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MINIMUM-COST DISTANCES IN SPATIAL ANALYSIS

An axiomatic approach to distance is developed which focuses on those behavioral concepts of distance related to movement in space. In particular, spatial movement by behaving units is postulated to involve a choice from among some set of abstract trips in space, and implicitly, to involve the minimization of some relevant notion of trip costs. In this context, the relevant behavioral notion of distance in space is taken to be the minimum-cost distance generated by this choice process. These trip-cost concepts extend the classical notions of paths, path lengths, and shortest paths in metric spaces. Hence many of the analytical results of the paper involve extensions of classical shortest-path distance properties to minimum-cost distances. In addition to these extensions, a characterization theorem is given which specifies the possible functional relationships between trip costs and their associated path lengths. These relationships include most functional forms which are commonly employed in the literature.

 [START_REF] Busemann | G eomet r y of G e o d e s i c s[END_REF], [START_REF] Blumenthal | Distance Geometry[END_REF], [START_REF] Beguin | An Axiomatic Approach to Geographical Space[END_REF], and Smith (1987aSmith ( ,1987b))], and closely parallels that literature. In particular, we begin by assuming that trips can be meaningfully added together to form trip chains (in a manner analogous to concatenations of paths). It is then assumed that such trip chains can always be treated as sequences of individual trips, so that (from a cost-minimizing viewpoint) the relevant cost of a trip chain never exceeds the total cost of its component trips. However, unlike simple path length, there may be significant economies of trip chaining.

Finally, given these structural assumptions, the minimum-cost distance between any two locations is defined (in a manner completely paralleling shortest-path distance) to be the greatest lower bound on all trip costs between these locations.

Our first result (Theorem 3. Finally, in the concluding section of the paper, we briefly discuss some of the limitations and possible extensions of our approach. In particular, we consider behavioral situations in which the assumption of economies of trip chaining may fail to hold. This is especially relevant when the psychological costs of longer trips are signicantly greater than those of shorter trips. We also describe situations in which trip costs may not be monotone increasing in their associated path lengths.

To develop our results, we begin in the next section with a review of the basic concepts of paths and path lengths in general spaces. This review serves to clarify the formal parallel between these concepts and the more general concepts of trips and trip costs in the present paper. In addition, the results summarized here provide the basis for the comparative analysis of trip costs and path lengths in sections 4 and 5 below.

SHORTEST-PATH DISTANCES

The following development of relevant distance concepts is given in much greater detail in Smith (1987aSmith ( ,1987b)). Let R, R , and R denote the real denote the positive integers. Throughout the analysis, we take X to be a given nonempty set of abstract locations. Observe also that if for each x e X we define the null path, p , to be the unique path in P with p (a) -x for all a € [0,1], then it follows at once A X from N1 and N3 that the set of null paths, P° -{p : x € X } , on X is contained A X in every path network on X.

Distances

In order to construct path networks, it is convenient to introduce the following concept of a path base. In particular, if for any path set, P C P^, the n ^-concatenation power, Pn , is defined recursively by P^ -P and pn+^ -PoPn for all n e Z , then we now say that: In these terms, our objective is to establish conditions on trip structures, T, under which the associated minimum-cost distance function, d^, on X is always realizable. To do so, we begin by observing that if any trip set, T(x,y), is finite, then the existence of minimum-cost trips in T(x,y) is trivial.

However, if T(x,y) is infinite, then the existence of minimum-cost trips can only be insured by imposing additional structural conditions on T(x,y).

With this in mind, our approach is to assume that it is meaningful to make similarity comparisons between abstract trips in T, and that such comparisons are representable in terms of a measure of "trip dissimilarity", which serves as an appropriate notion of "distance" in T To clarify the nature of this relationship, our approach will be to show that each standard path assignment, p, generates a natural s u b s t r u c t u r e , -(X,N^,dp), of the path structure, P, for which there always exists a precise functional relationship between dc and the shortest N^-path distance, d^. To do so, we first show that:

LEMMA 5. then implies that each path in must be the reparameterization of some path in p(T) . Finally, since p(T) C implies by definition that each path in p(T) must be its own d-standard parameterization, and since it may verified [Proposition 11.5 in Smith (1987a)] that the d-standard parameterization of a path is identical with that of each of its reparameterizations (i.e. that q €

[p] ■ * <1^ " P d ) » we may thus conclude that p(T) -* Given this result, observe next if for any given standard path assignment, (ii) To establish the equality in (5.5), observe simply that if -N, then Np(x,y) -N(x,y) =* d^(x,y) -d(x,y) for all x,y € X, so that for this case,

(5.2) now implies (5.5). ■

CONCLUDING REMARKS

In this final section, we consider briefly a number of possible extensions of the present analysis. To begin with, it is important to emphasize once again that while the above framework was formulated in terms of travel behavior, the basic concepts are meaningful in essentially any behavioral context which involves movement between locations (or transitions between states) in some space. Additional economic examples include production processes, in which efficient transformation sequences from given inputs to desired outputs can be treated as "minimum-cost chains". Similar interpretations can be given to a wide range of social transition processes, such as educational or training programs in which efficient training sequences can also be viewed as minimum-cost chains. Thus, in all those processes where our basic hypothesis of economies o f trip c h a i n i n g is appropriate, minimizing behavior induces a well behaved notion of distance on the relevant state space: such as "minimum-transformation-cost" distances on production possibility spaces, or "minimum-transition-cost" distances on social state spaces.

However, it is also important to emphasize the limitations of this framework. In particular, our basic hypothesis of economies of trip chaining may fail to hold in many important behavioral contexts where trip chaining is meaningful. This is even true in economic settings such as the airline example mentioned in the introduction. Aside from physical costs such as connection costs, there may also exist many important psychological costs of movement which influence behavior. In the simple case of travel, for example, even if all physical costs exhibit such perceived costs are signifant, the relevant notion of "minimum-cost distance" may not only fail to be a quasimetric, but may in fact be very difficult to measure. In particular, when such costs are identifiable only in an ordinal sense, the resulting distance representations will be highly nonunique. Hence, as a second extension of the present analysis, it is of interest to consider the representational properties of ordinal cost structures with respect to minimum-cost distance. Results of this type have been established by [START_REF] Beals | Metrics and Geodesics Induced by Order Relations[END_REF] for metric representations of perceived distance orderings. Possible extensions of these results to the present framework will be considered in a subsequent paper. 

  human spatial behavior are based on some underlying notion of distance. Our most familiar concept of distance is of course euclidean (or straight-line) distance between points, which represents the shortest-path distance in euclidean space. But the notion of shortest-path distance is itself much broader, and indeed is meaningful for essentially any kind of spatial movement [as studied for example in Smith (1987a,1987b)]. However, from a behavioral viewpoint, not even shortest-path distances are sufficiently general to cover the full range of distance concepts which are relevant for movement in space. In airline travel, for example, it is clear that while shortest-path concepts (such as great-circle routes on the globe) are useful for determining flight times, they are often poorly correlated with actual ticket prices. Hence from the viewpoint of potential air travelers, the economic distance between points is often shaped more by forces of supply and demand than by physical separation alone. With this in mind, the central objective of the present paper is to extend the classical notion of shortest-path distances to a more general class of minimum-cost distances, which is sufficiently broad to include most types of economic distances observed in practice. This extension is primarily motivated by the desire to incorporate explicit economic concepts of space within the more general axiomatic approach to geographic space proposed by Beguin and Thisse (1979). However, this framework is potentially meaningful for many types of non-economic distance as well, including both social and psychological concepts of distance. To model such behavioral notions of distance, it is useful to begin by considering the act of spatial movement itself. For in any given behavioral situation, the relevant notion of distance can depend critically on the type of movement involved (work trip by a commuter, vacation trip by a household, or commodity shipment by a firm). Moreover, each movement decision generally involves a choice from among some set of options (such as route and mode choice by a commuter, or carrier choice by a commodity shipper). Hence our present approach is to model all such options in terms of abstract trips, and to treat each movement decision as a choice from some given set of feasible trips. In this context, it is also postulated that there exists some relevant measure of travel cost associated with each potential trip. Hence, to the 1 extent that such trip choices are based cost-minimizing behavior, one may take the minimum trip costs between locations to define the relevant behavioral notion of distance in space. Within this framework, the specific goals of the present paper are to formalize this notion of minimum-cost distance, and to study a number of its more important properties from a behavioral viewpoint. This study is largely inspired by the classical development of shortest-path distances in metric spaces [as summarized in

  1 below) is to show that the well-known triangularity property of shortest-path distances extends to all minimum-cost distances, i.e. that such distances must always be quasimetrics. This general formulatipn has the additional analytical advantage of ensuring that minimum-c&st distances are well defined whenever there exist finite-cost trips between all locations. But from a behavioral viewpoint this formulation leaves open the question of whether such distances can actually be realized by any trips, i.e. whether there exist minimum-cost trips. Hence, as an extension of the well-known existence results for shortest paths (geodesics) between locations, we next consider the existence question for minimum-cost trips between locations. But unlike the classical notion of paths (which are generally assumed to be continuous functions with respect to the neighborhood topology generated by shortest-path distance), there is no prior structure on the set of abstract trips. Hence to establish meaningful results, we first postulate the existence of some appropriate measure of trip similarity by which trips can be compared. In this context, our main result (Theorem 3.2 below) is to establish regularity conditions on the similarity structure of trips (both with respect to their cost attributes and origin-distination attributes) which ensure the existence of minimum-cost trips between all locations. Next, we consider the possible relationships between trip costs and path lengths associated with these trips. In certain cases, these concepts may of course be identical. For example, if the relevant set of trips for a given car owner correspond to the set of alterative route choices leading to his desired destination, and if the relevant cost variable is travel time, then minimum-cost trips in this case may correspond precisely to shortest routes in the given transport network (assuming that traffic congestion and other factors are not significant). More generally, the relevant notion of trip cost may be some monotone increasing function of some underlying measure of path length. In this context, our central result (Theorem 4.1 below) is to identify the precise nature of the functional relationships which are possible between trip costs and path lengths. In addition, the corresponding functional relations between minimum-cost distances and shortest-path distances are also established (Theorems 5.1 and 5.2 below).

  x,y,z G X. Each distance satisfying both D2 and D3 is designated as a metric on X. For any x € X and e > 0, the set, S£(x) -{y e X: d(x,y) < e), is designated as the d-neighborhood of size c about x in X. A subset, BCX, is then said to be d-bounded iff B C S£(x) for some x in uniform-distance spaces is that they share many of the convergence properties of familiar euclidean spaces. To state these properties, we require the following additional concepts for general distance spaces, (X,d). First, a sequence (x^) in X said to be d -convergent iff there exists some x e X such that d(x,x ) 0. Similarly, (x ) is said to be a n n d -Cauchy sequence iff for each e > 0 there is some n e all n,m ^ n^. Next, a set, B C X, and is said to be totally d-bounded iff for each e > 0 there exists a finite subset {x.,..,x } C B such that B e, of some finite subset of B. Hence this condition essentially requires that each d-neighborhood in X be "uniformly approxi mated" by its finite subsets.To apply these concepts to uniform-distance spaces, we require the following additional concepts. First, a subset, B C X, is said to be dpaths p and q are said to be parametrically equivalent, and written as p ~ q. The set of all reparameterizations of p is designated as the reparameterization class, [p], for p in P^. Next we define an appropriate notion of "path addition". In particular, if for any paths, P^.the concatenation of p^ and p£. Tftis definition is readily extended recursively to all finite concatenations, p,°p0o •••o p ,,

  notion of path length on networks. We begin by observing that paths may in general have infinite length, and hence may have values ranging over the extended nonnegative real numbers, R+ («) -R+ u {«>). class of all lengths on N is denoted by L(N). Condition LI simply requires that each null path should have zero length. Condition L2 requires that the length of any path concatenation should be equal to the sum of the lengths of its component paths. Finally, condition L3 requires that the length of any path should be the same as the length , is a shortest-path distance on X iff d is a quasimetric. From a behavioral viewpoint, this result shows that the classical triangularity condition (D3) is synomous with shortest-path distance. In other words, whenever a given distance, d: X -+ R+ , satisfies triangularity, there must always be some implicit path network, N, on X and path length, £, on N, with respect to which d is the shortest-path distance. In general, both the path network, N, and path length, SL, may be highly nonunique. However, there is always a unique representative path length for d in the following sense. If L^(N) denotes the set of path lengths in L(N) for which d is a shortest N-path distance, and if path length, i € L^(N), is said to be minimal iff i(p) ^ i'(p) for all i' € L^iN) and p € N, then there always exists a unique minimal path length in I*d (N). This minimal path length may be defined as follows. Let the class of finite ordered subsets of [0structure, P -(X,N,d), is designated as a continuous path structure on X if and only if N C C^(X). (ii) If in addition, (X,d) is a regular uniform-quasimetric space, then P is designated as a d-regular path structure. One important feature of d-regular path structures, P -(X,N,d), is that the path network, N, is itself a uniform-quasimetric space with respect to an appropriate notion of distance between paths. In particular, if the function, d+ : N -+ R+ («°), defined for all paths, p,q e N, by (2.11) d+ (p,q) -sup(d[p(o),q(a)]: a € [0,1]} is designated as the supremum distance on N generated by d, then it can be shown that d+ is in fact a uniform-quasimetric on N [Proposition 4.5 in Smith (1987a)], and hence that (N,d+ ) constitutes a uniform-quasimetric space. Two additional properties of uniform-quasimetric spaces will prove useful in the analysis below. In particular, if a path, p € C^(X), is now said to be uniformly d -continuous iff for each e > 0 there is some S > 0 such that for all a,/3 € [0,1], |a -/i| < S =* d[p(a) ,p(/i) ] < «. then it can be shown [Proposition 4.4(ii) and Proposition 4.6(ii) in Smith (1987a)] that: PROPOSITION 2.4. (i) If (X,d) is a uniform-quasimetric space, then for all x,y e X and all sequences (x ) in X, In addition, each path, p e C^(X), is uniformly d-continuous. Several additional properties of d-regular path structures are important for our purposes. First of all, it can be shown [Proposition 11.3 in Smith (1987a)] that the d-length function, i^, is itself continuous along paths, i.e. that PROPOSITION 2.5. For any d-regular path structure, P -(X,N,d), and any infinite path, p 6 N, the function, ¿d (p(0,-)), is continuous. Moreover, this continuity property in turn implies that it is possible to parameterize all (¿^-finite) paths in a manner directly proportional to their d-length. This notion can be made more precise as follows: DEFINITION 2.8. (i) For any path structure, P -(X,N,d), and finite path, p 6 N, a reparameterization, pd e [p], is designated as a d-standard parameterization of p iff for all intervals, [a,j8] £ [0subset, Nd -{pd : p e N ) , of all d-standard parameterizations of paths in N is designated as the d -standard representation of N. With this definition, we have the following additional property of all d-regular path structures [see Proposition 11.4 in Smith (1987a)]: PROPOSITION 2.6. For any d-regular path structure, P -(X,N,d), and any J ?d -finite path, p e N, there exists a unique d -standard parameterization of p in N. 2.6. Shortest Paths Finally, for purposes of comparison with minimum-cost trips below, we record the following results on the existence of shortest paths in d-regular path structures. To begin with, let us now say that: DEFINITION 2.9. (i) For any path structure, P -(X,N,d), the shortest N-path distance function, d, is said to be realizable iff for each pair of locations, x,y € X, there exists a path, p e N(x,ypath, p 6 N(x,y), satisfying (2.11) is designated as a shortest path from x to y in P. To ensure the existence of shortest paths, we require the following additional regularity condition. If for any path structure, P -(X,N,d), we now designate a path sequence (p^) in N as an ¿^-bounded sequence whenever there exists some finite upper bound, b > 0, with i.(p ) ^ b for all n 10. (i) For any d-regular path structure, P -(X,N,d), a family of paths, P C N, is said to be finitely closed in P iff for each p e Cd (X) and i^-bounded sequence (p^) in Pthe full path network, N, is finitely closed in P, then P is said to be a finitely closed path structure. With this additional condition, it can be shown [Proposition 12.5 in Smith (1987a)] that: PROPOSITION 2.7. (Existence of Shortest Paths) (i) For any substructure, P' -(X',N',d'), of a d-regular path structure, P -(X,N,d), if N' is finitely closed in P, then the shortest N '-path distance, d', is realizable. (ii) In particular, if P is itself a finitely-closed path structure, then the shortest W-path distance, d, is realizable. 3. MINIMUM-COST DISTANCE Given this overview of shortest-path distance concepts, we turn now to the major focus of the present paper, namely, to the more general notion of minimum-cost distance. To do so, we begin in section 3.1 below by developing a model of abstract trips in terms of the notion of a trip structure, which parallels the above concept of a path structure. In addition it is shown that the associated minimum-cost distance between possible origins and destinations of trips exhibits the quasimetric property of shortest>path distances. As in section 2 above, we begin with an arbitrary set, X, of locations (or addresses), x, and consider an abstract collection, T, of possible trips, t, between locations in X. Such abstract trips may involve physical travel by individuals, or shipments of economic commodities. More generally, such abstract trips may involve pairwise interactions of any type between behaving units associated with attributes, x, in some relevant space of attributes, X. For our present purposes, the relevant spatial attributes of each trip, t e T, are taken to be its origin location, o(t), and its terminal location, r(t), in X. All other relevant aspects of trip, t, are taken to be summarized by some given nonnegative measure of travel cost, c(t). For physical trips, such costs must implicitly involve some choice of path (or route) in X from o(t) to r(t) [as analyzed in section 4 below], as well as a choice of travel mode (such as car, bus, or plane). For more general types of interactions, such costs may also involve implicit routing choices (through some communication network or organizational decision structure), and choices of interaction modes (such as personal contacts, phone calls, or letters). Our basic structural hypotheses about trips focus on the possibility of trip chaining. In particular, for any two trips, t^,t2 e resulting trip-chain operator, ©, on T is here taken to be associative, i.e. to satisfy the identity, (tj©t2)®tj ■ t^©(t2®tj) [so that recursively defined n -trip chains, t^©t2© ' • *®tn , are independent of the order in which chains are formed]. Hence, it suffices to consider only simple pairwise trip chains. For each such trip chain, t^©t2 , it follows by definition that both o(t^®t2) -o(t^) and T(tj©t2) -r(t2) hold identically. However, the relevant travel costs associated with trip chains are somewhat more problematic. For unlike the simple physical addition of path lengths, there may in general exist significant economies of trip chaining. This is seen most clearly, for example, in the discounting of many types of round-trip fares. More generally, if each possible trip chain is regarded as an economic commodity, then various types of economic discounts may be available in the market place. On the other hand, it may also be argued on economic grounds that such costs should never exceed the combined costs of individual trips. Indeed if this were the case, then it would be more economical to treat y) -{t € T: o(t) -x and r(t) -y) denotes the set of all trips in T from x to y, then it is assumed that T(x,y) is nonempty for all x,y € X. Finally, in a manner analogous to the notion of null paths in section 2 above, it is convenient to assume the existence of null trips, 0(x) e T(x,x), at each location, x e X, which may be interpreted as representing the "no trip" option for behaving units located at x. Each null trip is characterized by a zero travel cost, while all other travel costs are positive. In addition, it is assumed that for any pair of distinct locations, x,y e X, there do not exist trips in T(x,y) with travel costs arbitrarily close to zero. To formalize these assumptions, it is convenient to represent the assignment of origin locations, terminal locations, and travel costs to each trip in T by functions, o: T •+ X, r: T -* • X, and c: T -* R+ , respectively. Similarly, the assignment of each location in X to a unique null trip in T in terms of the following notion of a trip structure: DEFINITION 3.1. For any nonempty sets, X, T, and collection of functions, 2 o: T -* X, r: T -* • X, c: T -* R+ , $: X -♦ T, and ©: A(T ) -» T, the ordered array, T -(X,T,o,r,c,6 ,©), is designated as a trip structure on X iff the following four conditions are satisfied for all t € T, x,y,z € X, tx e T(x,y) and t2 e T(y,ztrip, t e T(x,y), satisfying (3.7) is designated as a minimumcost trip from x to y in T.

Figure 1

 1 Figure 1 below) includes most of the travel cost functions typically employed in the literature. In particular, travel costs typically involve nonzero start-up costs which are independent of trip length, and which thus create a discontinuity at i -0 (in view of the zero cost of all null trips). In addition, it has been observed by many writers [see for example, Hoover (1948), Locklin (1954), and Isard (1956)] that direct transport expenditures tend to increase at a decreasing rate, reflecting long-haul scale economies, as well as typical quantity-discount pricing policies.
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  readily be verified [from the f i niteness of the path structure, P -(X,N,d), together with Proposition 9.3 inSmith (1987a)] that the triple, P-(X,Np,dp), yields a well defined substructure of P -(X,N,d). With these observations, we may now establish the following functional relationship between the minimum-cost distance, d , and the shortest N -distance, d : c ' p p THEOREM 5.1. F o r any standard p a t h a s s i g n m e n t , p: T -* • N^, f r o m a p -r e g u l a r trip structure, T -(X,T,o,t,c,0,®), to a f i n i t e d-regular path structure, P -(X,N,d), if c is g e n e r a t e d a n d if <f>: id [p(T+ )] -* • R ( | is a n y trip-ge n e r a t o r function satisfying (4.2), then f o r all distinct l o c a t i o n s , x,y e X, (5.2) dc (x,y) -*[d (x,y)]Proof: Simply observe that since there exist minimum-cost trips, say t"" xy e T(x,y) for each x,y e X by Theorem 4.1, it follows at once from the increasing monotonicity of <f> that for all distinct x,y e X and t e T(x,y)(5.3) dc (x,y) -c(t ) £ c (t) * > J < ¿d [p(t)]=> ¿d [p(t )] -min(jed [p(t)]: t e T(x,y)} * Ad Ip(tx y )] " dP (x-y) Finally, since x * y * t € 0(X), it follows from Al that p(t ) e T , and xy xy + hence from (4.2) that d (x,y) -c(t ) -¿(¿.[p(t )]) -^[d (x,y)]. Thus (5.2) distinct x,y € X, and the result is established. ■ Notice also from the proof of Theorem 5.1 that whenever trip costs, c, are ¿d *generated, each mimimum-cost trip, t , in T must always be assigned to a shortest path, , from x to y in P^. As a final consequence of the general result in Theorem 5.1, we obtain the following desired relationships between dc and and the shortest N-path distance, d: THEOREM 5.2. (i) F o r any standard p a t h a s s i g n m e n t , p: T -* ■ N^, f r o m a p -r e g u l a r trip s t r u c t u r e , T -(X,T,o,r,c,0,©), to a f i n i t e d -regular path structure, P -(X,N,d), if c is £ .-generated a n d if ij[p(T,)lt r i p -generator function o f the f o r m (4.2), then f o r all distinct l o c a t i o n s , x,y e X, (5.4) dc (x,y) S: rf[d(x,y)] (ii) I f in addition it is true that N -N, then f o r all distinct P locations x,y e X, (5.5) dc (x,y) -¿[d(x,y)]. Proof: (i) First, to verify that the values, ^[d(x,y)], are actually well defined, observe from the subpath-closure property (A6) of p(T) £ N, together with the continuity of the function, ¿d [p(0,*)], in Proposition 2.5, that for any value, ^( p ) e J0^[p(T) ], it must be true that (0, ^^(p) ] £ >?d [p(T+ )]. But for any distinct x,y € X, it then follows from the connectedness property of T, together with (2.6) and the locational-consistency property (A2) of p, that 0 < d(x,y) :S ^¿(p) for each p e p[T(x,y)] . Hence d(x,y) e id [p(T+ )], and it follows that ^[d(x,y)] is well defined for each distinct x,y € X. Finally, since Np(x,y) £ N(x,y) by definition, it follows from (2.6) and (5.1) that dp(x,y) £ d(x,y), and we may conclude from (5.2) together with the increasing monotonicty of <f> that (5.4) must hold.

  For while airline fares may exhibit economies with respect to trip chaining, such fares are often not the only relevant costs. In particular, if one considers the time costs of travel, then it is clear that flight connections can result in significant time costs which are independent of actual flight times. More generally, there may exist significant connection costs in trip chaining which may lead to violations of condition (3.1). Hence as one possible extension of the present framework, it is of interest to consider the minimum-cost distances generated by trip chains with connection costs. Even in simple examples, it is clear that such distances may fail to satisfy the triangularity condition (D3), and hence may even fail to be quasimetrics.

Finally

  , turning to the relationships between minimum-cost distance and underlying measures of physical distance, it should be clear that the notion of generated travel costs in Definition 4.2 is highly restrictive. Indeed, even the physical relations between travel time and path length are seldom that simple. In particular, while such relationships may exhibit certain overall monotone tendencies, their exact nature on, say, a given road network is complicated by a host of other factors including road capacity, stop lights, and traffic congestion. More generally, it should be clear that path length is only one among many variables which influence travel costs. Hence the present notion of trip-cost generators should be regarded as only the simplest possible types of structural relations which may be considered.

Figure 1 .

 1 Figure 1 . A Concave Trip-Cost: Generator

T XT' numbers, nonnegative reals, and positive reals, respectively, and let Z T T

  

T T DEFINITION 2.3. A set of paths, P C Px> is designated as a path base on X if and only if P satisfies the following two conditions for all x,y € X, pe Px , and [a,0] C [0,1]: Bl. (Weak Connectedness) Pn (x,y) * 0 for some n e Z T r B2. (Subpath Closure) p € P => p(a,/J) e P Each path base allows the construction of a path network in a simple way. More specifically, if for each path set, P £ P^, we denote that class of all reparameterizations of paths in P by [P] -{[p]: p € P}, then it can be shown [see Proposition 6.1 in Smith (1987a)] that: PROPOSITION 2.2. For any path base, P, on X, the associated family of paths, (2.5) N(P) -U [Pn ] C PY + + X is a path network on X. Moreover, N(P) is the smallest path network containing P [i.e. if P C N for any path network, N, then N(P) C N ] . Hence it is natural to designate N(P) as the path network generated by P.

  

[More explicit relationships between these two concepts will be considered in section 5 below].