CLASSIFICATION

A way in which environmental quality can be determined by the spatial distribution of population and public Investment over an urban area has been given in [START_REF] See | Optimality, 'Public' Goods and Local Governments: a General Theoret ical Analysis[END_REF] of Part 1. Here it is convenient to specialize this equation by distinguishing explicitly between distance and density effects.

Thus [START_REF] See | Optimality, 'Public' Goods and Local Governments: a General Theoret ical Analysis[END_REF] of Part 1 is now written as Eij " ' ij5ij[n* " i 1*
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where 5 is a distance-response function and E is a density-response function; and where the explicit dependence of E on both i and j reflects the truth that public goods in zones differing with respect to relative location and size are congested differently by the same population.

The structure of ( 1) is precisely analogous to that adopted in an 2 earlier study concerning spatial externalities.

In that study, three spatial externality cases where discussed, namely, urban contact fields, density models and distance models.

An urban contact field is a spatial externality such that the density-response function depends only on magni tudes at the origin of the externality. A density model of a spatial exter nality implies that the distance-response function is trivial. There are two polar cases of a density model: [START_REF] See | Spatial Public Goods. I: Theory[END_REF] one with no spill-over effects, i.e. ■ 1 for i = j and zero otherwise, which represents purely local externality effects; and (2 ) one with no distance response, i.e. 5 ^ « 1 for all i and j, which represents no friction of distance. Finally, a distance Assuming, as in Part 1, that the total value of the urban product is distributed to the inhabitants of the optimal city, the planner must impose a tax or subsidy on the residents of zone i equal to because n is invariant over the landscape. Hence there is no need for income re-distribution under any degree of aversion to inequality. It follows that, in this case, the theory of justice espoused by the planner is immaterial. Absence of the friction of distance, a fundamental geographical characteristic, equalizes the quality of the environment which, in turn, dictates equal treatment of equals in any case. Therefore, the optimal decentralization policy of Part 1 reduces to the problem of producing efficiently the private and public goods. Efficient production of the private good implies, as in Part 1, that the planner must impose an optimal * population size N . Efficient production of the public good, on the other hand, hinges upon returns to scale in its production: if under decreasing returns, it should be concentrated somewhere; and if increasing returns are exhausted at a size smaller than ft, another multitude of solutions will emerge.

It seems that this context trivializes such spatial issues. Once efficient production and optimal population size are ascertained, competi tion for land between those admitted will lead to the optimum.

In conse returns, ft should be uniformly distributed over under increasing quence, absence of the friction of distance eliminates the need for any land controls.

When space is completely abstracted, E = g[N, ft] and the model acquires the standard form of a club. Then the marginal rate on the use of land is simply >, = -X -A g. ( 5) 1 9E N Following Buchanan' s original contribution, a growing literature has focussed on the interaction between the size of a club and the corresponding 3 level of public investment.

In this context, which is more general because Ü is endogenous rather than exogenous, the optimal size reflects a balance between the economies of increasing population size and the diseconomies of congestion.

URBAN CONTACT FIELDS

Whereas in the case of .clubs the impact of distance is eliminated, what is missing in the case of urban contact fields is the impact of conges tion on public goods. Since £ is non-trivial, the quality of the environ ment varies over the landscape.

In consequence, contrary to the case of clubs, both the optimal utility differences and the marginal location rates vary, in general, with the degree of aversion to inequality as in ( 42) and 

PURE PUBLIC GOODS

A good that has the distance-response of a club and the density response of an urban contact field is a pure public good.

Then, following 

in . l

On the other hand, the variation in optimal utilities and marginal location rates, as described in (42) and ( 43 both population density and land values decrease away from the centre* Furthermore, that if and E^ are net substitutes (complements) then the quality of the environment decreases (increases) away from the centre. In the former case, the density of public investment, uj / A Q, also decreases. i-1

In the latter, it remains ambiguous.Â

GORA MODELS

Suppose that all public investment is concentrated at the centre.

The centre now becomes a public good, an agora, enjoyed by all; and it can be described by a distance model such that

Ej -CjgCn, a]. (9) 
Here ; is a function of distance between the centre and zone j. Since this function decreases with increasing distance from the centre, the quality of the environment for more distant zones also decreases. Thus, in the case of finite aversion to inequality, optimal utilities decrease away from the centre according to (42) of Part 1.

As the aversion to inequality increases, following (43) of Part 1, subsidization of more distant zones relatively increases in order to reduce optimal inequalities. Finally, the marginal rate on the use of land in (39) of Part 1 becomes for more d i s t a n t zones, A g is expected to become less strongly negative.
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Since the value of the summation on Che RHS of (10) is Che same for all i (once aC Che cenCre you congest everybody there irrespectively of the zone you originate), the portion of the optimal tax attributed to Che use of (13
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optimal utilities decrease away from the centre under finite aversion to inequality according to (42) of Part I. This happens because more distant locations imply longer congested trips, hence lower quality of the environment there from that particular point of view. Finally, in order to determine the marginal rate on the use of land, notice that (15) because someone added in zone i congests others only between this zone and the centre. Therefore, using (39) of Part 1, the marginal rate on the use of land becomes
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Th e l i t e r a t u r e or transportation is extensive. Within this, Strotz (1965) remains a classic reference which includes most of the funda mental intuitions now available on optimal transportation policy. Taking

into account what has been said in Part 1, the optimal transportation policy can be summarized here as follows. Suppose that there is a fixed amount of public funds available for transportation and that the recovery of these 9 funds is not an issue.

Furthermore, suppose that the aggregate income of urban residents is required to equal the total value of the urban product.

The planner must organize the production of the urban good efficiently* However, although individuals should receive the marginal product of their labour, the planner must re-distribute income through congestion tolls and location taxes. The congestion toll based on the marginal congestion rate ( 16), equals the total damage someone imposes on the other drivers as he travels to and from work in the centre. the location tax i<f>^, based on the marginal location rate (43) of Part 1, reflects environmental differ ences weighted by the theory of justice adopted by the planner. Given that individuals take these rates parametrically, excepting infinite aversion to inequality, the resulting optimum will be such that some zones in the city will become more attractive than others -utility differences between zones being associated with corresponding spatial externality differences. Hence the planner will find it necessary to control everything that has to do with the use of land under a finite aversion to inequality.Î n contrast, when there is an infinite aversion to inequality, it is sufficient for the planner to fix the urban population at the optimal size and to announce the spatial distribution of optimal tax and subsidy rates <i>? and chi'.

*i yi

It seems worth pointing out that "(t)he burden of congestion on motorists is dimensionally a product of two factors: congestion as a characteristic of driving condi tions at a point and distance travelled.

The burden of congestion may be reduced either by reducing congestion along the route or by reducing the length of the route* It is worse to drive ten miles in congested traffic than one mile. Suppose a man occupies an estate near the center of the city and that all those who live farther out and who commute to work to the city center must every day drive past this estate in congested traffic. Their burden is greater, the greater the front footage the estate occupies because they must drive farther in congestion.

It would appear that the occupancy of space along a route imposes, in measure with its front footage, an external real diseconomy on whose who travel past. Optimal pricing therefore suggests that not only should there (a) be a toll to discourage motorists from making too many trips and imposing external diseconomies of congestion (at every point at which they travel) on other motorists, but that (b)

there should be a land rent (based on front footage or area) to discourage excessive space occupancy and thereby to reduce the mileage of congested driving for any given traffic flow. We might expect this to be in addition to the rent that, in the absence of anybody wanting to travel, would still be paid for the use of the limited desired space itself."

(Strotz op. cit., footnote 8). Surprisingly enough, we know that there is no need to impose such a tax under any circumstances. That is, for arbitrary degree of aversion to inequality, the previous analysis suggests that there is no need to apply policies which specifically encourage or discourage any particular pattern of land occupancy at the optimum. 

A Q + £ n.ij;. -X[N, N [a ] ] | j-l J j-l j-a+l J J z i < v[u[ri , ^1 ; a] for i = a + (18)
where the first term on the RHS represents public expenditure on land.

The optimal decentralization policy holds as before -provided that adjustment is made for the new residential domain.

For example, the marginal rate on the use of residential land in ( 1 0 ) now becomes 'i ' * n(g J " 
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The intuitive meaning of ( 20 
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The first term on the RHS of ( 21) represents the effect of expanding the agora on the aggregate income deficit generated by the displacement of individuals in the marginal zone, expressed per unit of land.

If the per capita expenditure of those in zone a+ 1 is greater (smaller) than the corresponding value of their marginal product then expanding the agora decreases (increases) the aggregate income deficit. Under these circum stances, if the spatial extent of the agora did not effect environmental quality, the value of public land in zone a+ 1 would be negative (positive).

However, since the spatial extent of the agora does affect environmental quality, the value of public land in that zone is adjusted by the second term on the RHS of (21). The quantity X.(3u/3E.) AE,represents the utility J J a J gain, expressed in money terms, generated by the expansion of the agora.

Thus the expression under the sum on the RHS of ( 21) represents the total increase in social welfare, expressed in money terms, which stems from the expansion of the agora by one unit. Stated otherwise, it represents the total amount individuals would be prepared to pay per unit of residential land converted to public use in order to push the inner border one zone closer, for given levels of utility.

Since residential and public land values must be equal at the inner border, adjusting the value of public land by the second term on the RHS of (2 1 ) raises the public bid-rents, hence encourages the expansion of the agora at the optimum.

Were the centre deleterious to the quality of the environment, as in the case of industrial pollution where A E . < 0, the a ĉorresponding adjustment would lower central bid-rents to generate a contraction of the centre at the optimum. In this case, the adjustment would represent the total amount individuals are prepared to pay per unit of central land converted to residential use in order to push the inner border one zone away, for given levels of utility. These adjustments, for both positive and negative spatial externalities, represent a general principle of segregated land uses at the optimum.

THE MOHRING PARADOX

Until now, the total amount of public investment was treated as given exogenously.

In this section I consider ii endogenous. In conse quence, the issue of public finance is bound to surface: although one could still maintain that public funds somehow appear from the outside, it is far more convincing to admit that what benefits those in the city should be supported at the optimum by the same. Suppose that the location tax i<|>* still serves to re-distribute income, while the tax on the use of land is now collected to help finance the provision of the public good. The fundamental question is, w i l l this revenue be sufficient at the optimum? or will it be necessary to further apply lump-sum taxes or subsidies, as those represented by A in the section "optimal decentralization policy" of Part I, in order to balance the budget? An answer to this question is provided by 13 the Mohring paradox.

I consider first the case where the public good Is produced only with capital.

Since what has been said previously holds for any feasible value of Q, it must also hold for the optimal level of public expenditure. What is a reasonable principle to determine the optimal level of public expenditure?

In the context of the Mohring paradox, it is that the public sector shouLd pay competitive prices. When there is a competitive equilibrium between sectors for the use of resource services, the value of the marginal product of a resource service unit must equal its price. Since for public expendi ture the price is simply one dollar, we obtain using (50) of Part 1
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as a condition which determines the level of public expenditure when the public sector pays competitive prices. This is a reasonable principle to admit.

If, for example, -dD/dfl > 1 then spending an additional dollar on the public good would save more than one dollar at the optimum, for given levels of utility. Therefore it would seem proper that public expenditure be augmented at the expense of something else. If, on the other hand, 

AGGREGATE RELATIONSHIPS AT THE OPTIMUM16 TRANSPORTATION, URBAN SHAPE AND THE VALUE OF URBAN LAND

We shall now abandon rotational symmetry and consider a sequence of urban shapes from the linear to the circular. Chicago, for example, could be placed on the middle of this sequence, the semi-circle* We shall describe a class of remarkably simple relationships between the total cost or urban transportation and the total value of urban land net of its oppor tunity cost, both estimated at the optimum. In order to specify the latter, v name R the total value or urban land at the optimum and R the total oppor-17 v tunity cost of urban land.

Then R -R represents the total value of urban land net of its opportunity cost at the optimum, which corresponds to the shaded area of figure 1.

Intuitively, whereas the total cost of urban transportation, C, represents disbenefits created by agglomeration, the total value of urban land net of its opportunity cost must reflect corre sponding benefits* The relationship between these two aggregate measures of the city at the optimum is directed by two elasticities, the elasticity of transportation costs with respect to distance, , and the elasticity of c • x the urban area with respect to distance, 

/i) = l/(i/i) * 1 (27) q.i i _ 1 whereas for a circular city nn .. H A Q/(Q./i) » n(i2 -(l-l)2 )/(iTi2 /i) = (2i-l)/i -2 (28) 4 , 1 i-1 1
provided that distance partitions are small. The linear city corresponds to a measure of zero radians and the circular city corresponds to a measure of 2ir radians. These are the two extremes of shape.

In-between there is a continuum of urban shapes and related elasticities: as the measure of radians gradually increases from zero to 2 ir, the elasticity of the urban 19 area with respect to distance gradually increases from one to two.

3. If the elasticity of the urban area with respect to distance is X X -" urban transportation and the total value of urban land net of its opportunity cost is smaller than (equal to, greater than) the elasticity of the urban area with respect to distance if the elasticity of transportation costs with respect to distance is greater than 20 (equal to, smaller than) unity.

Applying proposition 3 to the case of a linear c i t y one obtains (29) and applying it to the case of a circular city (30) Over the continuum of urban shapes between the linear and the circular, as the measure of radians gradually increases from zero to 2 ir, the coefficient that multiplies the total cost of urban transportation gradually decreases from one to one-half.

Suppose now that the elasticity of transportation costs with respect to distance is equal to unity. Then, for a linear optimal city, the total value of urban land net of its opportunity cost is precisely equal to the total cost of urban transportation; and, for a circular optimal city, the total value of urban land net of its opportunity cost equals one-half the total cost of urban transportation. Over the continuum of urban shapes, the total value of urban land net of its oppor tunity cost gradually decreases from being equal to the total cost of urban transportation to one-half of that cost.

As with the Mohring paradox, they are strong in the sense that they are independent of the theory of justice employed by the planner. Intuitively, variations within this class must relate to variations in the efficiency of shapes. One for example may observe that the linear, being here the least efficient of urban shapes because it entails the highest average per capita transportation costs, corresponds to the highest total cost of urban trans portation relative to the total value of urban land net of its opportunity

The simplicity of this class of relationships is, indeed, striking A Q -I (n + 1) I n X A E 1 q i i -l i j J 2 3 j n± j
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he shadow price of residential land is the utility gain, expressed in money terms and evaluated at the optimum, of consuming an additional unit of land, i.e. (X^3u/3q^)|u=y. Since ( 33) is evaluated at the optimum, the first term on the LHS can be interpreted as the total shadow value of urban land R. Secondly, since Y n.X. rir A E. denotes the total change in social j J 3 8E n, J welfare stemming from changes in the quality of the environment caused by an Individual in area i, the second term in (33) represents the total effect E on social welfare of the spatial externality at the optimum. Consider now the RHS of (33).

Since AX -(1 ^+ (n^ + 1) A i|>) is the net contribution of N nŝ omeone in zone i to production, (n^ + 1)(AX -(i|>^+ (n^ + 1) A i|0) is the N nt otal net contribution of those in zone i to production. Thus the RHS of (33) denotes the total surplus value S of urban production. Summarizing, 4. The difference between the total shadow value of urban land and the total externality effect equals the total surplus value of urban production at the optimum.

When the spatial externality is positive (negative), proposition 4 implies that the total shadow price of urban land is larger (smaller) than the total surplus value of urban production at the optimum. Thus urban shadow prices compensate for the presence of the spatial externality in a way dictated by intuition: a negative spatial externality lowers shadow prices, and viceversa.

It is possible to relate optimal and shadow land values through the externality. Taking into account (38) of Part 1, (32) can be written as <ri Xi 3q ^ A Q " (ni + ^ I nj Xj 3E. A Ej Mi i-x j J J j n. J w ch, apr* a.jg» • -..îtion, implies 5. The difference between aggregate optimal and shadow land values equals the total externality effect at the optimum« Thus only when there are no spatial externality effects will optimal land values equal their corresponding shadow prices.

COMBINATIONS

Combining proposition 3 with propositions 4 and 5, we obtain 6 . If the elasticity of the urban area with respect to distance is constant over distance then R = S + 2E >( = , <) R + --C nQ:i according to whether the elasticity of transportation costs with respect to distance is greater than (equal to, smaller than) unity.

As with proposition 3, the simplicity of relationships described by its subsequent propositions is indeed striking.

Here the total surplus value of production represents benefits of urbanization, while the total value of urban land removed from production in the alternative sector and the total cost of urban transportation represent costs or urbanization. On the other hand, the spatial externality enters this balance as a benefit or cost of urbanization according to whether it is positive or negative. Returns to scale refer here to the two main components of urban infra-structure, that is, the production of public goods and the nature of transportation costs. In this sense, (37) implies that weaker returns to scale associated with an urban infra-structure require stronger benefits of urbanization at the optimal size of city.

When the public good occupies land, the extreme LHS of (36) should be modified according to proposition 2. Finally, as with proposition 3, all our conclusions subsequent to this proposition are independent of the theory of justice employed by the planner.

APPENDIX 1

This appendix gives the details of the Mohring paradox and its variations.

The first part is associated with proposition 1, the second with proposition 2, and the third with the application of the Mohring paradox in the case of agora models with land.
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Taking into account ( 38) and ( 45) of Part 1 with A = <j>, the tax -n.X.

• A E.. The distribution of this damage between the various zones J J ~ 3 s o m e o n e in zone k pays for his damage to those in zone j is given by r * ' those in j interact with is, using (4) of Part 1, -n.X.

J A E...

J J 3E. f ii j 1 \
Hence, the portion of the tax someone in k pays for his damage to those in j as they visit together zone i is -n,\, ~ A E,.. Aggregating over all his i j . 11 n victims, -£ n X . -A E^. is the portion of the tax someone in k pays for j J J j \ 13 his damage to those over ^ as he visits zone i. The total portion of the tax pai i by those in k for their damage related to zone i is -(n^ + 1)

£ n.X, A E. .. It follows immediately that j j \ 3
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is the total tax raised for zone i.

The net revenues of the public sector associated with zone i are 3E

'i " " I V j w : I (A Ei j )(nk + ° " I nj xj H . âsf "i (l,2) j j nk J J i using (1.2) and (1.1). Suppose now that the public good is a club, so that £ (3f/3 :.)x .) Notice that the step from (1.2) to (1.3) uses 3E/3io. = t l 1 i I 3^ /3a = 3gi/3a»i , and A g -Ag A N » Ag..
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The Mohr i n g paradox holds only if ç can be either zero or one everywhere in . Then it is possible to re-order (1.2) as in (1.3). On the other hand, if distance-response is non-trivial, the transition from (1.2) to (1.3) becomes impossible and the Mohring paradox callapses.

In the case of local public goods where = g^ [n^, u^] the tax paid by someone in i for his damage to those over $ is simply h -A.-It " A E . Thus the net revenues of the public sector become

1 I d h<. 1 : Bl 'a'' I Vi It"<u g i)(ni + u + v r V i i n^ i (K4)
using ( 21) in a form obviously simplified* For transportation, observe from (12) tha those who damage others in zone i must be located at or beyond i.

In conse< uence (1*1) is now written as (1.5) Given th.it ( 22) also holds and that transportation is spaceless, we have

- f t b I b I i-1 j-1 V j 3u 3E, ( I (A g i )(nk + k*i n. 1) + 3gi . b b 3u 1 (1.6)
w h e r e tie n e g a t i v e signs in (1*5) and (1.6) disappear because e^ is negative Finally, in the case of agora models j J J j k using ( 25) and ( 26).

■ * j *■ (°k + ° ni ki ^, 4 ei k=a+l i nÎ f the p' blic good is also a club, so that E. » g[n, £2] = E, then ' -a --j +, V i % ( j +1 ( i + » + H a> i=a+l 3E k=a+l I a x, ^ (Bl>- i=a+l 3E ( 
If, further, the public good is a club, so that = g^in, H^, u^] = e^ and Ej = E for j 6. jf, the total net revenue is
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The remaining cases are similar.

Ill

Competitive pricing of public land in an agora model implies . 11) provide< that the public good is also a club, so that E^ = g[n, a, ft] = E.

1 v , 3U * A Q ^ °i i - i=»a+l 3E j-1 Cj ^°r * < j < a, ( 1 
Notice t aat (1.11) is entirely compatible with (21): for zones in the interior of the agora, the first term on the RHS of (21) vanishes because there is no displacement of individuals. Under these circumstances, the total net revenues of the public sector are:
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Suppose that there are constant returns to scale in land used for the production of the public good. Then

A g = ---A Q = | & A Q. (1.13) j-1 9Qj-l j-1 3Q j-1
Replacing (1*13) in (1.12),

a n $n -( l r. A Q + ft) = J J-1 ' I " l Xi i f U g)<nk + 0 * JQ j , 4 0 + M B> i=a+l 3E k=a+l n^ j=l j-1 b a l n X -(8Ë) (1.14) i=*a+l 3Ê a I j-i j-i because J A Q =* Q • a APPENDIX 2
This appendix contains a proof of proposition 3. It is true that

A rQ = r AQ + Q Ar. (2.1) i i i
Aggregating over the city

I A rQ = I r AQ + £ Q Ar, (2.2 i i i i i i
where the LHS of (2.2) may be written as the first term on the RHS of (2*2) may be written as

I r i+i = I r 4 A Q + r K+i AQ; (2,4) i=l i i=2 1 i-1 b
and the second term on the RHS of 2*2 may be written as 

I Q Ar = -I Q .i Ac/ A Q (2.5) i i i 1 I i-1 because (5)
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Now r. A Q is the total value of urban land in zone i at the optimum. 1 i-1

Hence £ r. A Q is the total value of urban land at the optimum. Moreover, i 1 i-1 since rjj+ i is approximately equal to the bid-rent for agriculture, r ^^ is approximately equal to the total opportunity cost of urban land. Then

(2.4) may be written as

R -R = I Q.n Ac/ A Q. (2.7) i 1 i i-1
On the other hand the total cost of urban transportation is C = 7 n c . (2.8) i 1 1

Comparisons between the total value or urban land net of its opportunity cost and the total cost of urban transportation can be made through the RHS of (2.7) and (2.8). Now n ,71 (2.9) c:i < may be written as Ac/(c./i) 7 -J-AQ/(Q./i), (2.10)

i 1 < Q:i i-1 1 or as Q n.Ac/ A Q -4 - n.c.. (2.11) Xi i-1 nQ:i
Then, since it is true that Q.n.Ac/ 4 Q 7 " and only ^ . i "7 1 (2.12)

1 l ± i-1 < nQ-l C,Ì <
it must also be true that 9. These assumptions will be relaxed in the following sections.

I Q n Ac/ i Q j n c if n ^ J 1 (2.13) i i-1 i Q:i which,
10. Consider the principle of partitioning land between housing and roads.

This principle, represented by (59) of Part 1, dictates that the marginal product of land should be the same for the two uses. Since fewer people cross the road in areas further away from the centre, the marginal benefit of land used to streets falls with distance from the centre.

To the extent that per capita consumption of land increases away from the centre, (59) of Part 1 implies that the corresponding marginal cost of land used to streets also falls with distance from the centre. Thus it is not generally possible to determine how the propor tion of land allocated to streets behaves with distance from the centre. However, under specific conditions which include that g depends only on land, one may conclude the following. The proportion of land allocated to streets decreases at an increasing rate a w a y from the centre. In absolute terms, the same is true for small cities, i.e.

the amount of land allocated to streets also decreases at an increasing rate away from the centre.

For larger cities, we observe an initial increase followed by a decrease. There may also be some very large cities where there is an area around the centre which is completely allocated to transportation. In any case, the amount of land allocated to streets appears to be a concave function of distance which becomes zero at the outher city-border.

The original contributions dealing with this problem are Mills and de Ferranti and Solow and Vickrey (op. cit. footnote 8). Dixit (op. cit., footnote 8) placed the Mills and de Ferranti results within a properly optimal framework. Subsequent generalizations include Legey,Ripper and Varaiya,and Sheshinski (op. cit.,footnote 8).

11. For simplicity, I still assume that the private good is produced only with labour.

12. The lagrangean function of problem ( 18) is have also been used in the derivation. 

  i, j £ J* , it must also be that 5 j j [ n , '0>^[ * g^[N, a^], i.e. that the spatial distribution of population

  and land values adheres to the standard pattern, i.e.

5 ;

 5 the latter, by the explicit dependence of g on n:
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  and public funds are explicitly related to the production of the public good, we may express the spatial externality as

2 0

 2 ) is as follows. When the boundary of the agora is moved one zone outwards, thereby extending the agora, the public sector must pay for the use of the additional land (first term) and for the possible difference that this extension has imposed on existing land values in the agora (second term)* As land is taken away from residences, people in the marginal zone are displaced elsewhere in the outside world* Thus there is a saving from the corresponding reduction in the number of salaries required (third term)* At the same time, since the smaller work force might induce a difference in the marginal product of labour, extending the agora may necessitate adjustments in the optimal salaries paid to the remaining individuals (fourth term)* As less people remain to work in the production of the private good, the value of the urban product will normally be reduced (fifth term). Finally, as the agora extends, the remaining individuals will benefit both from increasing accessibility to and from better quality of public services (sixth term). The optimal extent of For simplicity of exposition assume that Ar? = 0 and Ai|», = 0 in a ^ a (), that is, neither land values at the centre nor individual expenditures are influenced by an expansion of the agora. Solving (20) for the land value per unit of public land at the border of the agora, ra+l * AQ AN + n a+l ' • ' a + P + AQ ^

  , when areas are partitioned between residential and public land-use, one cannot impose a priori a condition on land analogous to (2 2 ). This happens because (61) of Part 1 fixes the value of public land at the same level as the value of residential land which, in turn, or subsidies which distort optimality* The tax on drivers, for example, follows their consumption of gasoline and remains insensitive to the spatial distribution of other drivers; and homeowners pay a tax which reflects the spatial distribution of property values, rather than the spatial distribution of externality effects as required for optimality.

Figure 1 •

 1 Figure 1 • The value of urban land net of its opportunity cost.

Following

  

  * g [N, o)^] = e^ and = E for j €. . Let $n = £ be the total revenue of the public sector from congestion taxes. the functions g^ are p-homogeneous with respect to their a r g u m e r t s . (A 8 -h o m o g e n e o u s f u n c t i o n y = f[x^,..., x^] obeys fîy =

On the other hand, the new condition regulating the spatial extent of the agora is

  

		Cj for 1 -a +	(19)
	i j=a+l	J

  of Part 1 is true by definition and, at the optimum, (4) of

	Part 1 holds.	Upon substitution of (2.3), (2.4) and (2.6) into (2.21) and
	rearrangement,	

  Contrary to equilibrium studies where the spatial structure of the city is established in some detail, little is known about the ways optimal public controls are distributed over the city. In this sense the study General Equilibrium Simulation," Journal of Public Economics, Vol. 8(1977), pp. 19-36; A.E. Boardman and L.B. Lave, "Highway Congestion and Congestion Tolls," Journal of Urban Economics, Vol. 4(1977), pp. 340-59; Y. Kanemoto, "Cost Benefit Analysis and the Second-Best Land Use for Transportation," Journal of Urban Economics, Vol. 4(1977), pp. 483-503; W.C. Wheaton, "Price-Induced Distortions in Urban Highway Investment," Bell Journal of Economics, Vol. 9(1978), pp. 622-32.

	7.	
	of Helpman, Pines and Boruchov is significant.	(The only other analo
	gous example, to my knowledge, is provided by the literature on the
	optimal allocation of land to streets.)	The same questions, in the
	context of a general model, remain unanswered. Also unanswered remain
	questions about comparative statics, including how the spatial distri
	bution of public controls is affected by the theory of justice
	employed.	
	upon comparison with (2.7) and (2.8) implies
	« * -« 7 "q :i 1£ " c !l 7 1		(2,14>
	because the elasticity of the urban area with respect to distance is
	constant over distance, hence it may be taken out of the summation symbol in
	(2*13)#	

  13. The original source is H.D. Mohring and M. Harwitz, Highway Benefits (Evanston, 111.: Northwestern University Press, 1962), chapter two. Although Strotz, op. cit., footnote 8, mentions this explicitly, it is frequently referred to as the "Strotz result". Other contributions include F.R. Forsund, "Externalities, Environmental Pollution and Allo cation in Space: A General Equilibrium Approach," Regional and Urban Economics, Vol. 3 (1973), pp. 3-32; S.C. Kolm, "Rendement Qualitatif et Financement Optimal des Politiques, d ' Environement," Econometrica, Vol. 43(1975), pp. 93-115; B. Greenwald," Conventional Returns to Scale and Financing Pollution Control," Econometrica, Vol.44(1976), pp. 811-14; and E. Helpman, D. Pines and E. Boruchov, op. cit., footnote 6. 14. For details see appendix 1. 15. For details see appendix 1.16. This section is based on some ideas in R. Arnott, "Optimal City Size in a Spatial Economy," Journal of Urban Economics, Vol.6(1979), pp.

	that the rules
	65-89.

17. The opportunity cost per unit of land equals the bid rent of agricultural activities.

18. The elasticity of the urban area with respect to distance is the ratio between the relative change in the urban area enclosed within a certain distance from the centre and the relative change in that distance.

Similarly, the elasticity of transportation costs with respect to distance is the ratio between the relative change in transportation costs and the relative change in the corresponding distance.

19. The classification based on radians implies urban areas of regular shape. Then the elasticity of the urban area with respect to distance is constant over distance. This is not the case with irregular shapes where the above elasticity varies over distance. 20. For a proof see appendix 2.
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