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ABSTRACT

An axiomatic approach to distance is developed which focuses on those 
behavioral concepts of distance related to movement in space. In particular, 
spatial movement by behaving units is postulated to involve a choice from 
among some set of abstract trips in space, and implicitly, to involve the 
minimization of some relevant notion of trip costs. In this context, the 
relevant behavioral notion of distance in space is taken to be the 
minimum-cost distance generated by this choice process. These trip-cost 
concepts extend the classical notions of paths, path lengths, and shortest 
paths in metric spaces. Hence many of the analytical results of the paper 
involve extensions of classical shortest-path distance properties to 
minimum-cost distances. In addition to these extensions, a characterization 
theorem is given which specifies the possible functional relationships between 
trip costs and their associated path lengths. These relationships include 
most functional forms which are commonly employed in the literature.

* Professor of Economics, University of Bourgogne, France.
** Professor of Regional Science, University of Pennsylvania, U.S.A..
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1. INTRODUCTION

All models of human spatial behavior are based on some underlying notion 
of distance. Our most familiar concept of distance is of course euclidean (or 
straight-line) distance between points, which represents the shortest-path 
distance in euclidean space. But the notion of shortest-path distance is 
itself much broader, and indeed is meaningful for essentially any kind of 
spatial movement [as studied for example in Smith (1987a,1987b)]. However, 
from a behavioral viewpoint, not even shortest-path distances are sufficiently 
general to cover the full range of distance concepts which are relevant for 
movement in space. In airline travel, for example, it is clear that while 
shortest-path concepts (such as great-circle routes on the globe) are useful 
for determining flight times, they are often poorly correlated with actual 
ticket prices. Hence from the viewpoint of potential air travelers, the 
economic distance between points is often shaped more by forces of supply and 
demand than by physical separation alone. With this in mind, the central 
objective of the present paper is to extend the classical notion of 
shortest-path distances to a more general class of minimum-cost distances, 
which is sufficiently broad to include most types of economic distances 
observed in practice. This extension is primarily motivated by the desire to 
incorporate explicit economic concepts of space within the more general 
axiomatic approach to geographic space proposed by Beguin and Thisse (1979). 
However, this framework is potentially meaningful for many types of 
non-economic distance as well, including both social and psychological 
concepts of distance.

To model such behavioral notions of distance, it is useful to begin by 
considering the act of spatial movement itself. For in any given behavioral 
situation, the relevant notion of distance can depend critically on the type 
of movement involved (work trip by a commuter, vacation trip by a household, 
or commodity shipment by a firm). Moreover, each movement decision generally 
involves a choice from among some set of options (such as route and mode 
choice by a commuter, or carrier choice by a commodity shipper). Hence our 
present approach is to model all such options in terms of abstract trips, and 
to treat each movement decision as a choice from some given set of feasible 
trips. In this context, it is also postulated that there exists some relevant 
measure of travel cost associated with each potential trip. Hence, to the
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extent that such trip choices are based cost-minimizing behavior, one may 
take the minimum trip costs between locations to define the relevant 
behavioral notion of distance in space.

Within this framework, the specific goals of the present paper are to 
formalize this notion of minimum-cost distance, and to study a number of its 
more important properties from a behavioral viewpoint. This study is largely 
inspired by the classical development of shortest-path distances in metric 
spaces [as summarized in Busemann (1955), Blumenthal (1970), Beguin and Thisse 
(1979), and Smith (1987a,1987b)], and closely parallels that literature. In 
particular, we begin by assuming that trips can be meaningfully added together 
to form trip chains (in a manner analogous to concatenations of paths). It is 
then assumed that such trip chains can always be treated as sequences of 
individual trips, so that (from a cost-minimizing viewpoint) the relevant cost 
of a trip chain never exceeds the total cost of its component trips. However, 
unlike simple path length, there may be significant economies of trip 
chaining. Finally, given these structural assumptions, the minimum-cost 
distance between any two locations is defined (in a manner completely 
paralleling shortest-path distance) to be the greatest lower bound on all trip 
costs between these locations.

Our first result (Theorem 3.1 below) is to show that the well-known 
triangularity property of shortest-path distances extends to all minimum-cost 
distances, i.e. that such distances must always be quasimetrics. This general 
formulatipn has the additional analytical advantage of ensuring that 
minimum-c&st distances are well defined whenever there exist finite-cost trips 
between all locations. But from a behavioral viewpoint this formulation 
leaves open the question of whether such distances can actually be realized by 
any trips, i.e. whether there exist minimum-cost trips. Hence, as an 
extension of the well-known existence results for shortest paths (geodesics) 
between locations, we next consider the existence question for minimum-cost 
trips between locations. But unlike the classical notion of paths (which are 
generally assumed to be continuous functions with respect to the neighborhood 
topology generated by shortest-path distance), there is no prior structure on 
the set of abstract trips. Hence to establish meaningful results, we first 
postulate the existence of some appropriate measure of trip similarity by 
which trips can be compared. In this context, our main result (Theorem 3.2
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below) is to establish regularity conditions on the similarity structure of 
trips (both with respect to their cost attributes and origin-distination 
attributes) which ensure the existence of minimum-cost trips between all 
locations.

Next, we consider the possible relationships between trip costs and path 
lengths associated with these trips. In certain cases, these concepts may of 
course be identical. For example, if the relevant set of trips for a given 
car owner correspond to the set of alterative route choices leading to his 
desired destination, and if the relevant cost variable is travel time, then 
minimum-cost trips in this case may correspond precisely to shortest routes in 
the given transport network (assuming that traffic congestion and other 
factors are not significant). More generally, the relevant notion of trip 
cost may be some monotone increasing function of some underlying measure of 
path length. In this context, our central result (Theorem 4.1 below) is to 
identify the precise nature of the functional relationships which are possible 
between trip costs and path lengths. In addition, the corresponding 
functional relations between minimum-cost distances and shortest-path 
distances are also established (Theorems 5.1 and 5.2 below).

Finally, in the concluding section of the paper, we briefly discuss some 
of the limitations and possible extensions of our approach. In particular, we 
consider behavioral situations in which the assumption of economies of trip 
chaining may fail to hold. This is especially relevant when the psychological 
costs of longer trips are signicantly greater than those of shorter trips. We 
also describe situations in which trip costs may not be monotone increasing in 
their associated path lengths.

To develop our results, we begin in the next section with a review of the 
basic concepts of paths and path lengths in general spaces. This review 
serves to clarify the formal parallel between these concepts and the more 
general concepts of trips and trip costs in the present paper. In addition, 
the results summarized here provide the basis for the comparative analysis of 
trip costs and path lengths in sections 4 and 5 below.



2. SHORTEST-PATH DISTANCES

The following development of relevant distance concepts is given in much 
greater detail in Smith (1987a,1987b). Let R, R , and R denote the real

T XT'

numbers, nonnegative reals, and positive reals, respectively, and let Z
TT

denote the positive integers. Throughout the analysis, we take X to be a 
given nonempty set of abstract locations.

2.1. Distances

A nonnegative function, d: X -► R+ , is designated as a distance on X iff d 
satisfies the following condition for all x,y e X:

Dl. (Distinguishability) d(x,y) - 0 <* x — y

The pair (X,d) is designated as the corresponding distance space. A distance, 
d, is designated as a semimetric iff d also satisfies

D2. (Symmetry) d(x,y) - d(y,x)

for all x,y e X. Similarly, d is designated as a quasimetric iff

D3. (Triangularity) d(x,z) £ d(x,y) + d(y,z)

holds for all x,y,z G X. Each distance satisfying both D2 and D3 is 
designated as a metric on X. For any x € X and e > 0, the set, S£(x) - 
{y e X: d(x,y) < e), is designated as the d-neighborhood of size c about x in 
X. A subset, B C X ,  is then said to be d-bounded iff B C S£(x) for some x e B 
and £ > 0. With these additional definitions, a distance, d, is said to be 
uniform iff the following condition is satisfied:

D4. (Uniformity) For each d-bounded set, B C X, and « > 0, there exists a 
sufficiently small 6 > 0 such that for all x,y,z e X,

(2.1) max{d(z,x) ,d(z,y)) < 6 => d(x,y) < e
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Intuitively, the uniformity condition requires that pairs of locations be 
close to one another whenever they are both close to a common location. Each 
distance satisfying (D2,D4) is designated as a uniform semimetric [as 
exemplified by the measures of "trip dissimilarity" in section 3.2 below]. 
Similarly, each distance satisfying (D3,D4) is designated as a uniform 
quasimetric [as studied in more detail in section 2.5 below]. Sharper 
characterizations of both uniform semimetrics and uniform quasimetrics are 
given in Smith (1987a, Proposition 2.3).

Our primary interest in uniform-distance spaces is that they share many of
the convergence properties of familiar euclidean spaces. To state these
properties, we require the following additional concepts for general distance
spaces, (X,d). First, a sequence (x^) in X said to be d-convergent iff there
exists some x e X such that d(x,x ) 0. Similarly, (x ) is said to be an n
d-Cauchy sequence iff for each e > 0 there is some n e Z such that d(x ,x )£ ++ n m
< c for all n,m ^ n^. Next, a set, B C X, and is said to be totally d-bounded 
iff for each e > 0 there exists a finite subset {x.,..,x } C B such that B £n 1 II

S£(x^), [i.e. such that each element of B is no further than distance, e, 
from some element of {x^,..,x }]. With these definitions, we now consider the 
following general regularity conditions on distance spaces:

DEFINITION 2.1. A distance space, (X,d), is said to be:
(i) d-complete iff every d-Cauchy sequence in X is d-convergent.
(ii) totally d-neighborhood bounded iff every d-neighborhood in X is 

totally d-bounded.
(iii) regular iff (X,d) is d-complete and totally d-neighborhood bounded.

To interpret the d-completeness condition, observe first that by 
definition each d-Cauchy sequence in X is eventually concentrated in some 
"arbitrarily small" region of X. Hence d-completeness essentially requires 
that X have no "missing elements", in the sense that such concentrated 
sequences eventually converge to elements in X. To interpret the total 
d-neighborhood boundedness condition, observe next that for any totally 
d-bounded set, B C X, and small e > 0, all elements of B are by definition 
within distance, e, of some finite subset of B. Hence this condition 
essentially requires that each d-neighborhood in X be "uniformly approxi
mated" by its finite subsets.



To apply these concepts to uniform-distance spaces, we require the 
following additional concepts. First, a subset, B C X, is said to be d-closed 
iff B contains each x e X satisfying the condition that d(x,xn) -*• 0 for some 
sequence (*n) in B. Next, B is said to be sequentially d-compact iff for each 
sequence (*n) in B there exists a subsequence (x^) which is d-convergent in B, 
i.e. with d(x,x') -* 0 for some x e B. With these definitions, we now have the
following basic property of all regular uniform-distance spaces [Proposition 
3.2 in Smith (1987a)]:

PROPOSITION 2.1. If (X,d) is a regular uniform-distance space, then each
d-bounded, d-closed subset, B C X, is sequentially d-compact.

2.2. Paths

If [0,1] denotes the closed unit interval in R, then each function, 
p: [0,1] -*• X, is designated as a possible path in X, where the values of the 
index set, [0,1], parameterize some way of moving from the point, p(0), to the 
point, p(l), in X. Since only the ordering of the index set, [0,1], is 
important, we may reparameterize paths in many ways. In particular, if P̂. 
denotes the set of all paths on X, then for any two paths, p,q e P^, q is said 
to be a reparameterization of p iff there exists a continuous, nondecreasing 
function, e: [0,1] -* [0,1], with e(0) - 0 and e(l) - 1 such that q[e(a)] - 
p(a) for all a € [0,1]. If in addition, e is one-to-one (and hence a 
bijection) then paths p and q are said to be parametrically equivalent, and 
written as p ~ q. The set of all reparameterizations of p is designated as 
the reparameterization class, [p], for p in P^. Next we define an appropriate 
notion of "path addition". In particular, if for any paths, P^.P2  e 
true that p^ ends exactly where begins, i.e. if p^(l) - P2 (0 ), then it is 
meaningful to consider the path formed by joining Pg to p^. More precisely, 
the unique path, P^°P2  € ^e^ineĉ  ^or “ e by

n

(2 . 2 )
Px(2o)
P2(2a - 1) , 1/2 <; a < 1

is designated as the concatenation of p^ and p£. Tftis definition is readily 
extended recursively to all finite concatenations, p,°p0o•••op,, n e ZLii tl ++



Next, if for any elements, x,y € X and path set, P £ P^, we denote the subset 
of paths from x to y in P by P(x,y) - {p e P: p(0) - x, p(l) - y}, then for 
any elements, x,y,z € X, and path sets, e ^x* t îe Set Pat^
concatenations, P1(x,y)oP2(y,z) - (pjOp^ p̂  ̂e P-^x.y) , p2 € P2(y,z)}, is well 
defined.
As a final path concept, it is important to formalize the notion of a subpath. 
For any path, p e Px> and interval, [a,/J] £ [0,1], the path, p(a,0) e Px , 
defined by

(2.3) p<a,0>(a) - p[(l-a)a + op) , a e [0,1]

is designated as the (a,0)• subpath of p. In particular, it can be shown 
[Proposition 5.10 in Smith (1987a)] that each path is parametrically 
equivalent to concatenations of its subpaths, i.e. that for all p e P^,

(2.4) p - p<0,o>op<a,l> , a e [0,1]

Given these path concepts, we can now define those families of paths on a 
given set, X, which are relevant for the study of shortest-path distances:

DEFINITION 2.2. For any nonempty set, X, a family of paths, N £ Pv , isA
designated as a path network on X iff N satisfies the following four condi
tions for all x,y,z e X, p € Px> and [a,/ï] £ [0,1]:

HI. (Connectedness) N(x,y) # 0

N2. (Concatenation Closure) N(x,y)oN(y,z) £ N(x,z)
N3. (Subpath Closure) p e N ^ € N

H4. (Parametric Completeness) p e N * [p] £ N

Condition N1 asserts that any point, y e X, can be reached from any other 
point, x e X, by at least one path in N. Condition N2 asserts that concaten
ations of paths in N always yield paths in N, and similarly, N3 asserts that 
each subpath of a given path in N is also a meaningful path in N. Finally, 
condition N4 asserts that all reparameterizations of paths are available in N. 
Observe also that if for each x e X we define the null path, p , to be the 
unique path in P with p (a) - x for all a € [0,1], then it follows at onceA X



from N1 and N3 that the set of null paths, P° - {p : x € X}, on X is containedA X
in every path network on X.

In order to construct path networks, it is convenient to introduce the 
following concept of a path base. In particular, if for any path set, P C P ,̂ 
the n ^ - concatenation power, Pn , is defined recursively by P^ - P and pn+^ - 
PoPn for all n e Z , then we now say that:

TT

DEFINITION 2.3. A set of paths, P C Px> is designated as a path base on X 
if and only if P satisfies the following two conditions for all x,y € X, 
pe Px , and [a,0] C [0,1]:
Bl. (Weak Connectedness) Pn(x,y) * 0 for some n e Z

T r

B2. (Subpath Closure) p € P => p(a,/J) e P

Each path base allows the construction of a path network in a simple way. 
More specifically, if for each path set, P £ P^, we denote that class of all 
reparameterizations of paths in P by [P] - {[p]: p € P}, then it can be shown 
[see Proposition 6.1 in Smith (1987a)] that:

PROPOSITION 2.2. For any path base, P, on X, the associated family 
of paths,

(2.5) N(P) - U [Pn] C PY
++ X

is a path network on X.

Moreover, N(P) is the smallest path network containing P [i.e. if P C N 
for any path network, N, then N(P) C N]. Hence it is natural to designate 
N(P) as the path network generated by P.

2.3. Path Lengths

Given the formal concept of path networks above, our next objective is to 
construct an appropriate notion of path length on networks. We begin by 
observing that paths may in general have infinite length, and hence may have 
values ranging over the extended nonnegative real numbers, R+ («) - R+ u {«>).
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With this notation, we now say that:

DEFINITION 2.4. (i) For any path network, H £ P„, a function, £: N -*• R (®). 
is designated as a length on N iff £ satisfies the following three condi
tions for all p,p^,p2 € N with P^°P2 e
LJL. (Nullity) p e P° => i(p) - 0

12. (Additivity) i(p1‘>p2) “ (̂Pĵ ) + *(P2>
L3. (Invariance) p̂  ̂C [p2] * ¿(Pj^ - *(P2)

(ii) A path p e N is said to be £-finite iff i(p) < «.
(iii) The class of all lengths on N is denoted by L(N).

Condition LI simply requires that each null path should have zero length. 
Condition L2 requires that the length of any path concatenation should be 
equal to the sum of the lengths of its component paths. Finally, condition L3 
requires that the length of any path should be the same as the length of any 
of its reparameterizations.

2.4. Shortest-Path Distances

Given these general concepts of path networks and path lengths, it is 
meaningful to consider the possibility of "shortest paths" between points in 
space. In particular, we now formalize the notion of shortest-path distances 
defined by the lengths of such paths as follows:

2DEFINITION 2.5. (i) For any distance function, d: X R+ , and path 
network, N C P^, if there exists at least one length function, £ € L(N), 
such that for all x,y e X,

(2.6) d(x,y) - inf {i(p): p € N(x,y)}

then d is designated as a shortest N-path distance on X.

(ii) If d is a shortest N-path distance for at least one path network,
N C P^, then d is designated simply as a shortest-path distance on X.
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In other words, a distance function, d: X -+ R+ , is a shortest-path distance 
on X iff each distance value, d(x,y), corresponds to the greatest lower bound 
of all path lengths between x and y with respect to some path network, N, on X 
and length function, i, on N. Notice that this definition does not imply that 
d(x,y) is actually achieved by the length of any path between x and y. [The 
existence of shortest paths is considered in section 2.6 below.] For our 
present purposes, the central property of shortest-path distances is given by 
the following result [Theorem 5.1 in Smith (1987b)]:

PROPOSITION 2.3. (Quasimetric Equivalence) A distance function,
2d: X -♦ R+ , is a shortest-path distance on X iff d is a quasimetric.

From a behavioral viewpoint, this result shows that the classical
triangularity condition (D3) is synomous with shortest-path distance. In
other words, whenever a given distance, d: X -+ R+ , satisfies triangularity,
there must always be some implicit path network, N, on X and path length, £,
on N, with respect to which d is the shortest-path distance. In general, both
the path network, N, and path length, SL, may be highly nonunique. However,
there is always a unique representative path length for d in the following
sense. If L^(N) denotes the set of path lengths in L(N) for which d is a
shortest N-path distance, and if path length, i € L^(N), is said to be minimal
iff i(p) ^ i'(p) for all i' € L^iN) and p € N, then there always exists a
unique minimal path length in I*d(N). This minimal path length may be defined
as follows. Let the class of finite ordered subsets of [0,1] containing 0 and
1 be denoted by 0 — {« - (a, ,.. ,a ) : 0 — a. £• • •£ a — 1}, and for each J 1 n 1 n
path, p € N, let

(2.7) id(p|«) - X i . i d W a ^ . p i c ^ ) ]

denote the w-length of p with respect to d. Then if d is a shortest N-path
distance, it can be shown [Propositions 8.3 and 8.4 in Smith (1987a), and
Theorem 5.2 in Smith (1987b)] that the function, N -* R (<*>), defined fora +
all p € N by

(2.8) “ sup{*d(p|"): w € 0)

2
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is the unique minimal path length in L^(N) . This unique length function 
(which extends the classical notion of Jordan length in euclidean spaces) is 
designated as the d-length on N. Henceforth we consider only the d-length for 
each shortest N-path distance, d.

2.5. Path Structures

For purposes of analysis it is convenient to summarize the concepts above 
in terms of the notion of a path structure. To do so, observe first that 
since is uniquely generated by d, it follows at once from (2.6) that for 
any path network, N, all shortest N-path distances, d, are uniquely 
characterized by the single condition that

(2.9) d(x,y) - inf{id(p): p€N(x,y)} , x,y e X

Given this formal characterization of shortest N-path distances, we now say 
that:

DEFINITION 2.6. (i) For any nonempty set, X, a triple, P - (X,N,d), is 
designated as a path structure on X iff N is a path network on X, and d is 
a shortest N-path distance on X.

(ii) If ^¿(p) < ®° for all p € N, then P is said to be finite.
(iii) For any two path structures, P - (X,N,d) and P' - (X',N',d'), P' is 
said to be a substructure of P iff X' C X, N' £ N, and for all x,y e X' ,

(2.10) d'(x,y) - inf{id(p): peN'(x,y)}

Numerous examples of path structures and substructures are given in Smith
(1987a,1987b). For our present purposes it suffices to consider only those
path structures, P — (X,N,d), in which (X,d) is a regular uniform-quasimetric
space, and in which all paths in N are continuous with respect to d. More
precisely, we now say that a path, p € N, is d-continuous if and only if for
all convergent sequences (c*n) in [0,1] it is true that c«n -♦ a =* d[p(a) >P(<*n> ]
-*■ 0. If the class of all d-continuous paths in P„ is denoted by C.(X), thenX a
the desired class of path structures on (X,d) may be defined as follows:
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DEFINITION 2.7. (i) A path structure, P - (X,N,d), is designated as a 
continuous path structure on X if and only if N C C^(X).

(ii) If in addition, (X,d) is a regular uniform-quasimetric space, then 
P is designated as a d-regular path structure.

One important feature of d-regular path structures, P - (X,N,d), is that 
the path network, N, is itself a uniform-quasimetric space with respect to an 
appropriate notion of distance between paths. In particular, if the function, 
d+ : N -+ R+ («°), defined for all paths, p,q e N, by

(2.11) d+ (p,q) - sup(d[p(o),q(a)]: a €  [0,1]}

is designated as the supremum distance on N generated by d, then it can be 
shown that d+ is in fact a uniform-quasimetric on N [Proposition 4.5 in Smith 
(1987a)], and hence that (N,d+) constitutes a uniform-quasimetric space. Two 
additional properties of uniform-quasimetric spaces will prove useful in the 
analysis below. In particular, if a path, p € C^(X), is now said to be 
uniformly d-continuous iff for each e > 0 there is some S > 0 such that for 
all a,/3 € [0,1], |a — /i| < S =* d[p(a) ,p(/i) ] < «. then it can be shown 
[Proposition 4.4(ii) and Proposition 4.6(ii) in Smith (1987a)] that:

PROPOSITION 2.4. (i) If (X,d) is a uniform-quasimetric space, then for 
all x,y e X and all sequences (x ) in X,

(2.12) max{d(x,x ),d(y,x )} -* 0 =* x - yn n *

(ii) In addition, each path, p e C^(X), is uniformly d-continuous.

Several additional properties of d-regular path structures are important 
for our purposes. First of all, it can be shown [Proposition 11.3 in Smith 
(1987a)] that the d-length function, i^, is itself continuous along paths, 
i.e. that

PROPOSITION 2.5. For any d-regular path structure, P - (X,N,d), and any 
infinite path, p 6 N, the function, ¿d(p(0,-)), is continuous.
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Moreover, this continuity property in turn implies that it is possible to 
parameterize all (¿^-finite) paths in a manner directly proportional to their 
d-length. This notion can be made more precise as follows:

DEFINITION 2.8. (i) For any path structure, P - (X,N,d), and finite 
path, p 6 N, a reparameterization, pd e [p], is designated as a d-standard 
parameterization of p iff for all intervals, [a,j8] £ [0,1],

(2.13) id[pd<o,)8>] - 08 - a ) i d(p) .

(ii) The subset, Nd - {pd: p e N), of all d-standard parameterizations of 
paths in N is designated as the d-standard representation of N.

With this definition, we have the following additional property of all 
d-regular path structures [see Proposition 11.4 in Smith (1987a)]:

PROPOSITION 2.6. For any d-regular path structure, P - (X,N,d), and any 
J?d-finite path, p e N, there exists a unique d-standard parameterization 
of p in N.

2.6. Shortest Paths

Finally, for purposes of comparison with minimum-cost trips below, we 
record the following results on the existence of shortest paths in d-regular 
path structures. To begin with, let us now say that:

DEFINITION 2.9. (i) For any path structure, P - (X,N,d), the shortest 
N-path distance function, d, is said to be realizable iff for each pair of 
locations, x,y € X, there exists a path, p e N(x,y), with

(2.14) “ d(x,y)

(ii) Each path, p 6 N(x,y), satisfying (2.11) is designated as a shortest 
path from x to y in P.

To ensure the existence of shortest paths, we require the following 
additional regularity condition. If for any path structure, P - (X,N,d), we
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now designate a path sequence (p^) in N as an ¿^-bounded sequence whenever
there exists some finite upper bound, b > 0, with i.(p ) ^ b for all n € Z ,o n tt
then we now say that:

DEFINITION 2.10. (i) For any d-regular path structure, P - (X,N,d), a 
family of paths, P C N, is said to be finitely closed in P iff for each 
p e Cd(X) and i^-bounded sequence (p^) in P,

(2.15) d+ (p,pn) -*• 0 • p e P

(ii) If the full path network, N, is finitely closed in P, then P is 
said to be a finitely closed path structure.

With this additional condition, it can be shown [Proposition 12.5 in Smith 
(1987a)] that:

PROPOSITION 2.7. (Existence of Shortest Paths) (i) For any substructure,
P' - (X',N',d'), of a d-regular path structure, P — (X,N,d), if N' is 
finitely closed in P, then the shortest N '-path distance, d', is 
realizable.

(ii) In particular, if P is itself a finitely-closed path structure, then 
the shortest W-path distance, d, is realizable.

3. MINIMUM-COST DISTANCE

Given this overview of shortest-path distance concepts, we turn now to the 
major focus of the present paper, namely, to the more general notion of 
minimum-cost distance. To do so, we begin in section 3.1 below by developing 
a model of abstract trips in terms of the notion of a trip structure, which 
parallels the above concept of a path structure. In addition it is shown that 
the associated minimum-cost distance between possible origins and destinations 
of trips exhibits the quasimetric property of shortest>path distances.
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3.1 Trip Structures

As in section 2 above, we begin with an arbitrary set, X, of locations (or 
addresses), x, and consider an abstract collection, T, of possible trips, t, 
between locations in X. Such abstract trips may involve physical travel by 
individuals, or shipments of economic commodities. More generally, such 
abstract trips may involve pairwise interactions of any type between behaving 
units associated with attributes, x, in some relevant space of attributes, X. 
For our present purposes, the relevant spatial attributes of each trip, t e T, 
are taken to be its origin location, o(t), and its terminal location, r(t), in 
X. All other relevant aspects of trip, t, are taken to be summarized by some 
given nonnegative measure of travel cost, c(t). For physical trips, such 
costs must implicitly involve some choice of path (or route) in X from o(t) to 
r(t) [as analyzed in section 4 below], as well as a choice of travel mode 
(such as car, bus, or plane). For more general types of interactions, such 
costs may also involve implicit routing choices (through some communication 
network or organizational decision structure), and choices of interaction 
modes (such as personal contacts, phone calls, or letters).

Our basic structural hypotheses about trips focus on the possibility of 
trip chaining. In particular, for any two trips, t^,t2 e T, if t^ ends 
exactly where begins, i.e. if r(t^) - o(t2), then (in a manner completely 
paralleling path concatenations, *-s postulated that the trip chain,
tl@t2’ cons*-st*-nS tr P̂. followed by trip, t2, is possible, i.e. that 
tj©t2 e T. The resulting trip-chain operator, ©, on T is here taken to be 
associative, i.e. to satisfy the identity, (tj©t2)®tj ■ t^©(t2®tj) [so that 
recursively defined n-trip chains, t^©t2© ’ • *®tn , are independent of the order 
in which chains are formed]. Hence, it suffices to consider only simple 
pairwise trip chains. For each such trip chain, t^©t2, it follows by 
definition that both o(t^®t2) - o(t^) and T(tj©t2) - r(t2) hold identically. 
However, the relevant travel costs associated with trip chains are somewhat 
more problematic. For unlike the simple physical addition of path lengths, 
there may in general exist significant economies of trip chaining. This is 
seen most clearly, for example, in the discounting of many types of round-trip 
fares. More generally, if each possible trip chain is regarded as an economic 
commodity, then various types of economic discounts may be available in the 
market place. On the other hand, it may also be argued on economic grounds
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that such costs should never exceed the combined costs of individual trips. 
Indeed if this were the case, then it would be more economical to treat t^et^ 
as a pair of completely separate trips, t^ and [However, this condition
may well be violated in other behavioral contexts, as discussed in section 6 
below.] Hence for our present purposes, we now hypothesize that for each pair 
of trips, e ^ with t^©t2 e T,

(3.1) c(tj©t2) £ c(tx) + c(t2)

In addition to this travel-cost assumption, it is of course assumed that 
the relevant location space, X, is trip-connected. More formally, if

(3.2) T(x,y) - {t € T: o(t) - x and r(t) - y)

denotes the set of all trips in T from x to y, then it is assumed that T(x,y) 
is nonempty for all x,y € X. Finally, in a manner analogous to the notion of 
null paths in section 2 above, it is convenient to assume the existence of 
null trips, 0(x) e T(x,x), at each location, x e X, which may be interpreted 
as representing the "no trip" option for behaving units located at x. Each 
null trip is characterized by a zero travel cost, while all other travel costs 
are positive. In addition, it is assumed that for any pair of distinct 
locations, x,y e X, there do not exist trips in T(x,y) with travel costs 
arbitrarily close to zero.

To formalize these assumptions, it is convenient to represent the 
assignment of origin locations, terminal locations, and travel costs to each 
trip in T by functions, o: T •+ X, r: T -*• X, and c: T -* R+ , respectively. 
Similarly, the assignment of each location in X to a unique null trip in T is 
representable by a function, 6: X -*• T. Finally, if

(3.3) A(T2) - {(tx,t2) € T2: r(tx) - o(t2)}

denotes the set of trip pairs in T for which trip chains are defined, then the 
the trip-chain operator is also representable by a function, ©: A(T ) -► T, 
with images ©(t^.tj) — tj®t2< Next, to formalize our travel-cost assumption 
on trip chains, it is convenient to let
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(3.4) T(x,y,a) - (t e T(x,y): c(t) s a) ,

denote the set of trips from x to y with travel costs not exceeding level, a.
With these notational conventions, it follows that for any locations x,y,z € X
and trips, t^ 6 T(x,y) and t  ̂€ T(y,z), the trip chain, t^Otj, is well defined
and must be an element of T[x,z,c(t^) + c(t2 )], i.e. must be a trip from x to
z with cost not exceeding c(t.) + c(t-). Finally if the set of free trips in

-1T is denoted by, c (0) - {teT: c(t) — 0}, then the above assumptions can 
now be formalized in terms of the following notion of a trip structure:

DEFINITION 3.1. For any nonempty sets, X, T, and collection of functions,
2o: T -* X, r: T -*• X, c: T -* R+ , $: X -♦ T, and ©: A(T ) -» T, the ordered 

array, T - (X,T,o,r,c,6 ,©), is designated as a trip structure on X iff 
the following four conditions are satisfied for all t € T, x,y,z € X, 
tx e T(x,y) and t2 e T(y,z):

Tl. (Trip Connectedness) T(x,y) * 0

T2. (Null Trips) ff(x) € T(x,x) and c'1(0) - 0(X)
T3. (Cost Positivity) inf{c(t): t € T(x,y)} - 0 *» x - y

T4. (Chain Economies) tl®t2 € T[x,z,c(t^) + c(t2 )]

Given this definition, observe next that by the trip-connectedness property 
(Tl) and the finite nonnegativity of travel costs, the quantities given for 
all x,y e X by

(3.5) dc(x,y) - inf(c(t) : t 6 T(x,y)}

2yield a well-defined function, dc: X -*■ R+ . With this definition, our first 
result is to show that dc is always a quasimetric on X:

THEOREM 3.1. For each trip structure, T - (X,T,o, r, $ ,@), the
2

function, d : X -♦ R , is a quasimetric on X.
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Proof: By the null-trip property (T2) it follows from (3.5) that dc(x,x) 
- c[0(x)] - 0. Similarly, from the cost-positivity property (T3) and the 
nonnegativity of c: T -*■ R+ , it also follows that x * y =* dc(x,y) > 0.
Hence, dc satisfies distinguishability (Dl) and is seen to be a distance on 
X. To establish triangularity (D5) let us choose any locations, x,y,z e X, 
and observe from the chain-economy property (T4) that for any t^ e T(x,y) and
12  e T(y,z) it must be true that tj©t2 € T(x,z) and that cit^®^) ^ c(t^) + 
c(t2 )• Hence

(3.6) d (x,z) - inf{c(t): t e T(x,z)}c
:S inf{c(t1©t2): tĵ e T(x,y), t2 e T(y,z)}
<, inf(c(t^) + c(t2): t^ e T(x,y), t2 e T(y,z)}

- inftc^): ^  6 T(x,y)} + inf{c(t2): t2 eT(y,z)}

- dc(x,y) + dc(y,z).

Hence d also satisfies D5, and the result is established. ■ c

Thus, in a manner completely paralleling the notion of shortest-path 
distances generated by path lengths on spaces (in section 2.4 above), each 
trip structure is seen to generate a quasimetric space on X in terms of 
minimal travel costs. Hence we now say that

DEFINITION 3.2. (i) For each trip structure, T - (X,T,o,t,c,0,©), on 
X, the quasimetric, dc> in (3.5) is designated as the minimum-cost 
distance on X generated by T.
(ii) The resulting quasimetric space, (X,dc), is designated as the 
minimum-cost distance space generated by T.

With this definition, Theorem 3.1 for minimal-cost distances is seen to be 
completely analogous to Proposition 2.2 above for shortest-path distances. 
[More explicit relationships between these two concepts will be considered in 
section 5 below].
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3.2. Existence of Minimum-Cost Trips

Given this notion of minimum-cost distance, observe next that as with 
shortest-path distances, there is no guarantee that minimum-cost distances can 
actually be realized by any trip. Hence, as a parallel to Definition 2.8 
above, we now say that

DEFINITION 3.3. (i) For any trip structure, T - (X,T,o,r ,c, 6 ,©) , the
minimum-cost distance, d , on X is said to be realizable iff for eachc
pair of locations, x,y e X, there exists some trip, t e T(x,y), with

(3.7) c(t) - dc(x,y)

(ii) Each trip, t e T(x,y), satisfying (3.7) is designated as a minimum-
cost trip from x to y in T.

In these terms, our objective is to establish conditions on trip structures, T, 
under which the associated minimum-cost distance function, d^, on X is always 
realizable. To do so, we begin by observing that if any trip set, T(x,y), is 
finite, then the existence of minimum-cost trips in T(x,y) is trivial.
However, if T(x,y) is infinite, then the existence of minimum-cost trips can 
only be insured by imposing additional structural conditions on T(x,y).

With this in mind, our approach is to assume that it is meaningful to make 
similarity comparisons between abstract trips in T, and that such comparisons 
are representable in terms of a measure of "trip dissimilarity", which serves 
as an appropriate notion of "distance" in T. For example, if the only 
relevant attributes of trips are their travel costs and their origin locations 
and terminal locations in the plane, then each trip can be represented by a 
point in five-dimensional euclidean space. Hence, the euclidean distance in 
this space might be the appropriate "distance" between trips. More generally, 
our basic assumption is that the distance on T must satisfy all the conditions 
of a uniform-semimetric:
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DEFINITION 3.4. (i) For any nonempty set of abstract trips, T, a
2function, p: T R+ , is designated as a dissimilarity distance on T 

iff for each trip, t e T, and positive scalars, a,e >0, there exists some
5 > 0 such that the following three conditions hold for all t^.tj.t^ e T 
with p(t,t^) < a, i - 1,2,3:
51. (Distinguishability) - 0 =* t^ -
52. (Symmetry) pC^.t^  -

53. (Uniformity) maxipC^,^) ,p(t3,t2)} < 5  =* pCt^t^ < «
(ii) In addition, if the distance space, (T,p), is both p-complete and 
totally p-bounded, then (T,p) is designated as a regular trip space.

In the present context, the distinguishability condition (SI) implicitly 
requires that sufficiently many attributes of trips be included in trip 
comparisons to allow each individual trip to be identified uniquely. The 
syttflfcfetry condition (S2) here implies that similarity comparisons between 
trips, t^ and do not depend on which trip is labelled "I" or "2". Finally 
(as discussed in section 2.1), the uniformity condition (S3) implies that 
similarity comparisons among trips are locally consistent in the sense that if 
trips t^ and t  ̂are both very similar to t^, then they must also be very 
similar to each other.

Given any dissimilarity distance, p, on T, we now introduce an appropriate 
set of regularity conditions on trip structures, T, with respect to p:

DEFINITION 3,5. A trip structure, T - (X,T,o, r ,c, 6 ,©) , is said to be 
p-regular iff (T,p) is a regular trip space, and in addition, the following 
three conditions are satisfied for all distinct locations, x,y e X, all
t e T, a e R+ , and all trip sequences (tn) in T(x,y,a):
T5. (Cost Continuity) p(.t,tn) -*■ 0 =* c(tn) -* C(c)
T6. (Trip Closure) P (t, tn> -*• o => t e T(x,y,a)
T7. (Trip Boundedness) p(t,tn) -*•«>=* t € T(x,y,a)
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The cost continuity condition (T5) simply requires that similar trips 
between the same pair of locations must exhibit similar travel costs. The 
trip closure condition (T6) requires that any trip which is arbitrarily close 
(in terms of similarity) to trips with origin point, x, terminal point, y, and 
costs not exceeding level, c, must also exhibit these properties. Finally, 
the trip boundedness condition (T7) implies that trips between the same pair 
of (distinct) locations can only exhibit arbitrarily large degrees of 
dissimilarity if the differences in their travel costs are also arbitrarily 
large. [It is also of interest to note that for p-regular trip structures,
T - (X,T,o,t,c,6 ,©) , the cost-positivity condition (T3) can be dispensed 
with. In particular, since dc(x,y) is always achieved by some trip t e T(x,y) 
for each distinct location pair, x,y e X, and since t e T — 0(X) implies from 
T2 that c(t) > 0, it follows from (3.5) that T3 must hold.] Given these 
regularity conditions on trip structures, we are now ready to establish the 
existence of minimum-cost trips for such structures:

THEOREM 3.2. For any given trip structure, T — (X,T,o,r,c,0 ,®) , and
dissimilarity distance, p, on T, if T is p-regular, then the minimum-cost
distance, d , for T is realizable. c

Proof: For each location, x e X, it follows at once from T2 that the null
trip, 0(x), is a minimum-cost trip in T(x,x). Hence we need only establish
the existence of minimum-cost trips in each trip set, T(x,y), with x # y. To
do so, observe first that if there exists no t € T(x,y) with c(t) - dc(x,y),
then we may always construct a trip sequence (t^) in T(x,y) for which the
associated cost sequence (c(t^)) is monotone decreasing and satisfies
d (x,y). In particular, this trip sequence (t ) is by construction contained c n
in the trip set, T[x,y,c(t^)]. With these observations, our next objective is 
to show that the set, T[x,y,c(t^)] is sequentially p-compact. To do so, 
observe first from T7 that T[x,y,c(t^)] must be p-bounded. For if 
T[x,y,c(t^)] were not contained in any p-neighborhood of t^, then one could 
always construct a trip sequence (t^) in T[x,y,c(t^)] with p(t^,t^) -+ «>, which 
would contradict T7, since t^ e T[x,y,c(t^)] by construction. Hence 
T[x,y,c(t^)] is /»-bounded. But since T6 implies by definition that 
T[x,y,c(t^)] is also p-closed, and since each regular trip space, (T,/?), is by 
definition a regular uniform-distance space, it then follows from Proposition
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2.1 that (T,p) must be sequentially p-compact. Thus for the sequence (tR) in
T[x,y,c(t^)] there must exist a p-convergent subsequence (t^)» which by
definition must satisfy p(t,t^) -* 0 for some t € T. But by T6, it must then
be true that t € T[x,y,c(t^)], which together with p(t,t^) -*• 0 implies from T5
that c(t') -*■ c(t) . Finally, since c(t ) -» d (x,y) implies that c(t') •+ d (x,y) n n o  n c
must also hold [Bartle, 1964,Lemma 3.11.10], we may conclude that c(t) - 
dc(x,y). Hence we have found a minimum-cost trip, t e T[x,y,c(t^)] £ T(x,y), 
for each distinct pair of locations, x,y e X, and the result is established. ■

This existence result can be regarded as an extension of Proposition 2.7 
above, in which the supremum distance, d+ , between paths is replaced by the 
more general notion of dissimilarity distance, p, between trips. However, a 
close comparison of these results shows that the rich structure of continuous 
paths on regular uniform-quasimetric spaces yields much sharper existence 
conditions than are possible for general trip structures.

4. MIMINUM-COST DISTANCES GENERATED BY PATH LENGTHS

It is clear that physical trips must involve not only a specific origin 
location, x, and terminal location, y, but also a specific path from x to y in 
the relevant location space, X. Hence for physical trips (or commodity 
shipments) it is reasonable to assume that travel costs are influenced by some 
relevant notion of path length in X. [Even in more general types of spatial 
interactions, such as messages through a communication network, alternative 
paths (or channels) may involve significantly different path lengths in terms 
of additive time lags or communication costs.] Hence, in such situations, it 
is of interest to consider conditions under which trip costs may be expressed 
as functions of their associated path lengths.

With this in mind, our objective in this final section is to establish 
such conditions for trip structures, T - (X,T,o,r ,c,0 ,©), in which each trip, 
t e T, is associated with a path, p, in some underlying continuous path 
structure, P - (X,N,d). We assume that all such trips are physically 
realizable, and hence that N contains no infinite paths, i.e that P is a 
finite path structure. In addition, we assume that (X,d) is a regular
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uniform-distance space, and hence that P is a d-regular path structure 
(Definition 2.6). In this context, it is postulated that there exists a 
function, p: T -» N, which assigns each trip, t e T, to a unique path, p(t) €
N. Moreover, since d-standard parameterizations of every path in N are 
available in P (by Proposition 2.4), we assume for convenience that every trip 
is assigned to the d-standard parameterization of a path in N, i.e. that path, 
p(t), is an element of the d-standard representation, N^, of N (Definition 
2.7). With these observations, if for any trip-dissimilarity measure, p, on T 
we now designate a trip sequence (tR) in T to be p-bounded iff the set {t̂ : n 
€ Z } is p-bounded, and if for each function, p, on T and subset S C T, we

TT

denote the image of S by p(S) - (p(t): t € S}, then we may formalize such 
standard path assignments as follows:

DEFINITION 4.1. For any /»-regular trip structure, T - (X,T,o,r,c,0,@), and 
finite d-regular path structure, P - (X,N,d), on X, a function, p: T -*• N^, 
is designated as a standard path assignment on T iff the following six con
ditions are satisfied for all x,y e X, [a,/3] C [0,1], t e T — 0(X), (t-,t9)

2G A(T ), p e N^, and trip sequences (t ) in T:

Al. (Null Consistency) p(t) - p 6 P° ** t - 0(x)X A.
A2. (Locational Consistency) t e T(x,y) => p(t) e N(x,y)
A3. (Trip-Chain Consistency) p(t^®t2) - p(t^)op(t2)
A4. (Assignment Continuity) p(t,t^) -»0 => d+ [p(t) ,p(t^) ] -*• 0

A5. (Bounded Similarity) d+ [p(t) ,p(tn) ] -*• 0 ^ *s P'^ounded.

A6. (Subpath Closure) p e p(T) => p(a,)9) e p(T).

The first three conditions specify the obvious physical consistency relations 
which must hold between trips and their associated paths, namely that: (Al) 
each null trip, 0(x), must correspond to the null path, px ; (A2) origin 
locations and termination locations for each trip, t, must correspond to those 
of its associated path, p(t); and (A3) paths assigned to trip chains, t^®t2 , 
must correspond (under appropriate reparameterizations) to concatenations of 
the paths assigned to the individual trips, t^ and [Parametric equivalence 
of the paths, p(t^®t2) and p(t^)op(t2) implies that their associated 
d-standard parameterizations must be identical (Smith, 1987a, Proposition
11.5).] The next two conditions, which both involve perceived dissimilarities
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between trips, are more behavioral in nature. The assignment-continuity 
condition (A4) essentially requires that similar trips be assigned to similar 
paths. The bounded-similarity condition (A5) may be viewed as a partial 
converse of condition (A4), which essentially requires that trips assigned to 
very similar paths cannot themselves be drastically different. Finally, the 
subpath-closure condition (A6) simply requires that the set of paths, p(T), be 
sufficiently rich to form the basis for a path network on X [as developed in 
section 5 below].

Given any standard path assignment, p: T -♦ N^, relating trips in T to 
paths in N^, it is meaningful to compare the travel cost, c(t), of each trip, 
t € T, with the d-length, ¿d[p(t)], of its associated path. With this in 
mind, we now say that:

DEFINITION 4.2. For any standard path assignment, p, from a p-regular 
trip structure, T - (X,T,o,r,c,0,@), to a finite d-regular path structure, 
P - (X,N,d) on X, the travel-cost function, c, is said to be ¿d*generated 
iff for all trips, t^.t^ 6 T,

(4.1) citj) S c(t2) « ¿¿[pi^)] < *d[p(t2)] .

In other words, c is ¿^-generated iff travel costs in T are monotonically 
related to path lengths in P. With these definitions, our main result is to 
characterize those functional relations between path lengths and travel costs 
which are consistent with (4.1). To do so, observe first that if the set of 
non-null trips in T is denoted by, T+ - T — 0(X), then the image set of all 
path lengths corresponding to non-null paths under path assignment, p, is 
given by J?d[p(T+)]. Next, for purposes of the analysis to follow, it is 
convenient to denote typical path-length values by £,£' e <?d[p(T+)]. With 
this notion, recall from the additivity of d-length, i^, together with the 
trip-chain closure property (T4) of T+ and trip-chain consistency property 
(A3) of p, that the image set, id[p(T+)] is additively closed, i.e. that 
£,£' e ^d [p(T+)] =* £ + V  € id[p(T+)]. Hence we now designate a function,
4>\ ¿d [p(T+)] -» R, to be subadditive iff ¿(i + ¿') i ¿(¿) + <f>(£') holds for all 
£,£' e id[p(T+)]. With this notation and terminology, we now have:
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THEOREM 4.1. For any p-regular trip structure, T - (X,N,o,r,c,0,©), 
finite d-regular structure, P - (X,N,d), and standard path assignment, 
p: T -*■ Nd , the travel-cost function, c: T -► R+ , is ¿¿-generated if and 
only if there exists a subadditive, continuous, increasing positive 
function, ¿d[p(T+)] -*• R^, such that for all t e T+ ,

(4.2) c(t) - ^(id[p(t)])

Proof: First observe that if (4.2) holds for any increasing function, <j>, 
then since ¿d [p(t)] - 0 o p(t) e P° o t € 0(X) <* c(t) - 0, it follows that the 
travel-cost function, c, is automatically ^-generated in the sense of (4.1). 
Hence it suffices to show that if the function, c, is ^-generated then there 
must exist a subadditive, continuous, increasing function, <f>: i.[p(T )] -*• R ,O +*f‘
satisfying (4.2). To do so, observe first from the finiteness of P that 
^d [p(T+)] £ R ( ( . Hence if for each positive number, I € ¿d[p(T+)], we set

(4.3) 4>{Z) - c(t) for any t e T+ with ¿d[p(t)] - i 

then it follows at once from (4.1) that for all e T+'

(4.4) Jfd tP(t1) 1 - *dip(t2>] * id[p(t1)] M  -ed [p(t2)]

c(tx) c(t2)

c(tx) - c(t2)

and hence that (4.3) yields a well defined function, <f>: i.[p(T ) ] -*• R , whichQ “f*
by construction satisfies (4.2). Moreover, it follows at once from (4.1) and
(4.4) that 4> must be increasing. Hence it remains to show that <f> is 
subadditive and continuous. Turning first to subadditivity, observe that for 
any e *d [p(T+)] with i - e ¿d[p(T+)], there must exist some
trip, t e T+ , with ¿d[p(t)] - i. Hence, if we now write p(t) - pfc, then it 
follows from Proposition 2.3 above, together with the d-regularity of the path 
structure, P, that the function, ¿d[pt(0,->]: [0,1] - [0,i], is continuous. 
Hence (by the intermediate-value property of continuous functions) there 
exists for each value, > 0, some o e (0,1) with id[pt(0,a>] - i But it
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then follows from A2 and A6 that there must exist trips, t^ e T+ [pt(0) ,Pt(a) ] 
and t2 € T+ [pt(o) ,pt(l)], with pi^) - pt<0,o) and p(t2> - pt<a,l), so that in 
particular, ¿d[p(t^)] - £^, i - 1,2. Moreover, since (t^,t2) € A(T^), it 
follows from the additivity of path length, together with A3 and (2.4), that 
pitj©^) ~ p(t1)op(t2) - p(t) =* ^(pit^tj)] - i ^ p ^ ) ]  + ¿d[p(t2)] - 
¿d [p(t)]. Hence by T4, it follows that

(4.5) ¿(¿x + i2) - ¿(i) - ¿(¿d[p(t)])

- ^(-«¿tpit^^)]) - c(t1©t2)

:S c(tx) + c(t2) - ¿(ix) + ^(i2)

and we may conclude that <f> is subadditive. Thus, it remains to establish the 
continuity of <!>. To do so, consider any positive value, £ e ¿d[p(T+)], and 
observe from the monotonicity of <f> that it suffices to show that -» £ =» 
^(^n) -* 4>(£) for every sequence (^n) in >?d[p(T+)] which is either increasing 
or decreasing. Suppose first that (^n) is an increasing sequence. Then again 
choosing any t e T+ with ¿d[p(t)] - £ > 0 and letting pfc - p(t) e Nd> it 
follows from the continuity of id[pt^0,*)] that there exist some c*n e (0,1) 
with £^ - ] • Moreover, since ^d [Pt] > 0, it follows from the
positive linearity property (2.13) of d-standard parameterizations that each 
c*n is unique. Hence for this sequence (Qn) we must have

(4.6) £ -+ i =* a -*• 1 .n n

But by conditions A2 and A6, it again follows that there is some trip, t^ e
T,[p,_(0),p ( a )], with p(t ) - p (0,a ). For this sequence of trips, we next t t t n n c n
show that

(4.7) d+ [p(t) ,P(tn)] -» 0

i.e. that P(tR) converges to p(t) in the uniform-quasimetric space, (N,d+).
To do so, recall from expression (2.3) that for each index value, a e [0,1],
P(t )(<r) - (<0 " p (aa ). Moreover, since the d-continuity of then t n u n
function, pt:[0,l] -*• X, implies from Proposition 2.4(ii) that pt is uniformly 
d-continuous, it follows that for each € > 0 there is some 8 > 0 such that
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|a — /?| < i =» d[pt(a) iPt()9)] < c for all a,/3 e [0,1]. Hence by (4.6) we may 
choose n^ € f sufficiently large to insure that 1 — or < S for all n 2: n£, 
so that for all a G [0,1],

(4.8) n ^ n  * o — oa £ 1 — a < e ' e n n

=> d[pt(a),pt(aan)] < e

=» d[p(t)(a) ,p(tn)(a)] < e.

Thus, n £ ng * d+ [p(t) ,p(tn) ] - sup{d[p(t)(a),p(tn)(a)]: a G [0,1]} < c, and
it follows that (4.7) must hold. But by A5, this in turn implies that the
sequence (t^) is p-bounded, so that (by the same argument as in Theorem 3.1
above) the regularity of (T,/>) implies the existence of a p-convergent
subsequence (t^) with />(t',t^) -* 0 for some t' G T. Given this limiting trip,
t', we next show that p(t') - p(t) . To do so, let - -?^[p(t^)] for all n,
and observe that since (i^) is an increasing sequence, and <f> is an increasing
function, it follows that the sequence, c(t^) “ a^s0 i-ncreasing-
But since t' G T =» c(t') > 0, it then follows from T5 that />(t',t') -»0 => n + n' ’ n  n
c(t^) -* c(t') > 0, and hence from T2 that t' e T+ . Thus by A4, we must have 
/»(t',t^) -»0 =* d+ [p(t') ,p(t^) ] -» 0. Moreover, since (4.7) implies that 
d+ [p(t) ,p(t^)] -* 0, and since (N,d+) is a uniform-quasimetric space, it then 
follows from part (i) of Proposition 2.4 that

(4.9) max{d[p(t'),p(t^)],d[p(t),p(t^)]} 0 => p(t')-p(t) .

This equality of paths, p(t') and p(t), together with />( t',t^) -*■ 0, in turn 
implies from (4.9) together with T5 that

(4.10) ^ ( r ) - ¿(Xd[p(t;)]) - c(t;) , n g  z_n_

* ¿(r) - c(t') - *(id [p(t')]) - ^(id[p(t)]) - Hi)

* W J  - M )  .

Finally, since (^(i^)) is a subsequence of the increasing sequence (¿(in)), 
and since < £ *» ^(^n) < ^(¿), we may conclude from (4.10) that ¿(^n) “*■
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<f>(£). To establish the same result for each decreasing sequence (i ) with 
-» £, choose t# € T+ to be any trip with ¿d[p(t#)] - ¿^ > 0, and let a e 

(0,1) and o e (0,1) be defined, respectively, to be the (unique) values with 
£ - ^d tPt.<0,o>] and Jn - ¿d[pt.<0,on>], so that the relation, i > £ *

> a, together with the continuity of ¿d[pt»(0,*)] now yields the following 
parallel of (4.6):

(4.11) i -* £ =* a -* a . v n n

Hence, choosing any t e T+ with p(t) - Pt*(0,o) and t e T+ with p(tn) “ 
Pt»(0,an), it follows from the uniform d-continuity of path, pt„, together 
with the argument in (4.8), that (4.7) now holds for this choice of trips in 
T . Thus by A5 and the regularity of (T,p), this again implies the existence 
of a p-convergent subsequence (t^) with p(t',t^) -* 0 for some t' e T.
Moreover, since £ > 0 =» > > where £^ ■ ^dtp(t^)]. it
again follows that t' e T+. Hence the same argument leading to (4.9) and
(4.10) now shows that ¿(^) $(.&) must hold for this decreasing subsequence 
(£^) of (¿n) . But since > ifc again follows that ¿(^¿)
<f>(£) «* ^(^n) ~¥ 4>(&)» and we may conclude that 4> is continuous on ^d[p(T+)]. ■

Hence, for any given standard path assignment, p, between T and P, it 
follows that every ¿^-generated travel-cost function, c, for T must be related 
to £^ (for all non-null trips) by a continuous, subadditive, increasing 
positive function. In particular, the restriction of any continuous, 
subadditive, increasing function, <f>: R -*■ R. . , to the positive domain,

TT TT

i^[p(T+) ] C R ( ( , automatically yields such a function. Hence if we now 
designate each such function, <f>: R ■+ R. . , as a travel-cost generator, then

TT TT

it is of interest to examine this class of generator functions in more 
detail. In particular, it is useful to establish sufficient conditions for 
membership in this class of functions. With this in mind, we now say that:

DEFINITION 4.3. A function, R. . -► R. . , is said to exhibit nonincreasing 
averages iff for all £,£' e R ,

TT

(4.12) 0 < £ < £• • ¿(¿)/i £ 4>(V)/£'.
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With this definition, our first result [which closely parallels Theorem 103 in 
Hardy, Littlewood, and Polya (1934)] is to show that this condition is 
sufficient to insure subadditivity:

PROPOSITION 4.2. Each continuous nondecreasing function, 4>: R ( ( -*• R ( ,, 
exhibiting nonincreasing averages is a trip-cost generator.

Proof: It suffices from Theorem 4.1 to show that (4.12) implies 
subadditivity of But for all £,£' € R | ,

- [ f  • ^  ]

I [¿col . V  fr(l')l 
£ + £'[£ J £ + £'[ £• J

U£) + H V )
£ + £•

=» *(i + £') <. *(J). + ¿(¿') .

Hence ^ is subadditive, and the result is established. ■
As a second result, it is of interest to observe that every increasing

concave function, <f>: R -* R , necessarily satisfies these conditions, i.e.*t*+ ++
that:

PROPOSITION 4.3. Every increasing concave function, <f>: R [ -* Rj | , is a 
trip-cost generator.

Proof: Since every concave function on R,, is continuous, it suffices
' TT

from Proposition 4.2 to show that every positive increasing concave function 
exhibits nonincreasing averages. To do so, observe first that since <f> is 
increasing and positive, £ -* 0 implies that the limit, $(£) ■+ a, exists and is 
nonnegative. Hence setting ^(0) - o, it follows that ^ has a unique 
continuous (and concave) extension to R+ , and thus that for any £,£' e R | |

(4.13) U £  + £•) 
£ + V

(4.14) *<*> - 4 i ^ ' < 0 ) + T T r -
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* T + “I ' W(0)1 + T T l i ' [<Hi + * ' )] *  7 T 7 ' l * ( i  + r ) ]

a n  > *(* + **>i s. + i'

and it follows from the arbitrary choice of i e R that <f> must exhibit
TT

nonincreasing averages. ■

This class of concave functions (as exemplified by the illustration in 
Figure 1 below) includes most of the travel cost functions typically employed 
in the literature. In particular, travel costs typically involve nonzero 
start-up costs which are independent of trip length, and which thus create a 
discontinuity at i - 0 (in view of the zero cost of all null trips). In 
addition, it has been observed by many writers [see for example, Hoover 
(1948), Locklin (1954), and Isard (1956)] that direct transport expenditures 
tend to increase at a decreasing rate, reflecting long-haul scale economies, 
as well as typical quantity-discount pricing policies.

Figure 1

5. MINIMUM-COST DISTANCES AND SHORTEST-PATH DISTANCES

Given the concept of travel costs generated by path lengths, it is of 
interest in this final section to relate the corresponding concepts of 
minimum-cost distance and shortest-path distance. To do so, consider any 
standard path assignment, p: T -* N^, from a p-regular trip structure, T - 
(X,T,o,r ,c,0 ,©) , to a finite d-regular path structure, P - (X,N,d). If the 
travel cost funtion, c, is generated, then it is natural to conjecture that 
the associated minimum-cost distance, d^, is intimately related to the 
underlying shortest N-path distance, d. However, a moment's reflection shows 
that this relationship depends critically on the nature of the image set, 
p(T) . In particular, if p(T) generates the path network, N, then (as we shall 
see in Theorem 5.2 below) there is a direct functional relation between these
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two distances. But if N is not generated by p(T), then there is only a weak 

inequality relation between dc and d.

To clarify the nature of this relationship, our approach will be to show 

that each standard path assignment, p, generates a natural substructure, - 

(X,N^,dp), of the path structure, P, for which there always exists a precise 

functional relationship between dc and the shortest N^-path distance, d^. To 

do so, we first show that:

LEMMA 5.1. For each standard path assignment, p: T -*• N^, from a 

p-regular trip structure, T, to a finite d-regular path structure, P - 

(X,N,d), there exists a unique smallest path network, C N, such that 

P(T) - i.e. such that p(T) is the d -standard representation of N^.

Proof: Observe first that the trip-connectivity condition (Tl) of trip 

structures, T, implies from A2 that p(T) satisfies the connectedness property 

(Bl) of path bases. Moreover, since A6 implies that p(T) is also subpath 

closed (B2) , it follows from Definition 2.3 that p(T) is a path base on X. 

Hence, by Proposition 2.2, p(T) generates a unique path network, N - 

N[p(T)]. In addition, p(T) C C N implies from (2.5) [together with the 

closure properties, N2 and N4, of networks] that C N, and hence by 

construction that is the smallest path network in N containing p(T). To

establish that p(T) is the d-standard representation of N , observe first that
n ^

for any path, p o-.-op g p(T) , n e Z , there must exist trips, t.,..,t e T 
jl n  t t  1 n

with p(t^) — p^, i - l,..,n. Hence by the chain-closure property (T4) of T

and the trip-chain consistency property (A3) of p, it follows that p^O'-'Op^ -

p(t. )o • • op(t ) ~ p(t-©*•*©t ) e p(T) . But the construction of N in (2.5) x n  i  n  p
then implies that each path in must be the reparameterization of some path 

in p(T) . Finally, since p(T) C implies by definition that each path in 

p(T) must be its own d-standard parameterization, and since it may verified 

[Proposition 11.5 in Smith (1987a)] that the d-standard parameterization of a 

path is identical with that of each of its reparameterizations (i.e. that q € 

[p] ■* <1̂  ” Pd) » we may thus conclude that p(T) - *

Given this result, observe next if for any given standard path assignment,
2

p: T -*■ Nd , we define the function, d^: X R + , for all x,y e X by
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(5.1) dp(x,y) - infUd(p): P € Np(x,y)}

then it may readily be verified [from the finiteness of the path structure, P

- (X,N,d), together with Proposition 9.3 in Smith (1987a)] that the triple, P^

- (X,Np,dp), yields a well defined substructure of P - (X,N,d). With these

observations, we may now establish the following functional relationship

between the minimum-cost distance, d , and the shortest N -distance, d :
c’ p p

THEOREM 5.1. For any standard path assignment, p: T -*• N^, from a 

p-regular trip structure, T - (X,T,o,t,c,0,®), to a finite d-regular path 

structure, P — (X,N,d), if c is generated and if <f>: id [p(T+ )] -*• R ( | is 

any trip-generator function satisfying (4.2), then for all distinct 

locations, x,y e X,

(5.2) dc (x,y) - *[d (x,y)]

Proof: Simply observe that since there exist minimum-cost trips, say t„„xy
e T(x,y) for each x,y e X by Theorem 4.1, it follows at once from the 

increasing monotonicity of <f> that for all distinct x,y e X and t e T(x,y)

(5.3) dc (x,y) - c(t ) £ c (t) * > J < ¿d [p(t)]

=> ¿d [p(t )] - min(jed [p(t)]: t e T(x,y)}

* Ad Ip(txy)] “ dP (x-y)

Finally, since x * y * t € 0(X), it follows from Al that p(t ) e T , and
xy xy +

hence from (4.2) that d (x,y) - c(t ) - ¿(¿.[p(t )]) - ^[d (x,y)]. Thus (5.2)C X y  U  jr P
holds for all distinct x,y € X, and the result is established. ■

Notice also from the proof of Theorem 5.1 that whenever trip costs, c, are 

¿d *generated, each mimimum-cost trip, t , in T must always be assigned to a 

shortest path, , from x to y in P^. As a final consequence of the

general result in Theorem 5.1, we obtain the following desired relationships 

between dc and and the shortest N-path distance, d:
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THEOREM 5.2. (i) For any standard path assignment, p: T -*■ N^, from a

p-regular trip structure, T - (X,T,o,r,c,0,©), to a finite d-regular path

structure, P — (X,N,d), if c is £ .-generated and if ij[p(T,)l -*■ R isa a + ++
any trip-generator function of the form (4.2), then for all distinct 

locations, x,y e X,

(5.4) dc (x,y) S: rf[d(x,y)]

(ii) If in addition it is true that N — N, then for all distinct
P

locations x,y e X,

(5.5) dc (x,y) - ¿[d(x,y)].

Proof: (i) First, to verify that the values, ^[d(x,y)], are actually well 

defined, observe from the subpath-closure property (A6) of p(T) £ N, together 

with the continuity of the function, ¿d [p(0,*)], in Proposition 2.5, that for 

any value, ^ (p) e J0^[p(T) ], it must be true that (0, ̂ ^(p) ] £ >?d [p(T+ )]. But 

for any distinct x,y € X, it then follows from the connectedness property of 

T, together with (2.6) and the locational-consistency property (A2) of p, that

0 < d(x,y) :S ^¿(p) for each p e p[T(x,y)] . Hence d(x,y) e id [p(T+)], and it 

follows that ^[d(x,y)] is well defined for each distinct x,y € X. Finally, 

since Np(x,y) £ N(x,y) by definition, it follows from (2.6) and (5.1) that 

dp(x,y) £ d(x,y), and we may conclude from (5.2) together with the increasing 

monotonicty of <f> that (5.4) must hold.

(ii) To establish the equality in (5.5), observe simply that if - N, then 

Np(x,y) - N(x,y) =* d^(x,y) - d(x,y) for all x,y € X, so that for this case,

(5.2) now implies (5.5). ■
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6. CONCLUDING REMARKS

In this final section, we consider briefly a number of possible extensions 

of the present analysis. To begin with, it is important to emphasize once 

again that while the above framework was formulated in terms of travel 

behavior, the basic concepts are meaningful in essentially any behavioral 

context which involves movement between locations (or transitions between 

states) in some space. Additional economic examples include production 

processes, in which efficient transformation sequences from given inputs to 

desired outputs can be treated as "minimum-cost chains". Similar 

interpretations can be given to a wide range of social transition processes, 

such as educational or training programs in which efficient training sequences 

can also be viewed as minimum-cost chains. Thus, in all those processes where 

our basic hypothesis of economies of trip chaining is appropriate, minimizing 

behavior induces a well behaved notion of distance on the relevant state 

space: such as "minimum-transformation-cost" distances on production 

possibility spaces, or "minimum-transition-cost" distances on social state 

spaces.

However, it is also important to emphasize the limitations of this 

framework. In particular, our basic hypothesis of economies of trip chaining 

may fail to hold in many important behavioral contexts where trip chaining is 

meaningful. This is even true in economic settings such as the airline 

example mentioned in the introduction. For while airline fares may exhibit 

economies with respect to trip chaining, such fares are often not the only 

relevant costs. In particular, if one considers the time costs of travel, 

then it is clear that flight connections can result in significant time costs 

which are independent of actual flight times. More generally, there may exist 

significant connection costs in trip chaining which may lead to violations of 

condition (3.1). Hence as one possible extension of the present framework, it 

is of interest to consider the minimum-cost distances generated by trip chains 

with connection costs. Even in simple examples, it is clear that such 

distances may fail to satisfy the triangularity condition (D3), and hence may 

even fail to be quasimetrics.

Aside from physical costs such as connection costs, there may also exist 

many important psychological costs of movement which influence behavior. In 

the simple case of travel, for example, even if all physical costs exhibit
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economies of trip chaining, the tiring effect of extended travel on individual 

trip makers will generally fail to satisfy this condition. In cases where 

such perceived costs are signifant, the relevant notion of "minimum-cost 

distance" may not only fail to be a quasimetric, but may in fact be very 

difficult to measure. In particular, when such costs are identifiable only in 

an ordinal sense, the resulting distance representations will be highly 

nonunique. Hence, as a second extension of the present analysis, it is of 

interest to consider the representational properties of ordinal cost 

structures with respect to minimum-cost distance. Results of this type have 

been established by Beals and Krantz (1967) for metric representations of 

perceived distance orderings. Possible extensions of these results to the 

present framework will be considered in a subsequent paper.

Finally, turning to the relationships between minimum-cost distance and 

underlying measures of physical distance, it should be clear that the notion 

of generated travel costs in Definition 4.2 is highly restrictive. Indeed, 

even the physical relations between travel time and path length are seldom 

that simple. In particular, while such relationships may exhibit certain 

overall monotone tendencies, their exact nature on, say, a given road network 

is complicated by a host of other factors including road capacity, stop 

lights, and traffic congestion. More generally, it should be clear that path 

length is only one among many variables which influence travel costs. Hence 

the present notion of trip-cost generators should be regarded as only the 

simplest possible types of structural relations which may be considered.
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Figure 1. A Concave Trip-Cost: Generator




