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This paper is the second part of a two-part series. Part 1 was 

about how the spatial diffusion process of a public good interacts with a 

theory of distributive justice to produce an optimal urban form.* The 

terminology and ideas of Part 1 are assumed to be known. This paper begins 

by applying the framework of Part 1 to develop a classification of spatial 

public goods, and to order existing literature on the basis of this classi

fication. In addition to clubs, urban contact fields, pure and local public 

goods, the first section discusses a new model of spatial public good —  the 

agora. The second section examines the problem of allocating land between 

private and public use in the case of transportation and agora models. The 

third section deals with certain aspects of optimal public finance which is 

known in the literature as the Mohring paradox. It is seen that optimal 

taxes on the use of land do not, in general, match the optimal level of 

public investment. In this sense, some public projects should operate under 

deficit while some others should generate a surplus. Generating a surplus 

or deficit at the optimum crucially depends on the nature of returns to 

scale in the maintenance of a given environmental quality. Finally, section 

four displays a number of aggregate relationships which express a balance 

between costs and benefits of an optimal agglomeration. Costs include urban 

transportation while benefits include the surplus value of urban production. 

It is seen that the nature of such balance will be determined by the shape 

of the city and the technology of transportation.



CLASSIFICATION

A way in which environmental quality can be determined by the 

spatial distribution of population and public Investment over an urban area 

has been given in (3) of Part 1. Here it is convenient to specialize this 

equation by distinguishing explicitly between distance and density effects. 

Thus (3) of Part 1 is now written as

Eij " ’ij5ij[n* “i1* (1)

where 5 is a distance-response function and E is a density-response 

function; and where the explicit dependence of E on both i and j reflects 

the truth that public goods in zones differing with respect to relative 

location and size are congested differently by the same population.

The structure of (1) is precisely analogous to that adopted in an

2
earlier study concerning spatial externalities. In that study, three 

spatial externality cases where discussed, namely, urban contact fields, 

density models and distance models. An urban contact field is a spatial 

externality such that the density-response function depends only on magni

tudes at the origin of the externality. A density model of a spatial exter

nality implies that the distance-response function is trivial. There are 

two polar cases of a density model: (1 ) one with no spill-over effects, 

i.e. ■ 1 for i = j and zero otherwise, which represents purely local

externality effects; and (2 ) one with no distance response, i.e. 5^  « 1 for 

all i and j, which represents no friction of distance. Finally, a distance



model of a spatial externality implies that the density-response function 

has a trivial spatial distribution. Absolute concentration at the centre, 

or uniform distribution over the urban area provide examples of trivial 

spatial distributions. Using these concepts, we may classify the main types 

of spatial public goods in the literature as follows.

CLUBS

The origin of clubs here is to be found in a density model with no 

distance-response. Since t = 1 for i, j £ J* , it must also be that 

5 jj[n,’0>̂ [ * g^[N, a^], i.e. that the spatial distribution of population is 

immaterial to the production of the public good. Thus the quality of the 

environment experienced in zone j is

b b
Ei = £ gk [N’ “k 1 = 2 E gk fN> = 5 ( 2 )

J k=-b k=l

using (4) of Part 1. That is, in the absence of distance-response, the

quality of the environment is invariant over the landscape. Since both the

optimal utility differences and the marginal location rates are proportional

to environmental quality differences ((42) and (43) of Part 1), we conclude

that A u = 0 and ^  = 0 for i = 1 ,..., b irrespectively of the degree of 
i

aversion to inequality. On the other hand, from (39) of Part 1 and (2),



Assuming, as in Part 1, that the total value of the urban product is 

distributed to the inhabitants of the optimal city, the planner must impose 

a tax or subsidy on the residents of zone i equal to

because n is invariant over the landscape. Hence there is no need for

income re-distribution under any degree of aversion to inequality. It 

follows that, in this case, the theory of justice espoused by the planner is 

immaterial. Absence of the friction of distance, a fundamental geographical 

characteristic, equalizes the quality of the environment which, in turn, 

dictates equal treatment of equals in any case. Therefore, the optimal 

decentralization policy of Part 1 reduces to the problem of producing 

efficiently the private and public goods. Efficient production of the 

private good implies, as in Part 1, that the planner must impose an optimal

*
population size N . Efficient production of the public good, on the other 

hand, hinges upon returns to scale in its production: if under decreasing

returns, it should be concentrated somewhere; and if increasing returns are 

exhausted at a size smaller than ft, another multitude of solutions will 

emerge. It seems that this context trivializes such spatial issues. Once 

efficient production and optimal population size are ascertained, competi

tion for land between those admitted will lead to the optimum. In conse

returns, ft should be uniformly distributed over under increasing
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quence, absence of the friction of distance eliminates the need for any land 

controls.

When space is completely abstracted, E = g[N, ft] and the model 

acquires the standard form of a club. Then the marginal rate on the use of 

land is simply

>, = - X —  A g. (5)
1 9E N

Following Buchanan’s original contribution, a growing literature has

focussed on the interaction between the size of a club and the corresponding

3
level of public investment. In this context, which is more general because 

Ü is endogenous rather than exogenous, the optimal size reflects a balance 

between the economies of increasing population size and the diseconomies of 

congestion.

URBAN CONTACT FIELDS

Whereas in the case of .clubs the impact of distance is eliminated, 

what is missing in the case of urban contact fields is the impact of conges

tion on public goods. Since £ is non-trivial, the quality of the environ

ment varies over the landscape. In consequence, contrary to the case of 

clubs, both the optimal utility differences and the marginal location rates 

vary, in general, with the degree of aversion to inequality as in (42) and 

(43) of Part 1. On the other hand, since 5 ^  * it is true that

A E^= 0. Consequently, <|>̂ ■ 0 ((39 of Part 1). In other words, since 
n . ^
J
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congestion does not affect the quality of the environment, there is no

reason to correct for it* This is the only simplification to be made with

regard to the optimal decentralization policy. Everything else, including

the need to control everything that has to do with the use of land under a
4finite aversion to inequality, still holds.

PURE PUBLIC GOODS

A good that has the distance-response of a club and the density 

response of an urban contact field is a pure public good. Then, following 

(2),

b
È = 2 I gk (uU. (6 )

k=l K K

Clearly, Au * 0 and 5 0 as in clubs; and * 0 as in urban contact 
i

fields. Therefore, once more, the optimal decentralization policy of Part 1 

reduces to the problem of producing efficiently the private and public 

goods. Since, as in clubs, issues of distributing ft over become rather 

trivial, space is typically abstracted from such models. Thus E * g[ft] 

simply. Of course, the trade-off between population size and the corres

ponding level of public investment, which is the central issue in the theory 

of clubs, also disappears.^
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LOCAL PUBLIC GOODS

These are represented by a density model with no spill-over effects, 

i.e. = 1 for i = j and zero otherwise, leading immediately to 5 [n,

= [n^, o)̂ ], hence to

v v v v -  <7)

Under these circumstances, the marginal rate on the use of land ((39) of 

Part 1) is simplified as

xn 3u
i ~ i3E. g* (8 )

i n .  
l

On the other hand, the variation in optimal utilities and marginal location 

rates, as described in (42) and (43) of Part 1, remains: here, as in the 

case of urban contact fields, the question of an optimal distribution of 

public expenditure over becomes central. Such optimal policy, together 

with the corresponding distribution of population, would determine the 

optimal distribution of environmental quality over . There are several 

papers dealing with these questions.^ In particular, Helpman, Pines and 

Boruchov provide the analysis of a model where policy variables are the 

price system, the production and distribution of public services, and taxa

tion. They examine the case where the resulting allocation is a competitive 

equilibrium with equal incomes and equal utilities: in our terms, there is 

an infinite aversion to inequality. It is seen that the spatial distribu

tion of population and land values adheres to the standard pattern, i.e.
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both population density and land values decrease away from the centre*

Furthermore, that if and E^ are net substitutes (complements) then the

quality of the environment decreases (increases) away from the centre. In

the former case, the density of public investment, uj / A Q, also decreases.
i- 1

In the latter, it remains ambiguous.^

AGORA MODELS

Suppose that all public investment is concentrated at the centre. 

The centre now becomes a public good, an agora, enjoyed by all; and it can 

be described by a distance model such that

Ej - CjgCn, a]. (9)

Here ; is a function of distance between the centre and zone j. Since this 

function decreases with increasing distance from the centre, the quality of 

the environment for more distant zones also decreases. Thus, in the case of 

finite aversion to inequality, optimal utilities decrease away from the 

centre according to (42) of Part 1. As the aversion to inequality 

increases, following (43) of Part 1, subsidization of more distant zones 

relatively increases in order to reduce optimal inequalities. Finally, the 

marginal rate on the use of land in (39) of Part 1 becomes

1 . t* « 3u „

1 ” ~ ni n ® j V j  ?j* (1 0 )
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It is perhaps useful at this point to clarify the explicit depen

dence of g in (9) on the spatial distribution of population, rather then on 

the total population, A distance model of this kind suggests that indivi

duals in more distant zones enjoy relatively less the agora because distance 

is an impediment to interaction* At the same time, for the same reason, 

individuals in more distant zones impose relatively less congestion. The 

former is captured by 5 ; the latter, by the explicit dependence of g on n:

for more distant zones, A g is expected to become less strongly negative.

ni

Since the value of the summation on Che RHS of (10) is Che same for all i

(once aC Che cenCre you congest everybody there irrespectively of the zone

you originate), the portion of the optimal tax attributed to Che use of

land, <j>” , is proportional to - A g. In particular, individuals in zones
ni

closer to the centre pay more because, by using the agora often, they 

congest more. Clearly, this framework requires a distinction between time 

spent at the centre for work and for enjoyment. If both are combined then 

the frequency of interaction with the centre, hence the levels of enjoyment 

and congestion, are the same for everyone. Under these circumstances, E = 

S g[N,ft] and the model can be treated as a club.

PUBLIC GOODS THAT OCCUPY LAND

TRANSPORTATION

Suppose that travel occurs along a given dense, radial transpor

tation network. Under these circumstances, additional congestion at i is
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generated  by a l l  those fu r th e r  away from the c en tre . Combining (54) of P a rt 

1 and ( 1 ) ,  the a d d it io n a l congestion a t i  generated by those a t k is

C -1 fo r  i  < k

‘  ‘  {  O f o t l > k f  < u )

where th e  m inus s ig n  d e te rm in e s  c o n g e s tio n  as a n e g a t iv e  s p a t ia l  

e x t e r n a l i t y .  The to ta l congestion a t i  is  c rea ted  by commuters a t and 

beyond i :

b
ei = - I 5ki[n, G[H1,a).]] = - g^n, < 0 (12)

k= l

w i t h  A e.  < 0 ,  de/ aH^ > 0 and ae/30)^ > 0 . Someone a t j  e xp e rie n c e s  

n k 1

congestion  over the e n t ire  ray between j  and the c en tre . T he re fo re

E - I e. - - I g. [n, H u, ]. (13)

j  i-1 i= l

S ince

A E - - ( I  - I  ) g . [n, H , a>.] 
j  i = l  i-1

- gJ+ 1[n > Hj+ 1 » “ j+ 1 l 55 "  J j+ 1 5k , j + l [n’ G[Hj + l ’ “j + l 11 < ° ’ ( l4 )
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optimal utilities decrease away from the centre under finite aversion to 

inequality according to (42) of Part I. This happens because more distant 

locations imply longer congested trips, hence lower quality of the 

environment there from that particular point of view. Finally, in order to 

determine the marginal rate on the use of land, notice that

(15)

because someone added in zone i congests others only between this zone and 

the centre. Therefore, using (39) of Part 1, the marginal rate on the use 

of land becomes

A + l +l  , v  v j &  * « . •  ci6)i j=l £=1 J=l+1 £=1 J J j 1

8
The literature or transportation is extensive. Within this, 

Strotz (1965) remains a classic reference which includes most of the funda

mental intuitions now available on optimal transportation policy. Taking 

into account what has been said in Part 1, the optimal transportation policy 

can be summarized here as follows. Suppose that there is a fixed amount of

public funds available for transportation and that the recovery of these

9
funds is not an issue. Furthermore, suppose that the aggregate income of 

urban residents is required to equal the total value of the urban product.
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The planner must organize the production of the urban good efficiently* 

However, although individuals should receive the marginal product of their 

labour, the planner must re-distribute income through congestion tolls and 

location taxes. The congestion toll based on the marginal congestion

rate (16), equals the total damage someone imposes on the other drivers as 

he travels to and from work in the centre. the location tax i<f>̂ , based on 

the marginal location rate (43) of Part 1, reflects environmental differ

ences weighted by the theory of justice adopted by the planner. Given that 

individuals take these rates parametrically, excepting infinite aversion to 

inequality, the resulting optimum will be such that some zones in the city 

will become more attractive than others —  utility differences between zones 

being associated with corresponding spatial externality differences. Hence 

the planner will find it necessary to control everything that has to do with 

the use of land under a finite aversion to inequality.^

In contrast, when there is an infinite aversion to inequality, it is 

sufficient for the planner to fix the urban population at the optimal size 

and to announce the spatial distribution of optimal tax and subsidy rates

<i>? and chi'.
*i yi

It seems worth pointing out that

"(t)he burden of congestion on motorists is dimensionally a product 

of two factors: congestion as a characteristic of driving condi

tions at a point and distance travelled. The burden of congestion 

may be reduced either by reducing congestion along the route or by 

reducing the length of the route* It is worse to drive ten miles
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in congested traffic than one mile. Suppose a man occupies an 

estate near the center of the city and that all those who live 

farther out and who commute to work to the city center must every 

day drive past this estate in congested traffic. Their burden is 

greater, the greater the front footage the estate occupies because 

they must drive farther in congestion.

It would appear that the occupancy of space along a route imposes, 

in measure with its front footage, an external real diseconomy on 

whose who travel past. Optimal pricing therefore suggests that not 

only should there (a) be a toll to discourage motorists from making 

too many trips and imposing external diseconomies of congestion (at 

every point at which they travel) on other motorists, but that (b) 

there should be a land rent (based on front footage or area) to 

discourage excessive space occupancy and thereby to reduce the 

mileage of congested driving for any given traffic flow. We might 

expect this to be in addition to the rent that, in the absence of 

anybody wanting to travel, would still be paid for the use of the 

limited desired space itself."

(Strotz op. cit., footnote 8). Surprisingly enough, we know that there is 

no need to impose such a tax under any circumstances. That is, for 

arbitrary degree of aversion to inequality, the previous analysis suggests 

that there is no need to apply policies which specifically encourage or 

discourage any particular pattern of land occupancy at the optimum.
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Let the city be partitioned in two concentric parts, [ 1, a J and

[a+l,b] occupied by the agora and residences respectively. The inner border

between the two land uses becomes a decision variable for the planner. For

the production of the private good, when the agora expands, one must take

into account the loss in manpower that the corresponding displacement of

individuals entails. Thus the production function must now be written as

X[N, N [a ] ], with the function N[a] such that AX = - Since both land
a

at the centre and public funds are explicitly related to the production of 

the public good, we may express the spatial externality as

Ej = for  ̂ = (17) 

Given that ft is fixed and spent for the agora, the problem of the planner in 

(57) of Part 1 is now written as

a 0 b D[r, z; a, ft] ~ minimum { £ r. A Q + £ n.ij;. - X[N, N [a ] ] |
j-l J j-l j-a+l J J 

zi < v[u[ri, ^ 1; a] for i = a + (18)

where the first term on the RHS represents public expenditure on land.

The optimal decentralization policy holds as before —  provided that 

adjustment is made for the new residential domain. For example, the 

marginal rate on the use of residential land in (1 0) now becomes

AGORA MODELS
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'i ' * n(g J „  Cj for 1 - a + (19)
i j=a+l J

On the other hand, the new condition regulating the spatial extent of the 

agora is

r°+i a Q + j, i r ° .4,!) " V i  *ati * J  , nj 4*j
a j = l  a J j-1 J = a + 2  J a J

- 4X - T n.X. AE. = 0 . 12 (20) 
a j=a+2 J J 9Ej a 1

The intuitive meaning of (20) is as follows. When the boundary of 

the agora is moved one zone outwards, thereby extending the agora, the 

public sector must pay for the use of the additional land (first term) and 

for the possible difference that this extension has imposed on existing land 

values in the agora (second term)* As land is taken away from residences, 

people in the marginal zone are displaced elsewhere in the outside world* 

Thus there is a saving from the corresponding reduction in the number of 

salaries required (third term)* At the same time, since the smaller work

force might induce a difference in the marginal product of labour, extending 

the agora may necessitate adjustments in the optimal salaries paid to the 

remaining individuals (fourth term)* As less people remain to work in the 

production of the private good, the value of the urban product will normally 

be reduced (fifth term). Finally, as the agora extends, the remaining 

individuals will benefit both from increasing accessibility to and from 

better quality of public services (sixth term). The optimal extent of



Che agora will be found where the MSB are balanced by the corresponding MSC 

as in (2 0 ).

For simplicity of exposition assume that Ar? = 0 and Ai|», = 0 in
a  ̂ a ^

(2 0 ), that is, neither land values at the centre nor individual expenditures 

are influenced by an expansion of the agora. Solving (20) for the land 

value per unit of public land at the border of the agora,

ra+l * AQ AN + na+l ’•'a+P + AQ ^ +?nj Xj3E.
N a i=*a+2 J J i a JO - J J

The first term on the RHS of (21) represents the effect of expanding the 

agora on the aggregate income deficit generated by the displacement of 

individuals in the marginal zone, expressed per unit of land. If the per 

capita expenditure of those in zone a+ 1 is greater (smaller) than the 

corresponding value of their marginal product then expanding the agora 

decreases (increases) the aggregate income deficit. Under these circum

stances, if the spatial extent of the agora did not effect environmental 

quality, the value of public land in zone a+ 1 would be negative (positive). 

However, since the spatial extent of the agora does affect environmental 

quality, the value of public land in that zone is adjusted by the second

term on the RHS of (21). The quantity X.(3u/3E.) AE,represents the utility
J J a J

gain, expressed in money terms, generated by the expansion of the agora. 

Thus the expression under the sum on the RHS of (21) represents the total
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increase in social welfare, expressed in money terms, which stems from the 

expansion of the agora by one unit. Stated otherwise, it represents the 

total amount individuals would be prepared to pay per unit of residential 

land converted to public use in order to push the inner border one zone 

closer, for given levels of utility.

Since residential and public land values must be equal at the inner

border, adjusting the value of public land by the second term on the RHS of

(2 1 ) raises the public bid-rents, hence encourages the expansion of the

agora at the optimum. Were the centre deleterious to the quality of the

environment, as in the case of industrial pollution where AE. < 0, the
a ^

corresponding adjustment would lower central bid-rents to generate a 

contraction of the centre at the optimum. In this case, the adjustment 

would represent the total amount individuals are prepared to pay per unit of 

central land converted to residential use in order to push the inner border 

one zone away, for given levels of utility. These adjustments, for both 

positive and negative spatial externalities, represent a general principle 

of segregated land uses at the optimum.

THE MOHRING PARADOX

Until now, the total amount of public investment was treated as 

given exogenously. In this section I consider ii endogenous. In conse

quence, the issue of public finance is bound to surface: although one could 

still maintain that public funds somehow appear from the outside, it is far 

more convincing to admit that what benefits those in the city should be 

supported at the optimum by the same. Suppose that the location tax i<|>*
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still serves to re-distribute income, while the tax on the use of land

is now collected to help finance the provision of the public good. The

fundamental question is, will this revenue be sufficient at the optimum? or

will it be necessary to further apply lump-sum taxes or subsidies, as those

represented by A in the section "optimal decentralization policy" of Part I,

in order to balance the budget? An answer to this question is provided by

13
the Mohring paradox. I consider first the case where the public good Is 

produced only with capital.

Since what has been said previously holds for any feasible value of 

Q, it must also hold for the optimal level of public expenditure. What is a 

reasonable principle to determine the optimal level of public expenditure? 

In the context of the Mohring paradox, it is that the public sector shouLd 

pay competitive prices. When there is a competitive equilibrium between 

sectors for the use of resource services, the value of the marginal product 

of a resource service unit must equal its price. Since for public expendi

ture the price is simply one dollar, we obtain using (50) of Part 1

Of?
V A 9u _ i  dD 1
? V j  3E.V~ = ~ dQ " 1 (22)
J j  i

as a condition which determines the level of public expenditure when the 

public sector pays competitive prices. This is a reasonable principle to 

admit. If, for example, -dD/dfl > 1 then spending an additional dollar on 

the public good would save more than one dollar at the optimum, for given 

levels of utility. Therefore it would seem proper that public expenditure 

be augmented at the expense of something else. If, on the other hand,
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-dD/dH < 1 then public expenditure should be reduced to provide individuals 

with higher disposable income. In this sense, the principle of competitive 

pricing seems to be perfectly compatible with the aim to optimize. It can 

however break down where optimality itself requires non-competitive pricing

—  as will be seen later on when land is introduced in the production of tne 

public good.

Further to competitive pricing, the Mohring paradox requires (I) 

that the spatial diffusion pattern of the public good be trivial, in the 

sense of being either zero or one everywhere in ; and (2 ) that the

components of environmental quality g^ be homogeneous functions with respect 

to their arguments. The second requirement implies that the functions e^ = 

g^N, (DjJ obey

= gi [XN, Auk] for X > 0. (23)

When the parameter 0 = 0 ,  doubling population and public expenditure every

where (X = 2) Implies no change in the quality of the environment. On the 

other hand, when 0 > (<) 0 , doubling population and public expenditure 

everywhere implies an improved (deteriorated) quality of the environment. 

It follows that 8 > (=, <) 0 signifies increasing (constant, decreasing) 

returns to scale in the maintainance of a given environmental quality. 

Under these circumstances, the Mohring paradox states that

1. If these are Increasing (constant, decreasing) returns to scale 

in the maintainance of a given environmental quality then there is a
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deficit (balance, surplus) in the budget allocated for the 

production of the public good at the optimum*

As already mentioned, proposition 1 applies where the spatial diffu-

sion pattern of the public good is trivial, i.e. to clubs, local public 

goods, spaceless transportation, and spaceless agora models without
14distance-response.

In this case, when areas are partitioned between residential and public 

land-use, one cannot impose a priori a condition on land analogous to (2 2 ). 

This happens because (61) of Part 1 fixes the value of public land at the 

same level as the value of residential land which, in turn, is also deter

mined at the optimum. To compute this value, notice that (59) and (60) of 

Part 1 imply

This, in conjunction with (26), (28), (38) and (39) of Part 1, leads to

I now consider the case where land enters as a factor of production

P . £U __
I "j j 3E, 3H. * J j i

(24)

n

(25)
n
Ï

It follows immediately that only when there is no population externality,

i.e. ■ 0 for i £  , will competitive pricing in the market for land 

represent an optimal policy. When there is a negative (positive) population
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externality, the public sector is bound to pay a price for land greater 

(smaller) than the value of its marginal product« In particular, since from 

(39) and (56) of Part 1

ki 1 , r 3u
A q = 4 Q - H ("i + 0  njXj 3E * Ej » (26)
n, i-1 J J

the competitive price of land should be adjusted at the optimum by the 

externality effect of those in zone i distributed per unit of public land# 

When this is taken into account, proposition 1 is modified as

2* If returns to scale in the maintainance of a given environmental 

quality are larger (equal, smaller) than

J  Ï  T T ^  “  <ni  * »> 
E 1 i-i 1 "i

then there is a deficit (balance, surplus) in the budget allocatd 

for the production of the public good at the optimum.

Thus when zones are partitioned between residential and public land-use, in 

the presence of a congestion externality, the Mohring paradox is deformed by 

a negative quantity. Therefore a balanced budget will occur at decreasing 

returns to scale in the maintenance of a given environmental quality: when 

land enters as a factor of production, the likelihood of a deficit 

increases.
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The previous conclusions hold for any integrated land-use pattern 

associated with trivial distance-response, such as local public goods and 

transportation. When though the land-use pattern is segregated, as in agora 

models, the Mohring paradox can be restored. This happens because, now, it 

is possible to require that the value of the marginal product of land be 

equal to its price at the optimum. However, the Mohring paradox further 

requires constant returns to scale for land in the production of the public 

g o o d . ^  It seems that the Mohring paradox in its pure form is quite 

restrictive in matters concerning land; and that the same observation holds 

for the spatial diffusion of the externality in both the Mohring paradox and 

its variations.

It is worth noting that our conclusions hold for any degree of aver

sion to inequality. Further, the principal virtue of the Mohring paradox 

rests with the intuition that, in general, the budget allocated for the 

production of the public food does not balance at the optimum with the asso

ciated congestion tax receipts. In general, therefore, it will be necessary 

to further apply lump-sum taxes or subsidies, as those represented by A in 

the section "optimal decentralization policy” of Part 1, in order to balance 

the budget. As long as a particular A applies to everyone, and everyone 

takes it parametrically, the optimum can be retained at a balanced budget. 

But the optimum requires, in addition to lump-sum taxes or subsidies, the 

detailed tax or subsidy schemes based on and $*. Indeed, the context of 

this work, lump-sum taxes or subsidies are meaningless independently of 

Pigouvian taxation. We know already the nature of difficulties associated 

with the application of such schemes. Thus, in general, reality forces the
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imposition of taxes or subsidies which distort optimality* The tax on 

drivers, for example, follows their consumption of gasoline and remains 

insensitive to the spatial distribution of other drivers; and homeowners pay 

a tax which reflects the spatial distribution of property values, rather 

than the spatial distribution of externality effects as required for 

optimality.

AGGREGATE RELATIONSHIPS AT THE OPTIMUM16

TRANSPORTATION, URBAN SHAPE AND THE VALUE OF URBAN LAND

We shall now abandon rotational symmetry and consider a sequence of 

urban shapes from the linear to the circular. Chicago, for example, could 

be placed on the middle of this sequence, the semi-circle* We shall 

describe a class of remarkably simple relationships between the total cost 

or urban transportation and the total value of urban land net of its oppor

tunity cost, both estimated at the optimum. In order to specify the latter,

v
name R the total value or urban land at the optimum and R the total oppor-

17 v
tunity cost of urban land. Then R - R represents the total value of urban 

land net of its opportunity cost at the optimum, which corresponds to the 

shaded area of figure 1. Intuitively, whereas the total cost of urban 

transportation, C, represents disbenefits created by agglomeration, the 

total value of urban land net of its opportunity cost must reflect corre

sponding benefits* The relationship between these two aggregate measures of 

the city at the optimum is directed by two elasticities, the elasticity of

transportation costs with respect to distance, , and the elasticity of
c • x

the urban area with respect to distance,



Figure 1 • The value of urban land net of 
its opportunity cost.
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ri . . The second elasticity is a measure of shape. For a linear city, 
y : I

where the size of areas is one unit,

18

nn .. = A Q/CQ./i) = l/(i/i) * 1 (27)q. i  i _ 1

whereas for a circular city

nn .. H A Q/(Q./i) » n(i2 -(l-l)2 )/(iTi2 /i) = (2i-l)/i - 2 (28) 
4 , 1  i- 1 1

provided that distance partitions are small. The linear city corresponds to

a measure of zero radians and the circular city corresponds to a measure of

2ir radians. These are the two extremes of shape. In-between there is a

continuum of urban shapes and related elasticities: as the measure of

radians gradually increases from zero to 2ir, the elasticity of the urban

19
area with respect to distance gradually increases from one to two.

3. If the elasticity of the urban area with respect to distance is

X X - "

urban transportation and the total value of urban land net of its

opportunity cost is smaller than (equal to, greater than) the elas-

ticity of the urban area with respect to distance if the elasticity

of transportation costs with respect to distance is greater than

20
(equal to, smaller than) unity.

Applying proposition 3 to the case of a linear city one obtains
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R - * ? C 1£ \ : 1  < l ; (29)

and applying it to the case of a circular city

(30)

Over the continuum of urban shapes between the linear and the circular, as 

the measure of radians gradually increases from zero to 2 ir, the coefficient 

that multiplies the total cost of urban transportation gradually decreases 

from one to one-half. Suppose now that the elasticity of transportation 

costs with respect to distance is equal to unity. Then, for a linear 

optimal city, the total value of urban land net of its opportunity cost is 

precisely equal to the total cost of urban transportation; and, for a 

circular optimal city, the total value of urban land net of its opportunity 

cost equals one-half the total cost of urban transportation. Over the 

continuum of urban shapes, the total value of urban land net of its oppor

tunity cost gradually decreases from being equal to the total cost of urban 

transportation to one-half of that cost.

As with the Mohring paradox, they are strong in the sense that they are 

independent of the theory of justice employed by the planner. Intuitively, 

variations within this class must relate to variations in the efficiency of 

shapes. One for example may observe that the linear, being here the least 

efficient of urban shapes because it entails the highest average per capita 

transportation costs, corresponds to the highest total cost of urban trans

portation relative to the total value of urban land net of its opportunity

The simplicity of this class of relationships is, indeed, striking



cost; and that the circular, being here the most efficient of urban shapes, 

corresponds to the lowest total cost of urban transportation relative to the 

total value of urban land net of its opportunity cost. As efficiency 

gradually increases, the total cost of urban transportation gradually 

decreases relative to the total value of urban land net of its opportunity 

cost.

The same intuitive observations can be extended to cases where the 

elasticity of transportation costs with respect to distance is other than 

unity. It remains now to interpret this elasticity. What it actually mea

sures is economies of scale in transportation with respect to distance. A 

value greater than unity implies decreasing returns to scale in transporta

tion with respect to distance because costs increase relatively faster than 

distance. Similarly, a vailue equal to (smaller than) unity implies constant 

(increasing) returns to scale in transportation with respect to distance. 

Consider the case of a linear city at the optimum. When there are decreas

ing returns to scale in transportation, the value of centrality is rela

tively high. Since this is reflected upon the total value of urban land net
v

of its opportunity cost, R - R > C at the optimum. On the other hand, when

there are increasing returns to transportation, the value of centrality is
v

relatively low and, consequently, R - R < C.

SURPLUS VALUE AND THE VALUE OF URBAN LAND

Recalling (5) and (33) of Part 1, (26) of Part 1 may be written as



(ni+ 1)(AX - (<1̂ + (n + 1)A *)). (32)
N

Upon aggregation over the city

2 Xi 3i A Q - I (n + 1) I n X A E
1 qii-l i j J 2 3 j n± j

I (r^ + 1)(AX - (i(»i + (nA + 1)A ij>)). (33)
i N n^

The shadow price of residential land is the utility gain, expressed

in money terms and evaluated at the optimum, of consuming an additional unit

of land, i.e. (X^3u/3q^)|u=y. Since (33) is evaluated at the optimum, the

first term on the LHS can be interpreted as the total shadow value of urban

land R. Secondly, since Y n.X. rir A E. denotes the total change in social
j J 3 8E n, J
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welfare stemming from changes in the quality of the environment caused by an

Individual in area i, the second term in (33) represents the total effect E

on social welfare of the spatial externality at the optimum. Consider now

the RHS of (33). Since AX - (1̂ +  (n^ + 1) A i|>) is the net contribution of
N n^

someone in zone i to production, (n^ + 1)(AX - (i|>̂ + (n^ + 1) A i|0) is the
N n^

total net contribution of those in zone i to production. Thus the RHS of

(33) denotes the total surplus value S of urban production. Summarizing,

4. The difference between the total shadow value of urban land and 

the total externality effect equals the total surplus value of urban 

production at the optimum.

When the spatial externality is positive (negative), proposition 4 implies 

that the total shadow price of urban land is larger (smaller) than the total 

surplus value of urban production at the optimum. Thus urban shadow prices 

compensate for the presence of the spatial externality in a way dictated by 

intuition: a negative spatial externality lowers shadow prices, and vice-

versa.

It is possible to relate optimal and shadow land values through the 

externality. Taking into account (38) of Part 1, (32) can be written as

<ri Xi 3q  ̂ A Q " (ni + ^  I njXj 3E. A Ej 
Mi i-x j J J j n. J

w ch, apr* a.jg» • -..îtion, implies
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5. The difference between aggregate optimal and shadow land 

values equals the total externality effect at the optimum«

Thus only when there are no spatial externality effects will optimal land 

values equal their corresponding shadow prices.

COMBINATIONS

Combining proposition 3 with propositions 4 and 5, we obtain

6 . If the elasticity of the urban area with respect to distance is 

constant over distance then

R = S + 2E >( = , <) R + — —  C
nQ:i

according to whether the elasticity of transportation costs with 

respect to distance is greater than (equal to, smaller than) unity.

As with proposition 3, the simplicity of relationships described by 

its subsequent propositions is indeed striking. Here the total surplus 

value of production represents benefits of urbanization, while the total 

value of urban land removed from production in the alternative sector and 

the total cost of urban transportation represent costs or urbanization. On 

the other hand, the spatial externality enters this balance as a benefit or 

cost of urbanization according to whether it is positive or negative.
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Following Che comments on proposition 3, the nature of this balance depends 

on the shape of the city and on the technology of transportation.

Notice that the total externality effect E in propositions 4-6 

equals - $n , where $n is the total public revenue from congestion taxes. 

This, together with proposition 6 implies

*n (S - (R + — —  C »  if n 7  1. (35)
> 2 nQ:i ”  c<i <

Suppose that the public good is produced only with capital. Then, combining 

proposition 1 with (35),

B y  implies fl y  ** f  i  (S - (R + — C)) if tv ;1 ^  <36>
Q*i

It follows immediately that if returns to scale in both the maintenance of a 

given environmental quality and transportation are decreasing (constant, 

increasing) then

S > (*, <) 2n + R + — —  C (37)
^Q: i

provided that the elasticity of the urban area with respect to distance is 

constant over distance. Therefore, under decreasing (constant, increasing) 

returns to scale, the total surplus value of production, which represents 

the benefits of urbanization, should be greater (equal, smaller) than the 

corresponding costs of urbanization. Returns to scale refer here to the two 

main components of urban infra-structure, that is, the production of public
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goods and the nature of transportation costs. In this sense, (37) implies 

that weaker returns to scale associated with an urban infra-structure 

require stronger benefits of urbanization at the optimal size of city.

When the public good occupies land, the extreme LHS of (36) should 

be modified according to proposition 2. Finally, as with proposition 3, all 

our conclusions subsequent to this proposition are independent of the theory 

of justice employed by the planner.
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APPENDIX 1

This appendix gives the details of the Mohring paradox and its 

variations. The first part is associated with proposition 1, the second 

with proposition 2, and the third with the application of the Mohring 

paradox in the case of agora models with land.

I

Taking into account (38) and (45) of Part 1 with A = <j>, the tax

- n.X. • A E.. The distribution of this damage between the various zones 
J J ~ 3

someone in zone k pays for his damage to those in zone j is given by

r * '

those in j interact with is, using (4) of Part 1, - n.X. J A E...
J J 3E. f ii

j  1 \

Hence, the portion of the tax someone in k pays for his damage to those in j

as they visit together zone i is - n,\, ~  A E,.. Aggregating over all his
i j  . 11

n

victims, - £ n X . —  A E^. is the portion of the tax someone in k pays for 

j  J J j  \ 13

his damage to those over ^  as he visits zone i. The total portion of the 

tax pai i by those in k for their damage related to zone i is - (n^ + 1) 

£ n.X, A E. .. It follows immediately that

j j \  3

*i = " I (nk + ° | V j  3Ej ^ Eij
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-  ? V j  i H  <* V < \ + 1) ( K 1 )
J J k \  J

is the total tax raised for zone i.

The net revenues of the public sector associated with zone i are

3E

’i  "  "  I  V j  w :  I (A Ei j ) ( n k + °  "  I  nj xj  H .  â s f  “ i ( l , 2 )
j  j  nk J J i

using (1.2) and (1.1). Suppose now that the public good is a club, so that 

* g [N, o)̂ ] = e^ and = E for j €. . Let $n = £ be the total

revenue of the public sector from congestion taxes. Aggregating (1.2), we 

have

*n - a “ - I I n / i  <1 gi)(nk + l) + J Ï T  “i)
i j J J 3E k 1 k 3ü)i 1

I I n  * ^ ( B .  )
i j J J 3E

(1.3)

provide! that the functions g^ are p-homogeneous with respect to their

argumerts. (A 8-homogeneous function y = f[x^,..., x^] obeys fîy =

£ (3f/3 :.)x .) Notice that the step from (1.2) to (1.3) uses 3E/3io. = 
t l 1 i

I 3^ /3a = 3gi/3a»i, and A g - Ag A N »  Ag..

J %  N - v  N

The Mohring paradox holds only if ç can be either zero or one 

everywhere in . Then it is possible to re-order (1.2) as in (1.3). On
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the other hand, if distance-response is non-trivial, the transition from 

(1.2) to (1.3) becomes impossible and the Mohring paradox callapses.

In the case of local public goods where = g^ [n^, u^] the tax 

paid by someone in i for his damage to those over $  is simply

- h -A.-It "  A E . Thus the net revenues of the public sector become1 I d h<. 1: Bl

' a' '  I Vi It"<u gi)(ni + u + vr V
i i n^ i

( K 4 )

using (21 ) in a form obviously simplified* For transportation, observe from 

(12) tha those who damage others in zone i must be located at or beyond i. 

In conse< uence (1*1) is now written as

n
i

b

J .  ( "k +k=i
1)

b

I
j-1

n.X.
j  j

3u 
3E. A g, 

\

b

I
j-1

n. X.
j j

3u
3E

b

I
k=i

(A gi)(nk + 1). (1.5)

Given th.it (22) also holds and that transportation is spaceless, we have

-  f t

b

I
b

I
i-1 j-1 V j

3u
3E,

( I (A gi)(nk + 
k*i n.

1) +
3gi  .
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b b
3u 1 (1 .6 )

where tie negative signs in (1*5) and (1.6) disappear because e^ is 

negative Finally, in the case of agora models

■ * j  *■ (°k + °  ni ki ^ , 4 eik=a+l i n^

If the p’ blic good is also a club, so that E. » g[n, £2] = E, then

' - a - - j  +, V i  % ( j  +1 ( i  + » + H  a>
i=a+l 3E k=a+l

I a x, ^  (Bl>-
i=a+l 3E

( 1. 8 )

II

hen land is a factor of production, the net revenues of the public 

sector b come

I ~ ( ^ H  + co1) = - X n X |§- I (A E )(n + 1)
j J J j k



using (25) and (26). If, further, the public good is a club, so that 

= g^in, H^, u^] = e^ and Ej = E for j 6. jf, the total net revenue is

*n " ( I  r i Hi  + " “ I I ni (3ei^
i i j J 3E

- I n > ^  (ei - I , ‘j 'f  U  i)(.n * »• (1.10)
j J 3 3E i “l nj

The remaining cases are similar.

Ill

Competitive pricing of public land in an agora model implies

1 v , 3U *
A Q ^ °i i -

i=»a+l 3E j-1
Cj  ^°r *

< j < a, ( 1. 11)

provide< that the public good is also a club, so that E^ = g[n, a, ft] = E. 

Notice t aat (1.11) is entirely compatible with (21): for zones in the
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interior of the agora, the first term on the RHS of (21) vanishes because 

there is no displacement of individuals. Under these circumstances, the 

total net revenues of the public sector are:

*n - ( I r? A Q + n) = - I n X — : J (A g)("k + D  
j = l J j-1 i=a+l 3E k=*a+l

I nixi ■“  A 8 + I niXi ^  ft ( 1 • 12)j=l i=a+l 3E j-1 i=a+l 3E

Suppose that there are constant returns to scale in land used for the 

production of the public good. Then

A g = ---  A Q = |& A Q. (1.13)
j-1 9Qj-l j-1 3Q j-1

Replacing (1*13) in (1.12),

a n
$n - ( l r. A Q + ft) =

J J-1

'  I " l Xi  i f  U g)<nk + 0  * JQ j  , 4 0 + M  B>
i=a+l 3E k=a+l n^ j=l j-1

b a
l n X —  (8Ë) (1.14)

i=*a+l 3Ê

a

I
j- i j- i

because J A Q =* Q •
a
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APPENDIX 2

This appendix contains a proof of proposition 3. It is true that

A rQ = r AQ + Q Ar. (2.1)
i i i

Aggregating over the city

I A rQ = I r AQ + £ Q Ar, (2.2
i i  i i i i

where the LHS of (2.2) may be written as

the first term on the RHS of (2*2) may be written as

I r i+i = I r 4 A Q + r K+i AQ; (2,4)
i=l i i=2 1 i-1 b

and the second term on the RHS of 2*2 may be written as

I Q Ar = - I Q .i Ac/ A Q (2.5)
i i i 1 I i-1
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because (5) of Part 1 is true by definition and, at the optimum, (4) of 

Part 1 holds. Upon substitution of (2.3), (2.4) and (2.6) into (2.21) and 

rearrangement,

r i + X  r i  a q - v i  < v r  ;Q> ■
O i-2 l-l b

2 Ti A Q " rb+i Qb =  ̂Qini Ac/ A Q* (2*6) 
i 1 i-i i 1 1 i i-1

Now r. A Q is the total value of urban land in zone i at the optimum. 
1 i-1

Hence £ r. A Q is the total value of urban land at the optimum. Moreover, 
i 1 i-1

since rjj+ i is approximately equal to the bid-rent for agriculture, r ^^ 

is approximately equal to the total opportunity cost of urban land. Then 

(2.4) may be written as

R - R = I Q.n Ac/ A Q. (2.7)
i 1 i i-1

On the other hand the total cost of urban transportation is

C = 7 n c . (2.8)
i 1 1

Comparisons between the total value or urban land net of its 

opportunity cost and the total cost of urban transportation can be made 

through the RHS of (2.7) and (2.8). Now
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n , 7 1  (2.9)
c:i <

may be written as

Ac/(c./i) 7  -J- AQ/(Q./i), (2.10)
i 1 < Q:i i-1 1

or as

Q n.Ac/ A Q -4 —  n.c.. (2.11)
Xi i-1 nQ:i

Then, since it is true that

Q.n.Ac/ 4 Q 7  “ and only ^ . i "7 1 (2.12)
1 l± i- 1 < nQ-l C,Ì <

it must also be true that

I Q n Ac/ i Q  j  n c if n ^  J  1 (2.13)
i i-1 i Q:i

which, upon comparison with (2.7) and (2.8) implies

« *  - «  7  "q:i 1£ " c !l 7  1 (2,14>

because the elasticity of the urban area with respect to distance is 

constant over distance, hence it may be taken out of the summation symbol in 

(2*13)#
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tion of land allocated to streets behaves with distance from the 
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rate away from the centre. For larger cities, we observe an initial



46

increase followed by a decrease. There may also be some very large 

cities where there is an area around the centre which is completely 

allocated to transportation. In any case, the amount of land allocated 
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j=l J j-1 j=a+l J J j=a+l J J J

Partially differencing with respect to a, we have
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Equation (20) is then obtained by noting that A z 0, that :• =
\ a+l

a

va+1 recording to (30) of Part I, and using (33) if Part 1. Notice
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have also been used in the derivation.

13. The original source is H.D. Mohring and M. Harwitz, Highway Benefits 

(Evanston, 111.: Northwestern University Press, 1962), chapter two. 

Although Strotz, op. cit., footnote 8, mentions this explicitly, it is 
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14. For details see appendix 1.

15. For details see appendix 1.
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that the rules
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17. The opportunity cost per unit of land equals the bid rent of 

agricultural activities.

18. The elasticity of the urban area with respect to distance is the ratio 

between the relative change in the urban area enclosed within a certain 

distance from the centre and the relative change in that distance. 

Similarly, the elasticity of transportation costs with respect to 

distance is the ratio between the relative change in transportation 

costs and the relative change in the corresponding distance.

19. The classification based on radians implies urban areas of regular 

shape. Then the elasticity of the urban area with respect to distance 

is constant over distance. This is not the case with irregular shapes 

where the above elasticity varies over distance.

20. For a proof see appendix 2.
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