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A stable Langevin model with diffusive-reflective boundary

conditions

J.-F. Jabir∗ and C. Profeta†‡

June 21, 2017

Abstract

In this note, we consider the construction of a one-dimensional stable Langevin type process con-
fined in the upper half-plane and submitted to reflective-diffusive boundary conditions whenever the
particle position hits 0. We show that two main different regimes appear according to the values
of the chosen parameters. We then use this study to construct the law of a (free) stable Langevin
process conditioned to stay positive, thus extending earlier works on integrated Brownian motion.
This construction further allows to obtain the exact asymptotics of the persistence probability of the
integrated stable Lévy process. In addition, the paper is concluded by solving the associated trace
problem in the symmetric case.

1 Introduction

Let (Lt, t ≥ 0) be a strictly α-stable Lévy process, defined on some filtered probability space (Ω,F , (Ft, t ≥
0),P), with scaling parameter α ∈ (0, 2] and positivity parameter ρ. Its characteristic exponent is chosen
as

Ψ(λ) = log(E[eiλL1 ]) = −(iλ)αe−iπαρ sgn(λ), λ ∈ R,

where the positivity parameter ρ is given via the usual asymmetric parameter β ∈ [−1, 1] by

ρ = P(L1 ≥ 0) =
1

2
+

1

πα
arctan(β tan(πα/2)).

We assume that |L| is not a subordinator, i.e. ρ ∈ (0, 1). For θ, c two (strictly) positive constants, we
consider the SDE :





Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Lt +
∑

n≥1

(
(1− βn)(θ

nMn − Uτ−
n
)− βn(1 + c)Uτ−

n

)
I{τn≤t},

(1)

where (τn, n ∈ N) are the successive hitting times of (Xt, t ≥ 0) at the boundary x = 0; namely

τn = inf{t > τn−1; Xt = 0}, τ0 = 0,
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with

I{τn≤t} =

{
1 if τn ≤ t,

0 otherwise,

and where the sequences (βn, n ≥ 1) and (Mn, n ≥ 1) are independent random variables, also independent
from (X0, U0) and (Lt, t ≥ 0), such that

1. the random variables (βn, n ≥ 1) are i.i.d. Bernoulli r.v.’s with parameter p := P(β1 = 1),

2. the random variables (Mn, n ≥ 1) are i.i.d., non-negative and such that P(M1 = 0) = 0. We further
assume that they admit moment of order at least α.

The model (1) describes a type of Langevin model where, at each time t, the components Xt and Ut

represent respectively the position and the velocity of some fluid particle, interacting with a physical wall
located at the axis x = 0. The particle positions are confined within the upper-half space [0,∞), the
velocity paths are càdlàg, governed by the Lévy process (Lt, t ≥ 0) when Xt is in the interior (0,∞) and,
whenever the particle hits the frontier x = 0, the velocity component is submitted to either a partially
absorbing boundary condition or a diffusive boundary condition, respectively quantified by c and θnMn.
More precisely, for all n, the left-hand limit Uτ−

n
= lim

t→τn,t<τn
Ut describes the outgoing velocity of the

particle and the reflective-diffusive interaction between the particle and the confinement frontier implies
that the velocity Uτn = lim

t→τn,t>τn
Ut immediately after the impact is given by :

Uτn = △Uτn + Uτ−
n
=





− cUτ−
n

ifβn = 1,

θnMn ifβn = 0.

(2)

As Uτ−
n

is necessarily non-positive, the particle either re-emerges in (0,∞) or remains stuck to the axis
x = 0, and, in any cases, remains confined within [0,∞).

The (partially) absorbing case (p = 1, i.e. βn = 1 a.s.) was previously introduced and intensively
investigated in Bertoin [2, 3] (in the case of a totally absorbing wall, c = 0) and Jacob [14, 15] when
L = B is a one dimensional Brownian motion. Jacob [14] exhibited the critical level ccrit = exp(−π/

√
3)

separating sticky and non-sticky situations; whenever c ≥ ccrit, limn τn = ∞ a.s., whereas if c < ccrit,
limn τn < ∞ a.s. In the situation where L = B is a standard Brownian motion, the corresponding zeroes
of the integrated Brownian motion (x + tu +

∫ t

0 Bs ds, t ≥ 0) has been the subject of a long history of
studies starting from the early work of McKean [19] and the numerous works of Aimé Lachal (see [18]
among others). In the case of a stable Lévy process, few results on the distribution of the zeroes of
an integrated Lévy process are known. Nevertheless the necessary and sufficient conditions ensuring the
non-accumulation of (τn, n ≥ 1) in finite time will be exhibited in Section 2.

The totally diffusive situation (p = 0, i.e. βn = 0 a.s.) models the particular case of Maxwell
boundary conditions introduced in the kinetic theory of gases (see e.g. Chapter 8 in Cercignani, Illner
and Pulvirenti [7]). The particular situation where θ = 1 and (Mn, n ≥ 1) is distributed according to a
Maxwellian distribution of the form:

v

Θ
exp

{
−|v|2

2Θ

}
I{v≥0}, with Θ > 0,

corresponds to the situation where a (gas) particle interacts with a surface in thermodynamical equilib-
rium at temperature Θ, and where the particle re-emerges from the wall with a velocity Mn after each
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impact. (1) allow slightly more general diffusive phenomenons where the magnitude of the re-emerging
velocity Mn is further controlled by the parameter θn, allowing situations where the diffusive velocity
progressively vanishes at n → ∞. Let us also point out that the connection between transport equation
endowing diffusive-reflective boundary conditions and Langevin models driven by a Poisson process has
been studied in Costantini and Kurtz [9] and Costantini [8]. The link between (1) and kinetic equations
will be further discussed in Section 4.

Our aim in this paper is to study the limit behaviour of the sequence (τn, n ≥ 1), according to the
parameters θ and c. Such results then allow to discuss some related problems for the construction of a
conditioned stable Langevin process, as well as some relations to kinetic equations.

a) In the next Section 2, we describe the asymptotic behaviour of the sequence (τn, n ≥ 1) in the
case where (X0, U0) belongs to the semi-finite line {0} × (0,∞), showing necessary and sufficient
conditions on the parameters c and θ to characterize sticky situations (see Theorem 2.1.1) in the case
of an absorbing wall (p = 1), of a diffusive wall (p = 0) and mixed boundary condition (0 < p < 1).
When the lifetime of the process is infinite, we further give some a.s. asymptotics for the behavior
of (τn, n ≥ 1) (see Theorem 2.2.1).

b) Section 3 is dedicated to the construction of an integrated stable Lévy process conditioned to never
hit 0, thus extending the previous results obtained in Jacob [15] and in Groeneboom, Jongbloed
and Wellner [12] for Brownian motion. As a by product, we deduce the asymptotic behavior of the
upper tail distribution of τ1 (Corollary 3.2.2), improving the result in Profeta and Simon [22].

c) Section 4 is dedicated to the link between (1) and trace problems for kinetic equations. Such link
was previously studied in Bossy and Jabir [5] for Langevin model driven by a Brownian motion and
singular nonlinear (in the sense of McKean-Vlasov) drift component. We show the existence of trace
functions under appropriate assumptions on c, θ and the distribution of (X0, U0).

2 Estimation on the asymptotic behavior of (τn, n ∈ N) starting

from {0} × (0,+∞)

We start by decomposing the paths of X into a sum of excursions. To simplify the expressions, we shall
assume that a.s. X0 = 0 and U0 > 0.

For n ≥ 1, we define the restarting velocity after the nth passage time at the boundary :

Vn = Uτn = (1 − βn)θ
nMn + βnc |Uτ−

n
| and V0 = U0. (3)

Observe that by the scaling property of L, for n ≥ 1 :

(τn, Uτ−
n
)

(d)
= (τn−1 + V α

n−1ξ1, Vn−1ℓ1) (4)

where the pair (ξ1, ℓ1) is independent from Vn−1 and is distributed as (τ1, Uτ−
1
) when the process (X,U)

is started from (0, 1). Although the law of the pair (ξ1, ℓ1) is not explicitly known, we have the following
estimates from [22]: for λ ≥ 0,

E[ξλ1 ] < +∞ ⇐⇒ E[|ℓ1|αλ] < +∞ ⇐⇒ λ <
1− ρ

1 + αρ
, (5)

as well as the Mellin’s transform,

E[|ℓ1|ν−1] = E(0,1)[|Uτ−
1
|ν−1] =

sin(πγν)

sin (πν(1 − γ))
(6)
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where γ is given by

γ =
α(1− ρ)

1 + α
. (7)

By defining
gn = sup{k ≤ n− 1; βk = 0} and M0 = U0,

we deduce by iteration from (3) and (4) that

(Vn, n ≥ 1)
(d)
=


(1 − βn)θ

nMn + βnθ
gnMgn

n∏

i=gn+1

c|ℓi|, n ≥ 1


 (8)

where (ℓn, n ≥ 1) are i.i.d. random variables with the same law that of Uτ−
1

when (X,U) starts from

(0, 1). Note that the r.v.’s (Vn, n ≥ 1) are of course not independent, except if p = 0.

The same scaling and the independent increments properties further allow to decompose the passage time
τn as :

τn = τ1 +

n∑

k=2

τk − τk−1

V α
k−1

V α
k−1

(d)
= ξ1U

α
0 +

n∑

k=2

ξkV
α
k−1 (9)

where (ξk, k ≥ 1) are i.i.d. r.v.’s with the same law as τ1 when (X,U) is started from (0, 1). Furthermore,
for every fixed n ≥ 1, ξk is independent from Vk−1.

In the following, we shall be interested in the study of

τ∞ = lim
n→+∞

τn = inf{t > 0; (Xt, Ut) = (0, 0)}.

2.1 Absorption in finite time

We start by looking at the conditions under which the particle is absorbed at the boundary in finite time,
that is τ∞ < ∞ a.s.

Theorem 2.1.1. Assume that X0 = 0 and U0 > 0 with Uα
0 integrable. Then we have the following

situations:

1. If p = 1, then
τ∞ < ∞ P− a.s. ⇐⇒ c < ccrit

where
ccrit = exp (−π cot (πγ)) .

In particular, for λ > 0,

E[τλ∞] < +∞ ⇐⇒
{
c < ccrit and cαλE

[
|ℓ1|αλ

]
< 1
}
.

2. If p = 0, then
τ∞ < ∞ P− a.s. ⇐⇒ θ < 1.

In particular, for λ > 0,

E[τλ∞] < +∞ ⇐⇒
{
θ < 1 and λ <

1− ρ

1 + αρ

}
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3. If 0 < p < 1, then
τ∞ < ∞ P− a.s. ⇐⇒ θ < 1.

In particular, for λ > 0,

E[τλ∞] < +∞ ⇐⇒
{
θ < 1 and cαλE

[
|ℓ1|αλ

]
p < 1

}
.

The proof of this theorem will rely on the following lemma, which is a special case of Kolmogorov’s
three-series theorem (see e.g. Durrett [10, p.64]).

Lemma 2.1.2. Let (Xn, n ≥ 0) be i.i.d. and positive random variables. We assume that there exists
λ ∈ (0, 1) such that 0 < E[Xλ

1 ] < +∞. Then, for a ≥ 0 :

+∞∑

n=1

Xna
n < +∞ a.s. ⇐⇒ a < 1.

Proof. If a < 1,

E



(

+∞∑

n=1

Xna
n

)λ

 ≤

+∞∑

n=1

E
[
Xλ

n

]
aλn =

aλE
[
Xλ

1

]

1− aλ
< +∞

which implies that the series converges a.s. If a ≥ 1, we deduce from the monotone convergence theorem,
for all λ > 0,

E

[
exp

(
−λ

N∑

n=1

Xna
n

)]
≤ E [exp (−λX1)]

N −−−−−→
N→+∞

0

which concludes the proof.

Remark 2.1.3. Note that we cannot totally remove the assumption on the moments in the previous
lemma. Indeed, consider for instance a sequence of positive i.i.d. random variables with distribution :

P(X1 ∈ dx) =
ln(2)

x ln2(x)
I{x≥2}dx.

Then, integrating by parts,

E [exp (−λX1a
n)] =

∫ +∞

2

e−λanx ln(2)

x ln2(x)
dx = e−2λan − λan

∫ +∞

2

e−λanx ln(2)

ln(x)
dx.

Taking a < 1, we deduce by the Tauberian theorem that :

1− E [exp (−λX1a
n)] ∼

n→+∞
− ln(2)

n ln(a)

hence

E

[
exp

(
−λ

N∑

n=1

Xna
n

)]
=

N∏

n=1

E [exp (−λX1a
n)] −−−−−→

N→+∞
0

which proves that

+∞∑

n=1

Xna
n = +∞ a.s. for any a > 0 in this case.
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Proof. We shall now prove Theorem 2.1.1 and deal with the three cases separately.

1. Assume first that p = 1. We follow the ideas of Jacob [14, Corollary 1]. According to (8), we have the
decomposition

Vn
(d)
= U0

n∏

i=1

c|ℓi|.

Therefore, from (9),

τ∞
(d)
= ξ1U

α
0 + Uα

0

+∞∑

n=2

ξnc
α(n−1)

n−1∏

i=1

|ℓi|α.

Next, from Profeta and Simon [23], the law of large numbers implies that :

1

n

n−1∑

i=1

ln(|ℓi|) a.s.−−−−−→
n→+∞

E [ln(|ℓ1|)] = π cot (πγ) = − ln(ccrit)

hence, for any fixed ε > 0, we have for n large enough

c−n+nε
crit ≤

n−1∏

i=1

|ℓi| ≤ c−n−nε
crit . (10)

and the finiteness of τ∞ follows from (5) and Lemma 2.1.2 when c < ccrit. When c = ccrit, observe that
the random walk Zn =

∑n
i=1 ln(|ℓi|)+ ln(ccrit) is recurrent, hence the restarting velocity Vn = U0 exp(Zn)

does not converge to 0, which implies that τ∞ = ∞ a.s.
To get the condition on the moments, we then notice that τ∞ is solution of a renewal equation :

τ∞
(d)
= ξ1U

α
0 (1 − cα|ℓ1|α) + Uα

0 ξ2c
α|ℓ1|α + cα|ℓ1|ατ∞.

From Goldie [11, Theorem 4.1], we deduce that there exists a constant κ > 0 such that :

P(τ∞ > t) ∼
t→+∞

κ

tη(c)

where η(c) > 0 is such that cαη(c)E
[
|ℓ1|αη(c)

]
= 1. Point 1. then follows from the fact that for c < ccrit,

the function λ → cαλE
[
|ℓ1|αλ

]
is convex with a negative derivative at 0+ given by α(ln(c)− ln(ccrit)) < 0.

2. Assume now that p = 0. Then, the particle will always restart afresh when hitting the zero axis, namely
Vn = θnMn for n ≥ 1. Hence

τ∞
(d)
= ξ1U

α
0 +

+∞∑

n=2

ξnθ
α(n−1)Mα

n−1

and from Lemma 2.1.2, this series converges if and only if θ < 1, in which case the moments of τ∞ are
finite if and only if those of ξ1 are (since Uα

0 and Mα
1 are assumed to be integrable).

3. Assume finally that 0 < p < 1. Observe first that since the r.v.’s (βk, k ≥ 1) only take the values 0 or
1 and all the terms are positive, τn may be decomposed, after a change of indices, as :

τn
(d)
= ξ1U

α
0 +

n−1∑

k=1

ξk+1(1− βk)(θ
kMk)

α +

n−1∑

k=1

ξk+1βk


θgkMgk

k∏

i=gk+1

c|ℓi|




α
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with the convention that M0 = U0. Since in this case the r.v.’s (βk, k ≥ 1) take infinitely many often the
value 0, we first observe by Lemma 2.1.2 that τ∞ = ∞ as soon as θ ≥ 1. Taking 0 < λ < 1 small enough,
we then have :

E[τλn ] ≤ E[ξλ1U
λα
0 ] +

n−1∑

k=1

E

[
(1− βk)

(
ξk+1θ

αkMα
k

)λ]
+

n−1∑

k=1

E


βk


ξk+1θ

αgkMα
gk

k∏

i=gk+1

cα|ℓi|α



λ



≤ E[ξλ1 ]

(
E[Uλα

0 ] + (1 − p)E[Mαλ
1 ]

θαλ − θαλn

1− θαλ

)
+ pE

[
ξλ1
] n−1∑

k=1

E


θαgkλMαλ

gk

k∏

i=gk+1

cαλ|ℓi|αλ

 .

We shall compute the remaining sum in the following Lemma.

Lemma 2.1.4. For n ≥ 2, θ 6= 1 and 0 < λ < 1−ρ
1+αρ :

n∑

k=1

E


θαgkλMαλ

gk

k∏

i=gk+1

cαλ|ℓi|αλ



= E[Uαλ
0 ]cαλnE

[
|ℓ1|αλ

]n
pn−1 +

n−1∑

i=1

cαλiE
[
|ℓ1|αλ

]i
pi−1

(
E[Uαλ

0 ] + (1− p)θαλE[Mαλ
1 ]

θαλ(n−i) − 1

θαλ − 1

)
.

In particular, for λ small enough such that cαλE
[
|ℓ1|αλ

]
p < 1, there exist two constants Aλ, Bλ indepen-

dent of n such that
E
[
τλn
]
≤ Aλθ

αλn +Bλ.

Proof. The law of gk is given by :

P(gk = l) = (1− p)pk−l−1 for l ∈ {1, . . . , k − 1} and P(gk = 0) = pk−1. (11)

We decompose the expectation according to gk. When gk = 0 :

E


θαgkλMαλ

gk

k∏

i=gk+1

cαλ|ℓi|αλI{gk=0}


 = E[Uαλ

0 ]cαλkE
[
|ℓ1|αλ

]k
pk−1. (12)

When gk > 0, similar computations yield :

E


θαgkλMαλ

gk

k∏

i=gk+1

cαλ|ℓi|αλI{gk>0}


 =

k−1∑

l=1

E

[
θαlλMαλ

l

k∏

i=l+1

cαλ|ℓi|αλ
]
(1− p)pk−l−1

= (1− p)E[Mαλ
1 ]

k−1∑

i=1

θαλ(k−i)cαλiE
[
|ℓ1|αλ

]i
pi−1. (13)

Applying Fubini-Tonelli’s theorem, we deduce that

n∑

k=2

k−1∑

i=1

θαλ(k−i)cαλiE
[
|ℓ1|αλ

]i
pi−1 =

n−1∑

i=1

θ−αλicαλiE
[
|ℓ1|αλ

]i
pi−1

n∑

k=i+1

θkαλ (14)

= θαλ
n−1∑

i=1

cαλiE
[
|ℓ1|αλ

]i
pi−1 1− θαλ(n−i)

1− θαλ

which concludes the proof of Lemma 2.1.4.
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Now, letting n → +∞ in Lemma 2.1.4 and using the fact that θ < 1, we deduce on the one hand that
E[τλ∞] < +∞ as soon as λ is small enough so that cαλE

[
|ℓ1|αλ

]
p < 1. In particular, τ∞ < +∞ a.s. for

any c > 0. On the other hand, we have :

E[τλ∞] ≥ E



(
Uα
0

+∞∑

k=1

ξk+1βk

(
k∏

i=1

c|ℓi|
)α

I{gk=0}

)λ

 .

Observe now that the random variable appearing on the right-hand side of the previous equation, say χ∞,
is a solution of the following renewal equation :

χ∞
(d)
= ξ2β1U

α
0 c

α|ℓ1|αI{g1=0} + cα|ℓ1|αI{β1=1}χ∞.

The proof is then concluded using the asymptotics given by Goldie [11, Theorem 4.1] as in Point 1., since

E

[
cαλ|ℓ1|αλ1λ{β1=1}

]
= cαλE

[
|ℓ1|αλ

]
p.

2.2 Asymptotics of (τ
n
, n ≥ 1)

We now study the rate of divergence of τn when τn −−−−−→
n→+∞

+∞.

Theorem 2.2.1. Assume now that τ∞ = +∞ a.s. We have the following asymptotics :

1. When p = 1 :

(a) If c > ccrit :
ln(τn)

n

a.s.−−−−−→
n→+∞

α (π cot (πγ) + ln(c)) .

(b) If c = ccrit : for any 0 < λ < 2,
ln(τn)

n1/λ

a.s.−−−−−→
n→+∞

0.

2. When p = 0 :

(a) If θ > 1 :
ln(τn)

n

a.s.−−−−−→
n→+∞

α ln(θ).

(b) If θ = 1 : for any 0 < λ < 1−ρ
1+αρ ,

τn
n1/λ

a.s.−−−−−→
n→+∞

0.

3. When 0 < p < 1 :

(a) If θ > 1 :
ln(τn)

n

a.s.−−−−−→
n→+∞

α ln(θ).

(b) If θ = 1 : for any λ > 0 such that cαλE
[
|ℓ1|αλ

]
p < 1 :

τn
n1/λ

a.s.−−−−−→
n→+∞

0.
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Before proving Theorem 2.2.1, we state a short lemma regarding the negative moments of ξ1.

Lemma 2.2.2.

1. If 0 < α < 2, then for λ ≥ 0 :

E[ξ−λ
1 ] < +∞ ⇐⇒ λ ∈ [0, 1).

2. If α = 2, then for any λ ≥ 0, we have E[ξ−λ
1 ] < +∞

Proof. We denote by (At =
∫ t

0
Lu du, t ≥ 0) the (free) integrated stable Lévy process, and by P(x,y) the

law of (A,L) when started from (x, y). Applying the Markov property, we have for µ > 0 :

∫ +∞

0

e−µt
P(0,1) (At ≤ 0)dt = E

[
e−µξ1

∫ +∞

0

e−µt
P(0,ℓ1) (At ≤ 0) dt

]
.

Recall then that At
(d)
= t1+1/α

1+α L1 under P(0,0). Therefore, since ℓ1 < 0 a.s., we deduce that

1 ≥ P(0,ℓ1) (At ≤ 0) = P

(
L1 ≤ −(1 + α)t−1/αℓ1

)
≥ 1− ρ,

hence

µ

∫ +∞

0

e−µt
P(0,1) (At ≤ 0) dt ≤ E

[
e−µξ1

]
≤ µ

1− ρ

∫ +∞

0

e−µt
P(0,1) (At ≤ 0) dt.

Integrating against µλ−1 on (0,+∞) with λ > 0, we obtain :

λ

∫ +∞

0

t−λ−1
P(0,1) (At ≤ 0) dt ≤ E

[
ξ−λ
1

]
≤ λ

1− ρ

∫ +∞

0

t−λ−1
P(0,1) (At ≤ 0)dt.

The result now follows from the asymptotics of the stable laws, i.e. for 0 < α < 2,

P(L1 ≤ −t−1/α) ∼
t→0

κ t

for some κ > 0. In the Brownian case α = 2, this asymptotics is well-known to be exponential.

Proof. We now come back to the proof of Theorem 2.2.1.

1.(a) The proof of Point 1.(a) is a direct adaptation of Profeta-Simon [23, Theorem A], using the decom-
position :

τ2p − τ2p−1
(d)
= Lτ1 × τ1 ×

(
p−1∏

i=1

c|ℓi|
)2α

.

Note that due to the reflection, there is no need to use the dual process −L here.

1.(b) Let ε > 0. Using the Markov property :

P

(
ln(τn)

n1/λ
≥ ε

)
≤ e−εn1/λ−1/2

E[τ1/
√
n

n ]

≤ e−εn1/λ−1/2

(
E

[
(ξ1U

α
0 )

1/
√
n
]
+

n∑

k=2

E

[
(ξkU

α
0 )

1/
√
n
]
E

[
(ccrit|ℓ1|)α/

√
n
]k−1

)

≤ e−εn1/λ−1/2

E

[
(ξ1U

α
0 )

1/
√
n
] (

1 + (n− 2)E
[
(ccrit|ℓ1|)α/

√
n
]n)

9



since, from Jensen’s inequality,

E

[
(ccrit|ℓ1|)α/

√
n
]
≥ exp

(
α√
n
E[ln(|ℓ1|) + ln(ccrit)]

)
= 1.

Next, using the explicit Mellin transform (6) and Taylor expansions, we may compute the limit :

E

[
(ccrit|ℓ1|)α/

√
n
]n

= e−
√
nαπ cot(πγ)


 sin(πγ(1 + α√

n
))

sin
(
π(1− γ)(1 + α√

n
)
)




n

−−−−−→
n→+∞

exp

(
π2α2

2
(1− 2γ)

)
.

The a.s. convergence then follows from the usual application of the Borel-Cantelli’s lemma.

2.(a) and 3.(a) Both cases may be dealt with in the same way, by taking p ∈ [0, 1[. We start with the
Markov’s inequality :

P

(∣∣∣∣
ln(τn)

n
− α ln(θ)

∣∣∣∣ > ε

)
≤ e−λεn

(
E
[
τλn θ

−αλn
]
+ E

[
τ−λ
n θαλn

])

Using Lemma 2.1.4 with λ small enough, the first term may be bounded by

E
[
τλn θ

−αλn
]
≤ Aλ +Bλθ

−αλn ≤ Aλ +Bλ < +∞

since θ > 1. Similarly, since βn only takes the values 0 or 1, the second term may be bounded by :

E
[
τ−λ
n θαλn

]
≤ θαλnE





ξn+1(1 − βn)θ

αnMα
n + ξn+1βnθ

αgnMα
gn

n∏

i=gn+1

cα|ℓi|α



−λ



≤ θαλn


(1− p)θ−nαλ

E
[
ξ−λ
1 M−αλ

1

]
+ pE[ξ−λ

1 ]E





θgnMgn

n∏

i=gn+1

c|ℓi|




−αλ




 .

Observe next that, decomposing the expectation with respect to the law of gn (see (11)), we obtain

θαλnE





θgnMgn

n∏

i=gn+1

c|ℓi|




−αλ



= θαλnE[U−αλ
0 ]E[|cℓ1|−αλ]npn−1 + (1− p)E[M−αλ

1 ]

n−1∑

k=1

θαλkE[|cℓ1|−αλ]kpk−1.

This term may be bounded by a constant independent of n as soon as λ is small enough so that

θαλE[|cℓ1|−αλ]p < 1.

The result then follows again from the Borel-Cantelli’s lemma.

2.(b) and 3.(b) are consequences of the following result by Petrov [21], which we adapt here to our set-up.
Assume that (Xk, k ≥ 1) are positive r.v.’s such that E[Xν

k ] for some positive ν ≤ 1 and all k ≥ 1.

If An =
∑n

k=1 E[X
ν
k ] −−−−−→n→+∞

+∞, then for any 0 < λ < ν,
∑n

k=1 Xk = o(A
1/λ
n ) a.s.

10



We therefore apply the aforementioned result with Xk = τk − τk−1. When p = 0 and θ = 1, we

choose ν <
1− ρ

1 + αρ
. This yields :

n∑

k=2

E[(τk − τk−1)
ν ] =

n∑

k=1

E[(ξkM
α
k−1)

ν ] ∼
n→+∞

E[(ξ1M
α
1 )

ν ]n.

When p ∈ (0, 1) and θ = 1, we choose ν > 0 such that cανE [|ℓ1|αν ] p < 1. This yields :

n∑

k=2

E[(τk − τk−1)
ν ] = (1− p)E[(ξ1M

α
1 )

ν ] (n− 2) + pE [ξν1 ]

n∑

k=2

E




Mgk−1

k−1∏

i=gk−1+1

c|ℓi|




αν
 .

Passing to the limit in Lemma 2.1.4 as θ → 1, we further deduce that

n∑

k=2

E




Mgk−1

k−1∏

i=gk−1+1

c|ℓi|




αν
 ∼

n→+∞
κn

for some constant κ > 0. Points 2.(b) and 3.(b) thus follow directly from Petrov’s result.

3 Langevin processes conditioned of not hitting (0, 0)

We shall construct in this section the law of an integrated α-stable Lévy process conditioned to stay
positive, thus extending some earlier results by Groeneboom, Jongbloed and Wellner [12] on integrated
Brownian motion. Note that a direct construction seems difficult as we do not have the exact asymptotic
of P(x,y)(τ1 > t) but only lower and upper bounds, see [22, Theorem A]. We assume in this section that

p = 1, and c < ccrit so that τ∞ < +∞ a.s. We now denote by P
(c) the law of the solution of (1), i.e. of the

integrated α-stable Langevin process reflected on a partially elastic boundary, and, to simplify P = P
(0).

The general idea of this section is to first condition the process (X,U) under P(c) to not hit the boundary
(0, 0), which is done using a renewal result, and then to let c → 0.

We start by recalling that the law of Uτ−
1

(which is the same under P
(c) for any c ≥ 0) is given, for

ν ∈ (0, 1) via the Mellin transform (see [23, Formula (2.1)]):

E(x,u)

[
|Uτ−

1
|ν−1

]
= (1 + α)1−

ν
1+α

π

∫∫ ∞

0

λ−νq
(
−
(
1 + xλ1+α + utλ

)
t−1− 1

α

)
dλ t−1−1/αdt

Γ2 (ν/(1 + α)) Γ(1 − ν) sin (πν(1 − γ))

where q is the stable density whose Fourier transform is given by :
∫

R

eiλzq(z)dz = E

[
exp

(
iλ

∫ 1

0

Lsds

)]
= exp

(
− 1

α+ 1
(iλ)αe−iπαρ sgn(λ)

)
.

Integrating by parts in λ to remove the term Γ(1− ν), we obtain

E(x,u)

[
|Uτ−

1
|ν−1

]

= (1 + α)1−
ν

1+α

π

∫ ∞

0

λ1−ν

∫ ∞

0

(1 + α)xλα + ut

t2+2/α
q′
(
−
(
1 + xλ1+α + utλ

)
t−1− 1

α

)
dt dλ

Γ2 (ν/(1 + α)) Γ(2− ν) sin (πν(1 − γ))
(15)
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which is valid for ν ∈
(
0, 1

1−γ

)
.

Remark 3.0.1. In the following, to avoid complicated notations in conditional expectations, we shall
systematically remove the superscript (c) when taking the expectation of Fτ1-measurable random variables.

3.1 The case 0 < c < ccrit

We follow Jacob [15, Section 3]. Let η(c) > 0 be the unique solution of the equation

cαη(c)E(0,1)

[
|Uτ−

1
|αη(c)

]
= 1 ⇐⇒ cαη(c)

sin (πγ(αη(c) + 1))

sin (π(1 − γ)(αη(c) + 1))
= 1. (16)

Looking at Formula (6), we see that η(c) is a decreasing function of c, and is such that

lim
c→0

η(c) =
1− ρ

1 + αρ
= η.

We define the harmonic function hc for {x > 0 and u ∈ R} or {x = 0 and u > 0} by

hc(x, u) = cαη(c)E(x,u)[|Uτ−
1
|αη(c)] (17)

Note that hc enjoys the following scaling property :

hc(x, u) = x
αη(c)
1+α hc(1, ux−1/(α+1)). (18)

In particular, for x > 0 and u > 0, we have

hc(0, u) = uαη(c) and hc(x, 0) = x
αη(c)
1+α hc(1, 0).

To simplify the expressions, we set a− = max(−a, 0) and

κc
α,ρ =

π(1 + α)
(1−η(c))α

1+α

Γ2(1+η(c)α
1+α )Γ(1− η(c)α) sin (πγ(1 + η(c)α))

.

Integrating by parts (15) with ν = 1 + αη(c), and using several changes of variables, we obtain :

hc(x, u) = αη(c)κc
α,ρ

∫∫ +∞

0

λ−αη(c)−1

(
q

(
− 1

t1+1/α

)
− q

(
−1 + xλ1+α + utλ

t1+1/α

))
t−1−1/αdλ dt

=
αη(c)

1 + α
κc
α,ρ

∫ +∞

0

E



(∫ t

0

Lsds

)α(η(c)−1)
1+α

−


− E



(
x+ ut+

∫ t

0

Lsds

)α(η(c)−1)
1+α

−


 dt

which proves that hc is increasing in both variables x and u. Note that hc also enjoys the following scaling
property :

hc(x, u) = x
αη(c)
1+α hc(1, ux−1/(α+1)). (19)

Proposition 3.1.1. For 0 < c < ccrit, there exists a probability P
(c)↑
(x,u) on (Ω,F∞) such that

∀Λs ∈ Fs, lim
t→+∞

P
(c)
(x,y)(Λs|τ∞ > t) = P

(c)↑
(x,u)(Λs).

P
(c)↑
(x,u) may be described by an h-transform with respect to P

(c)
(x,u) as follows :

∀Λs ∈ Fs, P
(c)↑
(x,u)(Λs) =

1

hc(x, u)
E
(c)
(x,u)

[
IΛsh

c(Xs, Us)I{s<τ∞}
]
.

12



Proof. From Goldie [11, Theorem 4.1], there exists κ > 0 such that:

P
(c)
(0,u)(τ∞ > t) ∼

t→+∞
κ
uαη(c)

tη(c)

where η(c) is the solution of the equation (16). Applying the Markov property at the time τ1, we then
deduce that

P
(c)
(x,u)(τ∞ > t) = E(x,u)

[
P
(c)
(0,c|U

τ
−
1
|)(τ∞ > t− τ1)

]
.

To apply the dominated convergence theorem, let us fix some deterministic A > 0 such that, for any

t ≥ A, we have tη(c)P
(c)
(0,1)(τ∞ > t) ≤ 2κ. Then, by scaling and since 0 < η(c) < 1 :

tη(c)P
(c)
(0,c|U

τ
−
1
|)(τ∞ > t− τ1)

≤ (t− τ1)
η(c)

P
(c)
(0,1)

(
τ∞ >

t− τ1
cα|Uτ−

1
|α

)
+ τ

η(c)
1

≤ Aη(c)cαη(c)|Uτ−
1
|αη(c)I{

t−τ1
cα|U

τ
−
1

|α
≤A

} + 2κcαη(c)|Uτ−
1
|αη(c)I{

t−τ1
cα|U

τ
−
1

|α
≥A

} + τ
η(c)
1

≤ (Aη(c) + 2κ)cαη(c)|Uτ−
1
|αη(c) + τ

η(c)
1

which is integrable since η(c) < η. The dominated convergence theorem then yields :

P
(c)
(x,u)(τ∞ > t) ∼

t→+∞
κ
hc(x, u)

tη(c)
.

Next, applying the Markov property at time s, we deduce that

P
(c)
(x,u)(τ∞ > t|Fs) −−−−→

t→+∞
hc(Xs, Us)

h(x, u)
I{τ∞>s}

and the result (i.e. the L1 convergence) will follow from Scheffé’s lemma, once we have proven that

E
(c)
(x,u)

[
hc(Xs, Us)I{τ∞>s}

]
= hc(x, u).

Observe that by definition of η(c):

E
(c)
(x,u)[|Uτ−

n
|αη(c)] = E

(c)
(x,u)

[
E(0,c|U

τ
−
n−1

|)
[
|Uτ−

1
|αη(c)

]]

= E
(c)
(x,u)

[
(c|Uτ−

n−1
|)αη(c)E(0,1)

[
|Uτ−

1
|αη(c)

]]
= E

(c)
(x,u)[|Uτ−

n−1
|αη(c)].

By iteration, we deduce that

hc(x, u) = cαη(c)E
(c)
(x,u)[|Uτ−

n
|αη(c)]

= cαη(c)E
(c)
(x,u)

[
|Uτ−

n
|αη(c)I{τn≤s}

]
+ E

(c)
(x,u)

[
hc(Xs, Us)I{τn>s}

]
. (20)
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It remains to prove that the first term converges towards 0 as n → +∞. By the Markov property :

In := E
(c)
(x,u)

[
|Uτ−

n
|αη(c)I{τn≤s}

]

= E
(c)
(x,u)

[
|Uτ−

n
|αη(c)I{τn≤s}I{|U

τ
−
n

|≤1}
]

︸ ︷︷ ︸
Jn

+E
(c)
(x,u)

[
E(0,c|U

τ
−
n−1

|)

[
|Uτ−

1
|αη(c)I{τ1+τn−1≤s}I{|U

τ
−
1

|≥1}

]]

︸ ︷︷ ︸
Kn

.

Observe first that by dominated convergence, Jn −−−−−→
n→+∞

0. Next, by scaling, the second term Kn may

be written

Kn = E
(c)
(x,u)

[
(c|Uτ−

n−1
|)αη(c)E(0,1)

[
|Uτ−

1
|αη(c)I{τ1cα|U

τ
−
n−1

|α+τn−1≤s}I{c|U
τ
−
n−1

||U
τ
−
1
|≥1}

]]
.

Applying the inequality I{a+b≤s} ≤ I{a≤s}I{b≤s} which is valid for positive a and b, we obtain

Kn ≤ E
(c)
(x,u)

[
|Uτ−

n−1
|αη(c)I{τn−1≤s}E(0,1)

[
(c|Uτ−

1
|)αη(c)I{τ1cα|U

τ
−
n−1

|α≤s}I{c|U
τ
−
n−1

||U
τ
−
1
|≥1}

]]
.

Then, since
I{τ1cα|U

τ
−
n−1

|α≤s}I{c|U
τ
−
n−1

||U
τ
−
1
|≥1} ≤ I{τ1/|U

τ
−
1
|α≤s}

we deduce that

Kn ≤ E
(c)
(x,u)

[
|Uτ−

n−1
|αη(c)I{τn−1≤s}

]
E(0,1)

[
(c|Uτ−

1
|)αη(c)I{τ1/|Uτ

−
1

|α≤s}

]
= In−1 × r

where we have set r = E(0,1)

[
(c|Uτ−

1
|)αη(c)I{τ1/|U

τ
−
1

|α≤s}

]
∈ (0, 1). By iteration, we obtain for n ≥ 2,

In ≤
n−2∑

k=0

Jn−k r
k + I1r

n−1

and the result follows by letting n → +∞ and using dominated convergence.

3.2 The case c = 0

We are now interested in letting c → 0, in order to obtain the law of a (free) stable Langevin process
conditioned on not hitting 0. In this case, notice from (16) that :

lim
c→0

hc(x, u) = lim
ν→1+αη

sin (πν(1− γ))

sin(πγν)
E(x,u)[|Uτ−

1
|ν−1].

Passing to the limit in hc we deduce that

h0(x, u) = αηκ0
α,ρ

∫∫ +∞

0

λ−αη−1

(
q

(
− 1

t1+1/α

)
− q

(
−1 + xλ1+α + utλ

t1+1/α

))
t−1−1/αdλ dt.

Corollary 3.2.1. The law of an integrated α-stable Lévy process conditioned to stay positive is given by

∀Λs ∈ Fs, P
↑
(x,u)(Λs) =

1

h0(x, u)
E(x,u)

[
IΛsh

0(Xs, Us)I{s<τ1}
]
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Proof. To show that this definition makes sense, we shall prove that P↑ may be obtained by a penalization
procedure, i.e. that :

P(x,u)

(
Λs|Uτ−

1
> t
)
−−−−→
t→+∞

P
↑
(x,u) (Λs) .

Indeed, observe first that :

tαηP(x,u)

(
Uτ−

1
> t|Fs

)
= tαηP(x,u)

(
{Uτ−

1
> t} ∩ {τ1 ≤ s}|Fs

)
+ tαηP(x,u)

(
{Uτ−

1
> t} ∩ {τ1 > s}|Fs

)

= tαηI{{U
τ
−
1
>t}∩{τ1≤s}} + tαηI{τ1>s}P(Xs,Us)

(
Uτ−

1
> t
)

−−−−→
t→+∞

I{τ1>s}h
0(Xs, Us)

hence, as before, the L1-convergence will follow from Scheffé’s lemma once we have proven that

E(x,u)

[
h0(Xs, Us)I{s<τ1}

]
= h0(x, u).

Going back to Formula (20) with n = 1, we obtain that :

hc(x, u) = cαη(c)E(x,u)

[
|Lτ1 |αη(c)I{τ1≤s}

]
+ E(x,u)

[
hc(Xs, Us)I{τ1>s}

]
. (21)

Now, from Joulin [17], for any 0 < ε < α:

E(x,u)[|Lτ1|α−ε
I{τ1≤s}] = E(x,u)[|Ls∧τ1 |α−ε]− E(x,u)[|Ls|α−ε

I{s≤τ1}]

≤ E(x,u)

[
sup

0≤r≤s
|Lr|α−ε

]
+ E(x,u)[|Ls|α−ε] < +∞

hence, since ηα < α :

lim
c→0

cαη(c)E(x,u)

[
|Lτ1 |αη(c)I{τ1≤s}

]
= 0.

Next, fix 0 < δ < ccrit. Since (c, u) 7→ hc(1, u) is continuous on [0, δ] × R and u 7→ hc(1, u) is increasing
and such that hc(1, u) ∼

u→+∞
uαη(c), we deduce that we may find two constants Aδ and Bδ, such that, for

any c ∈ [0, δ], we have :
hc(1, u) ≤ Aδ +Bδ (|u| ∧ 1)αη

By the scaling property of hc, we then obtain :

hc(x, u) ≤ Aδ (x ∧ 1)
αη
1+α +Bδ (|u| ∧ 1)αη.

The result finally follows by passing to the limit in (21) and using the dominated convergence, since Xs

and Ls admits moments of order α− ε under P.

Corollary 3.2.2. Assume that {x = 0 and u > 0} or {x > 0 and u ≥ 0}. Then, there exists a constant
κ > 0 such that :

P(x,u)(τ1 > t) ∼
t→+∞

κ
h0(x, u)

tη
.

Proof. Using Corollary 3.2.1, we first have :

h0(x, u)E↑
(x,u)

[
1

h0(Xt, Ut)

]
= P(x,u)(τ1 > t).
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By the scaling property of h0 and (Xt, Ut), we deduce that :

P(x,u)(τ1 > t) =
h0(x, u)

tη
E
↑
(

x

t1+1/α
, u

t1/α

)

[
1

h0(X1, U1)

]
.

Looking at this expression, it only remains to prove that the function

Ψ(t) = E
↑
(

x

t1+1/α
, u

t1/α

)

[
1

h0(X1, U1)

]

admits a finite limit as t → +∞. Observe first that, since x and u are positive and h0 is increasing in
both variables, the monotony (with respect to the initial conditions) of (X,U) under P↑ implies that Ψ is
increasing. The result then follows from [22, Theorem A], in which it is proven that there exists a constant
κ > 0 such that :

lim sup
t→+∞

Ψ(t) ≤ κ.

Remark 3.2.3. In the case of integrated Brownian motion, (i.e. α = 2 and ρ = 1/2) we obtain with our
normalization U =

√
2B :

h0(x, u) =
1

6

√
3

π

∫ +∞

0

E

[(∫ t

0

√
2Bsds

)− 1
2

−

]
− E

[(
x+ ut+

∫ t

0

√
2Bsds

)− 1
2

−

]
dt.

We briefly check that this expression agrees with the one of [12], that is,

ĥ(x, u) = x−1/6u

(
2

9

)1/6

U

(
1

6
,
4

3
;
2

9

u3

x

)
, for x, u > 0

where U(a, b; z) denote the usual confluent hypergeometric function, see [1, Chapter 13]. Let B be a
standard Brownian motion and define

P

(
x+ ut+

∫ t

0

Bsds ∈ dy, u+Bt ∈ dv

)
= qt(x, u; y, v)dydv.

Writing h0 in terms of qt, we obtain :

h0(x, u) =
2−1/4

6

√
3

π

∫ ∞

0

∫ 0

−∞

∫

R

1√
z

(
qt (0, 0; z, v)− qt

(
x√
2
,
u√
2
; z, v

))
dt dz dv.

Denote by D(x,u) the generator of B and its integral :

D(x,u) =
1

2

∂2

∂u2
+ u

∂

∂x
.

Since qt is a solution of the Kolmogorov backward equation, we obtain that :

D(x,u)h
0
(√

2x,
√
2u
)
= −2−1/4

6

√
3

π

∫ ∞

0

∫ 0

−∞

∫

R

1√
z

∂

∂t
qt (x, u; z, v) dt dz dv = 0.
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Using the scaling of h0, we deduce that the function u −→ h0(
√
2,
√
2u) is a solution of the ODE

g′′(u) =
2

3
u2g′(u)− 1

3
ug(u).

Since h0(
√
2,
√
2u) ∼

u→+∞
21/4

√
u, we finally conclude, as in [12] that :

ĥ(x, u) =
1

21/4
h0(

√
2x,

√
2u).

Using the explicit Gaussian density and the complement formula for the Gamma function, we may also
check that

1

21/4
h0(

√
2, 0) =

(
9

2

)1/6
Γ(1/3)

Γ(1/6)
= lim

u→0+
ĥ(1, u).

4 Link with kinetic equations and a probabilistic approach for

related trace problems

In this section, we apply the results of Section 2 in order to exhibit the link between (1) and the trace
problems related to kinetic equations endowing Maxwellian boundary condition (see e.g. [7], Mischler
[20]).

4.1 The Brownian case

The link between the sequence of zero times of the integrated Brownian motion, the modeling of boundary
condition for Langevin dynamics and trace problems for kinetic equations was previously exploited in
Bossy and Jabir [5] (see also [6] for the multi-dimensional case) in order to show the well-posedness
of some Lagrangian Stochastic model related to wall-bounded fluid flows. The trace problem related
to Langevin models driven by a one-dimensional Brownian diffusion (L =

√
2B) and endowing purely

reflective boundary conditions (p = c = 1) concerns the existence, in an appropriate sense, of a solution
to the boundary value problem:

∂tρ(t, x, u) + u∂xρ(t, x, u)− ∂2
uρ(t, x, u) = 0, (t, x, u) ∈ (0,∞)× (0,∞)× R, (22a)

ρ(t, 0, u) = ρ(t, 0,−u), (t, u) ∈ (0,∞)× R, (22b)

where ρ(t) represents the probability density function of (Xt, Ut). In a rigorous way, the variational
formulation of (22a)-(22b) consists in the existence of ρ and the existence of a pair of trace functions
γ+(ρ) and γ−(ρ) defining the value of ρ(t, 0, u) along the respective boundary sets

Σ+ = {(t, u) ∈ (0,∞)× R |u < 0} and Σ− = {(t, u) ∈ (0,∞)× R |u > 0}

and such that: for all 0 ≤ T < ∞ and for all f ∈ C∞
c ((0, T )× [0,∞)× R),

∫ T

0

∫∫

(0,∞)×R

(
∂tf(t, x, u) + u∂xf(t, x, u) + ∂2

uf(t, x, u)
)
ρ(t, x, u) dt dx du

= −
∫∫

Σ+

uγ+(ρ)(t, 0, u)f(t, 0, u)I{0≤t≤T} dt du −
∫∫

Σ−

uγ−(ρ)(t, 0, u)f(t, 0, u)I{0≤t≤T} dt du

(23)

From a PDE point of view, the existence of trace functions can be handled in a classical sense by showing
the continuity of x 7→ ρ(t, x, u) up to the axis x = 0 or in a weak sense by showing some appropriate
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Sobolev estimates for ρ. As noticed in [5], the trace functions γ+ and γ− have also a natural probabilistic
interpretation as density functions related to

∑
n≥1 P ◦ (τn, Uτn)

−1 for the solution of the SDE :





Xt = X0 +

∫ t

0

Us ds, Ut = U0 +
√
2Bt − 2

∑

n≥1

Uτ−
n
I{τn≤t},

τn = inf{t ≥ τn−1; Xt = 0}, τ0 = 0.

4.2 The stable Langevin case

In the more general case of a stable Langevin model (1) and assuming for simplicity that θ = 1, the
probabilistic interpretation of the trace functions γ± in terms of the SDE





Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Lt +
∑

n≥1

(
(1− βn)(Mn − Uτ−

n
)− (1 + c)βnUτ−

n

)
I{τn≤t},

τn = inf{t ≥ τn−1; Xt = 0}, τ0 = 0,

(24)

proceeds as follows. For all C∞
c ([0, T )× [0,∞)× R)-scalar function f , Itô’s formula yields that

0 =

∫∫
f(0, x, u)µ0(dx, du) +

∫ T

0

∫∫
(∂tf(t, x, u) + u∂xf(t, x, u) + ∂α

u f(t, x, u))µt(dx, du) dt

+ E




∑

0≤t≤T,△Lt 6=0

(f(t,Xt, Lt)− f(t,Xt, Lt−)) +
∑

n≥1

(
f(τn, Xτn , Uτ+

n
)− f(τn, Xτn , Uτ−

n
)
)
I{τn≤T}


 ,

where µt(dx, du) = P(Xt ∈ dx, Ut ∈ du) and where ∂α is the fractional Laplace operator:

∂α
u f(x) := C(α)

∫

{y 6=0}

f(y + x)− f(x)− yf ′(x)I{|y|≤1}
|y|α+1

dy.

Assume now that
P(M1 ∈ du) = um(u) du, (25)

and that the following properties hold true :

(P1) ∀n ≥ 1, P ◦ (τn, Uτ−
n
)−1 is absolutely continuous w.r.t. the measure

(
I{0≤t≤T}dt

)
⊗
(
uI{u≤0}du

)
,

(P2)
∑

n≥1

P(τn ≤ T ) < ∞.

Therefore there exists a non-negative integrable Borel function γ+ defined on Σ+ such that

E



∑

n≥1

f(τn, Xτn , Uτ−
n
)I{τn≤T}


 = −

∫∫

(0,T )×R−

uγ+(t, 0, u)f(t, 0, u) dt du, (26)

and since

Uτn = Uτ−
n
+△Uτn = Uτ−

n
+ (1− βn)(Mn − Uτ−

n
)− (1 + c)βnUτ−

n
= (1− βn)Mn − cβnUτ−

n
,
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this implies that P◦ (τn, Uτn)
−1 is also absolutely continuous w.r.t.

(
I{0≤t≤T}dt

)
⊗
(
uI{u≤0}du

)
. Denoting

the related density by γ−, we observe that, for all f ∈ Cc((0, T )× (0,∞)),

E


∑

n≥1

f(τn, Xτn , Uτn)I{τn≤T}


 =

∫∫

(0,T )×R+

uγ−(t, 0, u)f(t, 0, u) dt du

=
∑

n≥1

E

[
f(τn, Xτn , (1− βn)Mn − βncUτ−

n
)I{τn≤T}

]

= p
∑

n≥1

E
[
f(τn, Xτn ,Mn)I{τn≤T}

]
+ (1− p)

∑

n≥1

E

[
f(τn, Xτn ,−cUτ−

n
)I{τn≤T}

]
.

Then, since, for any n, the r.v.’s τn and Mn are independent, we obtain, with m the distribution of M1,

∑

n≥1

E
[
f(τn, Xτn ,Mn)I{τn≤T}

]
=
∑

n≥1

(∫ +∞

0

uE
[
f(τn, Xτn , u)I{τn≤T}

]
m(u) du

)

=

∫ ∞

0

u


∑

n≥1

E
[
f(τn, Xτn , u)I{τn≤T}

]

m(u) du

=

∫ ∞

0

u

(
−
∫∫

(0,T )×R−

f(t, 0, u)vγ+(t, 0, v) dt dv

)
m(u) du,

which implies, using (26),

∫∫

(0,T )×R+

uγ−(t, 0, u)f(t, 0, u) dt du = p

(∫∫

(0,T )×R+

um(u)

(
−
∫ 0

−∞
vγ+(t, 0, v)dv

)
f(t, 0, u) dt du

)

+
(1 − p)

c2

∫∫

(0,T )×R+

uγ+

(
t, 0,

−u

c

)
f(t, 0, u) dt du.

(27)
Combining (23) and (27), we deduce that the time marginal distribution (µt, 0 ≤ t ≤ T ) satisfies the
variational equation: for all f ∈ C∞

c ([0, T )× [0,∞)× R),

∫ T

0

∫∫

(0,∞)×R

(∂tf(t, x, u) + u∂xf(t, x, u) + ∂α
u f(t, x, u))µt(dx, du) dt

= −
∫∫

(0,∞)×R

f(0, x, u)µ0(dx, du) du −
∫∫

Σ+

uγ+(t, 0, u)f(t, 0, u)I{0≤t≤T}dtdu

−
∫∫

Σ−

uγ−(t, 0, u)f(t, 0, u)I{0≤t≤T}dtdu

(28)

with the boundary condition

γ−(t, 0, u) =
1− p

c2
γ+

(
t, 0,

−u

c

)
+ pm(u)

(
−
∫

{v≤0}
vγ+(t, 0, v) dv

)
.

The trace problem related to (28) is then reduced to the verification that (P1) and (P2) hold true.

Theorem 4.2.1. Assume that (Lt, 0 ≤ t ≤ T ) is symmetric, that (X0, U0) is distributed according to a
probability measure µ0 defined on (0,∞)× R, that (25) hold true, θ = 1 and
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• either 0 ≤ p < 1

• or p = 1 and c > ccrit and there exists 0 < ν < 1 such that, for any δ ∈ (0, ν),
∫∫

E(x,u)

[
|Uτ−

1
|−δ
]
µ0(dx, du) < ∞.

Then (P1) and (P2) hold true.

As a preliminary result for the proof of Theorem 4.2.1, let us show that

Lemma 4.2.2. P ◦ (τ1, Uτ−
1
)−1 is absolutely continuous with respect to the measure uI{u<0}du ⊗ dt.

Proof of Lemma 4.2.2. The idea of the proof relies on showing that (24) in the case of a purely reflecting
wall (p = 1, c = 1) admits trace functions (in a classical sense) and to deduce from (26) that, for all n,
P ◦ (τn, Uτ−

n
)−1 is absolutely continuous with respect to uI{u<0}du⊗ dt.

First, let us consider the distribution µf
t of the (free) Langevin processes

Vt = U0 + Lt and Yt = X0 +

∫ t

0

Vs ds.

For all t > 0, λ, ω ∈ R, we have :

µ̂f
t (ω, λ) := E

[
eiωYt+iλVt

]
=

∫∫

R×R

eiω(x+ut)+iλu
E

[
eiω

∫

t
0
Ls ds+iλLt

]
µ0(dx, du)

=

∫∫

R×R

eiω(x+ut)+iλue−t
∫ 1
0
|tωr+λ|αdrµ0(dx, du)

Then, the successive changes of variables λ̃ = λ/ω, ω̃α = ωα
∫ 1

0 |tr + λ̃|α dr yields

∫∫

R×R

|µ̂f
t (ω, λ)|dλ dω

≤
∫∫

R×R

e−t
∫ 1
0
|tωr+λ|α dr dλ dω =



∫

R

1
(∫ 1

0

∣∣∣rt+ λ̃
∣∣∣
α

dr
) 2

α

dλ̃



(∫

R

|ω̃|e−t|ω̃|α dω̃

)
< ∞,

hence, for all 0 < t ≤ T , the Fourier transform µ̂f
t is integrable on R×R. This implies (see e.g. Jacob and

Protter [16], Theorem 13.1) that the distribution µf
t of (Yt, Vt) admits a bounded continuous Lebesgue

density ρf (t) on R× R given by

ρf (t, y, v) =
1

(2π)2

∫∫

R×R

e−iωy−iλv

(∫∫

R×R

eiω(x+ut)+iλue−t
∫

1
0
|tωr+λ|α drµ0(dx, du)

)
dλ dω.

Additionally, for all k, l > 1, by applying the same change of variables as above,

∣∣∂k
y∂

l
vρ

f (t, y, v)
∣∣ ≤

∫∫

R×R

|ω|k|λ|le−t
∫ 1
0
|tωr+λ|α dr dλ dω

≤



∫

R

|λ̃|l
(∫ 1

0
|rt+ λ̃|α dr

) k+l+2
α

dλ̃



(∫

R

|ω̃|k+l+1e−t|ω̃|α dω̃

)
< ∞,
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from which we deduce that, for all t > 0, ρf (t) is C∞ on R× R.

Next, define
Xr

t = |Yt|, U r
t = Vt sign(Y )+t , t ≥ 0,

where (sign(Y )+t , t ≥ 0) is the càdlàg modification of (sign(Yt), t ≥ 0). Since, for any n, ζn+1 = inf{t >
ζn, Yt = 0} (with ζ0 = 0) is a predictable stopping time, t 7→ Lt never jumps a.s. at ζn (see e.g. Blumenthal
[4], Theorem 5.1). Itô’s formula then yields that

Xr
t = X0 +

∫ t

0

U r
s ds,

U r
t = U0 +

∫ t

0

sign(Y )−s dLs +
∑

0<s≤t

Vs−△sign(Y )−s I{△sign(Y )−s 6=0} +
∑

0<s≤t

△Ls△sign(Y )−s

= U0 +

∫ t

0

sign(Y )−s dLs − 2
∑

0<s≤t

U r
s−I{△Xr

s 6=0}.

Thanks to the symmetric property of (Lt, t ≥ 0) and the fact the L and sign(Y ) a.s. do not jump at the

same time, (
∫ t

0 sign(Y )−s dLs, t ≥ 0) is also a symmetric α-stable Lévy process, and ((Xr
t , V

r
t ), t ≥ 0) is

a weak solution to the Langevin model (1) with purely elastic reflection. Therefore P (Xr
t ∈ dx, U r

t ∈ du)
admits a smooth density function ρr given by

P (Xr
t ∈ dx, U r

t ∈ du) =
(
ρf (t, x, u) + ρf (t,−x,−u)

)
I{x≥0} dx du.

Owing to the smoothness of µf
t and replicating the arguments of [5, Theorem 2.3], we deduce that the

natural trace functions satisfying (28) in the purely reflective case are given by

γ±(ρr)(t, 0, u) =
(
ρf (t, 0, u) + ρf (t,−0,−u)

)
I{x≥0,±u<0}.

According to (26), this is enough to ensure that

P ◦ (τr1 , U r
τ−
1

)−1 = P ◦ (τ1, U0 + Lτ−
1
)−1

admits a density with respect to
(
I{0≤t≤T}dt

)
⊗
(
uI{u≤0}du

)
.

Proof of Theorem 4.2.1. For (P1), applying Lemma 4.2.2 and using (25) and the Markov property, we
immediately deduce that for all n ∈ N

P(τn ∈ dt, Uτ−
n
∈ du)

admits a density with respect to the measure uI{u<0}du⊗ dt, and that (P1) is satisfied.
For (P2), assuming that 0 ≤ p < 1, by the Markov property, we have

E
[
e−τn+1

]
= E

[
e−τnE(0,Uτn )

[
e−τ1

]]
= E

[
e−τn

(
(1− p)E(0,Mn)

[
e−τ1

]
+ pE(0,−cU

τ
−
n
)

[
e−τ1

])]

≤ E
[
e−τn

]
E
[(
(1− p)E(0,M1)

[
e−τ1

]
+ p
)]

.

Therefore, setting ̺ := E
[
(1− p)E(0,M1) [e

−τ1 ] + p
]
which is strictly smaller than 1,

E
[
e−τn+1

]
≤ ̺nE

[
e−τ1

]
.
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For any given 0 < T < +∞, choosing cT > 0 such that I{r≤T} ≤ cT e
−r, it follows that

∑

n≥1

P(τn ≤ T ) ≤ cT
∑

n≥1

E
[
e−τn

]
≤ cTE

[
e−τ1

]∑

n≥0

̺n < ∞.

In the case where p = 1 and c > ccrit, we first write, for n ≥ 2 :

∑

n≥1

P (τn ≤ T ) ≤
∑

n≥1

P (τn+1 − τn ≤ T ) .

Then, using the Markov’s inequality with δ > 0 and the decomposition (9),

P (τn+1 − τn ≤ T ) =

∫∫

(0,∞)×R

P(x,u) (τn+1 − τn ≤ T )µ0(dx, du) ≤
∫∫

(0,∞)×R

E(x,u)

[
T δ

(τn+1 − τn)
δ

]
µ0(dx, du)

≤ T δ
E
[
ξ−δ
1

]
E







n∏

j=1

|cℓi|α



−δ


∫∫

(0,∞)×R

E(x,u)

[
|Uτ−

1
|−δ
]
µ0(dx, du)

≤ T δ
E
[
ξ−δ
1

] (
E

[
|cℓ1|−αδ

])n ∫∫

(0,∞)×R

E(x,u)

[
|Uτ−

1
|−δ
]
µ0(dx, du).

According to Lemma 2.2.2, taking δ < ν immediately ensures that E
[
ξ−δ
1

]
is finite. Next, since f(δ) =

E

[
|cℓ1|−αδ

]
is such that f(0) = 1 and

f ′(0) = (E [exp (−αδ ln |cℓ1|)])′|δ=0 = −αE [ln |cℓ1|] < −α (ln(ccrit) + E [ln |ℓ1|]) = 0,

f is decreasing near 0. Hence, choosing δ > 0 small enough, ̺ = E

[
|cℓ1|−αδ

]
< 1, and we get

P (τn+1 − τn ≤ T ) ≤ C̺n with ̺ < 1. This enables to conclude (P2).
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