values, and most of them are symbolic attributes. For
each parameter/value couple, we have created a boolean item (set to 1 iff the
parameter is assigned to the value in the setting). We have split this database
into smaller ones by focusing on different groups of parameters, thus obtaining
seven instances of various sizes3. All instances are described in Table 2.

3 These instances are available on http://liris.cnrs.fr/csolnon/ERP.html.



Table 3. Times when the goal is to optimize minFreq (upper part) and minSize (lower
part): each line gives the time of the four approaches when k is fixed to 2, 3, and 4,
respectively, and when k is not fixed (N). ’-’ is reported when time exceeds 1000s.

ILP FullCP1 FullCP2 HybridCP
k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N k=2 k=3 k=4 N

Objective = Maximize minFreq
ERP1 0.2 0.9 1.0 0.8 0.0 0.0 0.3 0.2 0.2 0.7 4.3 0.3 0.2 0.9 1.4 0.3
ERP2 1.5 2.7 2.3 1.0 0.0 0.4 4.8 0.5 0.1 0.2 2.8 0.1 4.4 1.5 4.6 0.3
ERP3 1.5 2.5 3.2 1.7 0.0 0.3 20.0 2.4 0.2 1.5 1.6 0.3 9.2 24.7 2.4 0.6
ERP4 7.5 15.0 20.9 13.6 0.0 0.3 36.6 1.2 0.3 2.8 37.9 0.4 1.4 100.6 153.1 0.8
ERP5 12.5 18.3 83.7 18.3 0.0 1.4 773.6 125.3 0.5 5.0 91.9 1.5 172.2 634.4 - 10.6
ERP6 52.6 145.8 339.6 143.3 0.0 10.3 302.7 51.7 0.5 2.7 101.1 1.1 8.6 - - 8.0
ERP7 - - - - 0.0 82.9 - 973.4 2.8 26.8 742.9 5.0 - - - -
zoo 1.0 2.2 3.0 1.5 0.0 0.0 0.8 0.1 0.2 0.2 4.5 0.3 0.5 0.6 1.0 0.2
vote 40.6 - - 55.2 0.0 2.0 292.6 - 1.6 19.2 370.5 33.1 17.8 150.0 95.4 20.8
tic-tac-toe 61.3 80.6 - 718.6 0.2 0.3 106.0 - 32.5 75.9 - 179.7 10.9 25.2 - 33.3
soybean - - - - 0.1 160.1 - - 1.4 7.9 166.0 - 63.7 980.2 - -

Objective = Maximize minSize
ERP1 0.2 0.3 0.3 0.4 0.0 0.1 1.0 0.2 0.3 0.7 2.5 0.2 0.2 0.4 1.6 0.1
ERP2 1.7 1.6 1.6 0.8 0.0 0.5 19.9 - 0.1 0.2 0.8 0.0 4.6 17.7 7.2 0.1
ERP3 1.6 1.6 1.7 1.2 0.0 0.6 252.9 - 0.3 2.0 7.0 0.1 9.6 42.5 61.6 0.2
ERP4 7.5 8.3 7.2 18.3 0.0 0.8 184.8 2.1 0.5 4.6 34.4 0.5 22.0 103.4 329.5 0.3
ERP5 13.1 21.1 40.6 12.5 0.0 2.2 - - 0.6 6.1 58.4 0.3 - - - 1.5
ERP6 63.4 93.3 648.3 - 0.0 14.2 9.6 7.2 0.8 7.5 54.2 0.5 645.0 - - 1.9
ERP7 - - - - 0.0 191.1 - 47.2 4.4 69.2 682.5 2.3 - - - 39.5
zoo 1.1 0.9 1.2 2.0 0.0 0.0 1.4 0.5 0.2 1.7 7.7 0.1 0.7 6.8 9.4 0.1
vote 40.8 243.5 249.7 - 0.0 3.9 969.4 - 3.3 12.2 191.8 20.4 16.2 69.0 - 17.2
tic-tac-toe 60.7 80.4 - 254.5 0.4 0.3 105.6 - 33.2 54.1 - - 10.9 25.9 - 18.7
soybean - - - - 0.0 145.7 - - 2.5 7.1 93.3 22.2 93.4 460.6 - 342.4

Computation of F with LCM. Table 2 displays the time spent by LCM to extract
all formal concepts, for each instance. This time is proportional with the size of
F , as the complexity of LCM is linear with respect to #F . CPU time is smaller
than one second for all instances but two, and it is smaller than seven seconds
for the instance that has the largest number of formal concepts (soybean).

Comparison of scale-up properties of the different approaches. Table 3 displays
the times for computing optimal clusterings when the goal is to maximize min-
Freq (upper part) or minSize (lower part). We report times when k is fixed to
2, 3, and 4, respectively, and then when k is not fixed (with kmin = 2 and
kmax = m − 1). Times displayed for ILP and HybridCP both include the time
spent by LCM to extract all formal concepts.

For all approaches and all instances, time increases when increasing k from
2 to 4. FullCP1 and FullCP2 are more efficient when k = 2 than when k is
not fixed, and they are more efficient when k is not fixed than when k = 4.
HybridCP approach needs more time to solve the problem when k = 2 than
when k is not fixed for all instances but three (vote, tic-tac-toe and soybean)
whereas ILP approach needs more time only for the smallest ERP instances.

When k = 2, the best approach is FullCP1, which is able to solve all instances
in less than 0.1 second (except tic-tac-toe). However, when increasing k from 2



Table 4. Experimental comparison of frequencies, sizes, and number of clusters: each
line displays the optimal values of minFreq and minSize when k is set to 2, 3, and
4, and when k is not fixed (N), followed by the value of k in the optimal solution
(in brackets). Finally, it displays the optimal values of minFreq and minSize when
maximizingminFreq and breaking ties withminSize (Freq+Size), and when maximizing
minSize and breaking ties with minFreq (Size+Freq). In this case, k is not fixed and
its value in the optimal solution is displayed in brackets.

Maximize minFreq Maximize minSize Freq+Size Size+Freq
k 2 3 4 N (k) 2 3 4 N (k) Freq Size (k) Freq Size (k)
ERP1 21 14 11 21 (2) 4 5 6 12 (49) 21 4 (2) 1 12 (49)
ERP2 21 15 11 21 (2) 6 11 13 16 (42) 21 6 (2) 2 16 (8)
ERP3 31 22 18 31 (2) 3 4 6 12 (59) 31 2 (2) 1 12 (59)
ERP4 42 27 18 42 (2) 3 6 8 18 (83) 42 3 (2) 1 18 (83)
ERP5 41 30 22 41 (2) 3 6 7 16 (79) 41 2 (2) 1 16 (79)
ERP6 42 31 22 42 (2) 8 11 9 28 (94) 42 8 (2) 1 28 (94)
ERP7 70 50 35 70 (2) 5 8 11 29 (159) 70 5 (2) 1 29 (159)
zoo 28 19 14 28 (2) 2 3 5 15 (58) 28 2 (2) 1 15 (58)
vote 102 34 34 102 (2) 1 1 1 15 (317) 102 1 (2) 1 5 (317)
tic-tac-toe 250 250 (3) 1 7 (957) 250 1 (3) - - -
soybean 2 5 - - 1 1 6 (302) - - - 1 6 (302)

to 3, times of FullCP1 are strongly increased (up to 191 seconds for ERP7 with
minSize) and FullCP1 is outperformed by FullCP2 for 8 instances. When further
increasing k to 4, FullCP2 becomes the only approach able to solve all instances
but tic-tac-toe, though ILP is able to solve 8 instances quicker.

When k is not fixed, the best performing approaches are fullCP2 (which is
able to solve all instances but soybean for minFreq) and HybridCP (which is
able to solve all instances for minSize).

Maximization of the sum of sizes. In [17], the objective function to maximize
is the sum of the sizes of the selected concepts, and the proposed ILP model
scales well for this objective: when k is not fixed, the time needed to find the
optimal solution is 0.1, 0.4, 0.7, 1.7, 5.9, 14.0, and 183.2 for ERP1 to ERP7,
respectively, and it is 0.3, 51.9, 32.0, and 120.0 for zoo, vote, tic-tac-toe, and
soybean, respectively. Hence, ILP is more efficient for maximizing the sum of
the sizes than for maximizing minSize. None of the CP models considered here
scales well when the goal is to maximize the sum of the sizes, and they are far
slower than ILP in this case: they usually very quickly find the optimal solution,
but they are not efficient to prove optimality. However, we noticed that the
optimal solutions found with the two criteria sum of sizes and minSize are very
similar (and often equal). Indeed, when maximizing the minimal size, we also
tend to maximize the size of all concepts.

Comparison of frequencies, sizes, and number of clusters of optimal solutions.
Table 4 displays the values of minFreq, minSize, and k for the optimal solutions



(tic-tac-toe does not have clusterings when k ∈ {2, 4}, and soybean does not
have clusterings when k = 2). It shows us that when k is fixed, the optimal
values of minFreq and minSize often greatly vary when modifying the value of
k. For example, let us consider instance ERP4: minFreq decreases from 42 to 27
and 18 (resp. minSize increases from 3 to 6 and 8) when k is increased from 2
to 3 and 4. From an applicative point of view, finding the relevant value for k
is not straightforward. When k is not fixed, we obtain extreme solutions: when
the goal is to maximize minFreq, there are only 2 clusters (except for tic-tac-toe,
as there is no solution with k = 2), and when the goal is to maximize minSize,
there are m− 1 clusters for all instances but 4 (ERP2, ERP3, ERP5 and vote),
whereas for the remaining instances the value of k is rather high.

Table 4 also displays the values of minFreq, minSize, and k when optimizing
the two criteria in a lexicographic order and not fixing k. Let us call Freq+Size
the solution that maximizes MinFreq while breaking ties with MinSize, and
Size+Freq the solution that maximizes MinSize while breaking ties with Min-
Freq. These solutions correspond to very different situations: for Freq+Size, k
is always equal to 2 (except for tic-tac-toe) and minSize is rather low (ranging
between 1 and 8); for Size+Freq, k is equal to m− 1 for 6 instances, and rather
large for the other instances, whileminFreq is always equal to 1, except for ERP2.
From an applicative point of view, these solutions are not very interesting, and
we need to find better compromises between size and frequency.

5 Multi-criteria optimization

As the two optimization criteria tend to produce extreme solutions which are not
very meaningful for our application, we propose to compute the Pareto front of
non dominated solutions. A clustering C1 is dominated by another clustering C2

if the size and the frequency of C1 are smaller than or equal to the size and the
frequency of C2. Non dominated solutions correspond to different compromises
between the two criteria. The two extrema of the Pareto front are the solutions
called Size+Freq and Freq+Size in the previous Section. In Section 5.1, we ex-
perimentally evaluate the efficiency of our two CP models for computing these
extrema. Then, in Section 5.2, we propose and compare different approaches for
computing the whole Pareto front.

5.1 Computation of extrema solutions

Table 5 displays the time spent by FullCP2 and HybridCP to compute the two
extrema solutions of the Pareto front: Size+Freq is computed by first maximizing
MinSize, fixing MinSize to its optimal value, and then maximizing MinFreq;
Freq+Size is obtained by first maximizing MinFreq, fixing MinFreq to its optimal
value, and then maximizing MinSize.

For Freq+Size, FullCP2 outperforms HybridCP on 6 instances and it is able
to solve all instances except soybean while HybridCP is not able to solve ERP7,
vote and soybean. However, for Size+Freq, FullCP2 is not able to solve 5 in-
stances, while HybridCP is able to solve all instances but 2.



Table 5. Times needed to compute Size+Freq (left part) and Freq+Size (rightpart)
for FullCP2 and HybridCP. For each solution, we first give the time needed to optimize
the first criterion (1st), then the time needed to optimize the second criterion (2nd),
and finally the total time (’-’ if total time exceeds 1000s).

Size+Freq Freq+Size
Instance FullCP2 HybridCP FullCP2 HybridCP

1st 2nd Total 1st 2nd Total 1st 2nd Total 1st 2nd Total
ERP1 0.1 0.2 0.3 0.3 0.3 0.6 0.4 0.2 0.7 0.2 0.1 0.4
ERP2 - - - 0.1 0.3 0.4 0.2 0.1 0.3 0.3 0.3 0.6
ERP3 - - - 0.2 0.4 0.6 0.4 0.3 0.7 0.7 0.3 1.0
ERP4 0.4 6.9 7.3 0.6 1.5 2.1 0.5 0.5 1.0 0.8 0.1 0.9
ERP5 - - - 1.6 34.7 36.3 1.1 0.6 1.6 10.6 13.0 23.5
ERP6 0.5 1.4 1.9 4.0 94.2 98.2 1.6 0.7 2.3 8.0 59.8 67.9
ERP7 3.7 975.1 978.8 - - - 6.3 2.9 9.2 - - -
zoo 0.1 1.0 1.1 0.2 0.2 0.4 0.4 0.3 0.7 0.3 0.0 0.3
vote 20.0 6.2 26.2 18.3 648.7 667.0 26.5 13.5 40.0 - - -
tic-tac-toe - - - - - - 230.9 152.1 383.0 31.6 19.1 50.7
soybean - - - 325.0 342.1 667.1 - - - - - -

5.2 Computation of the Pareto front

[3] describes a CP approach to compute non dominated bi-criteria clusterings
by iteratively solving single criterion optimization problems while alternating
between the two criteria. [6] describes a more dynamic CP approach to compute
Pareto front: the idea is to search for all solutions, and dynamically add a con-
straint each time a new solution is found to prevent the search from computing
solutions that are dominated by it. This idea has been improved in [22,10]. We
have experimentally compared these two approaches, and found that the dy-
namic approach of [6] is more efficient than the static approach of [3] for our
problem. Hence, we only consider this approach in this section. It proceeds as
follows: we build an initial model as described in Section 3, and ask the solver to
search for all solutions. Each time a solution sol is found, we dynamically post
the constraint (minFreq > f) ∨ (minSize > s) where f and s are the values of
minFreq and minSize in sol, and go on the search for all solutions. The search
stops when there is no more non-dominated solutions.

We have evaluated this dynamic approach with FullCP2 and HybridCP.
FullCP2 is able to solve ERP1 in ten minutes, but fails to solve all other in-
stances within a time limit of two hours. HybridCP is much more efficient, and
is able to solve 6 instances within this time limit. Hence, we only consider Hy-
bridCP in our experiments.

We have compared different variants of this dynamic approach. For all vari-
ants, we use the two extrema solutions to reduce the search space in an a priori
way. More precisely, let fFreq+Size and sFreq+Size (resp. fSize+Freq and sSize+Freq)
be the value of minFreq and minSize in the solution Size+Freq (resp. Freq+Size).



We set the domain of minFreq to [fSize+Freq + 1, fFreq+Size − 1] and the domain
of minSize to [sFreq+Size + 1, sSize+Freq − 1].

The first two variants correspond to the dynamic approach described below,
with different search heuristics: freqseq (resp. sizeseq) uses the search heuristics
dedicated to the minFreq (resp. minSize) objective as described in Section 3.2.
These two variants find complementary solutions at the beginning of the search
process: freqseq first finds clusterings with large frequencies, whereas sizeseq first
finds clusterings with large sizes. Hence, the variant freqSizepar takes advantage
of this complementarity and launches the two variants in two parallel threads
which communicate their solutions to update the non-dominated area: each time
a solution is found by one thread, it dynamically adds constraints to filter the
solutions dominated by this solution, and it also checks whether the other thread
has found new solutions and dynamically adds constraints if ever.

The variant freq+Dseq (resp. size+Dseq) decomposes the problem into two
subproblems by separating the domain of minFreq (resp. minSize) in two equal
parts. The two subproblems are solved sequentially. We first solve the subprob-
lem corresponding to the upper part of the domain, as no solution of this prob-
lem can be dominated by a solution of the other subproblem. Then, we solve
the second subproblem while preventing it from computing solutions that are
dominated by the solutions of the first subproblem by adding constraints. The
variants freq+Dpar and size+Dpar are similar to freq+Dseq and size+Dseq: the
only difference is that they solve the two subproblems in two parallel threads.
In this case, only one subproblem (the one with the upper part of the domain)
communicates its solutions to the other thread.

Table 6 compares times of these different variants on 6 instances with a time
limit of 2 hours (all other instances cannot be solved in less than 2 hours). For
all instances, sizeseq is much more efficient than freqseq. Launching these two
approaches in two parallel threads does not pay off: freqSizepar is faster than
sizeseq for only two instances. This may come from the fact that freqseq is really
not efficient compared to sizeseq. Decomposing the problem into two subproblems
appears to be a better idea, even when solving the two subproblems sequentially,
for the freq-based variants: freq+Dseq is always much faster than freqseq. However,
size+Dseq is faster than sizeseq for two instances only. Finally, solving the two
subproblems on two parallel threads always pays-off for the freq-based variants,
whereas it degrades the solving time for 4 instances for the size-based variants.
Figure 1 displays the Pareto fronts for ERP4 and ERP5.

6 Conclusion

We have introduced new CP models for computing optimal conceptual cluster-
ings. These models are able to quickly find solutions that maximize either the
minimal size or the minimal frequency, even when the number of clusters is not
fixed. Computing the Pareto front for these two criteria is a more challenging
problem, and our CP models are able to solve this problem in less than two
hours for six instances only. Further work will mainly aim at improving this.



Table 6. Times to find all non-dominated solutions with different variants (’-’ if time
exceeds 2 hours). seq

par
gives the speed-up between sequential and parallel variants (for

freqSizepar, we consider the best sequential time).

ERP1 zoo ERP4 ERP3 ERP2 ERP5
time seq

par
time seq

par
time seq

par
time seq

par
time seq

par
time seq

par

freqseq 2.3 24.4 6048.7 145.7 41.7 5542.5
sizeseq 1.4 8.6 211.8 42.3 11.1 873.9
freqSizepar 1.4 1.0 7.0 1.2 216.5 1.0 36.0 1.2 12.7 0.9 1029.9 0.8
freq+Dseq 0.8 4.7 236.8 15.0 12.6 1579.6
freq+Dpar 0.8 1.0 4.5 1.0 210.0 1.1 10.2 1.5 11.8 1.1 1006.9 1.6
size+Dseq 0.8 10.6 264.3 24.8 12.4 2912.9
size+Dpar 1.1 0.7 15.0 0.7 166.0 1.6 59.1 0.4 24.4 0.5 2131.6 1.4

Fig. 1. Pareto front of ERP4 and ERP5: each point (x, y) corresponds to a non-
dominated solution with x=minFreq and y=minSize. The number k of clusters of the
solution is displayed close to the point.

In particular, we plan to combine different decompositions to obtain more than
two subproblems, e.g., both decompose the domains of minFreq and minSize to
obtain four subproblems that may be solved in four parallel threads. We also
plan to evaluate scale-up properties of ILP for this problem, and combine ILP
with CP if we observe complementary performance. Finally, we plan to evaluate
the interest of combining our CP model with the propagation algorithm of [14].
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