A stable Langevin model with diffusive-reflective boundary conditions - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2019

A stable Langevin model with diffusive-reflective boundary conditions

Résumé

In this note, we consider the construction of a one-dimensional stable Langevin type process confined in the upper half-plane and submitted to reflective-diffusive boundary conditions whenever the particle position hits 0. We show that two main different regimes appear according to the values of the chosen parameters. We then use this study to construct the law of a (free) stable Langevin process conditioned to stay positive, thus extending earlier works on integrated Brownian motion. This construction further allows to obtain the exact asymptotics of the persistence probability of the integrated stable Lévy process. In addition, the paper is concluded by solving the associated trace problem in the symmetric case.
Fichier principal
Vignette du fichier
SPA3421.pdf (273.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01543660 , version 1 (21-06-2017)
hal-01543660 , version 2 (16-06-2020)

Identifiants

Citer

J.-F Jabir, Christophe Profeta. A stable Langevin model with diffusive-reflective boundary conditions. Stochastic Processes and their Applications, 2019, 129 (11), pp.4269-4293. ⟨hal-01543660v2⟩
214 Consultations
99 Téléchargements

Altmetric

Partager

More