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Abstract Humans present clear demographic traits which
allow their peers to recognize their gender and ethnic groups
as well as estimate their age. Abundant literature has in-
vestigated the problem of automated gender, ethnicity and
age recognition from facial images. However, despite the co-
existence of these traits, most of the studies have addressed
them separately, very little attention has been given to their
correlations. In this work, we address the problem of joint de-
mographic estimation and investigate the correlation through
the morphological differences in 3D facial shapes. To this
end, a set of facial features are extracted to capture the
3D shape differences among the demographic groups. Then,
a correlation-based feature selection is applied to highlight
salient features and remove redundancy. These features are
later fed to Random Forest for gender and ethnicity clas-
sification, and age estimation. Extensive experiments con-
ducted on FRGCv2 dataset, under Expression-Dependent
and Expression-Independent settings, demonstrate the effec-
tiveness of the proposed approaches for the three traits, and
also show the accuracy improvement when considering their
correlations. To the best of our knowledge, this is the first
study exploring the correlations of these facial soft-biometric
traits using 3D faces. This is also the first work which studies
the problem of age estimation from 3D Faces.1

Keywords 3D Face · Gender · Ethnicity · Age · Correla-
tion · Random Forest · Feature Selection.

1 Introduction

In daily life, human beings perform gender and ethnicity
recognition as well as estimate the age of their peers naturally
and effectively. Several studies from different backgrounds
(face and head anthropometry, cognitive psychology, clinical
studies, etc.) have tried to understand how the process works.
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In particular, a number of anthropometric studies [65] have
revealed that significant facial morphology differences exist
among the gender, the ethnicity and the age groups. For ex-
ample, when studying the Sexual Dimorphism (Male/Female
differences) [9], researchers have found that male faces usu-
ally possess more prominent features than female faces. Male
faces usually have more protuberant noses, eyebrows, more
prominent chins and jaws. The forehead is more backward
sloping, and the distance between top-lip and nose-base is
longer. [65] have also demonstrated that all the concerned
anthropometric measurements of females are smaller. In the
study of the ethnic differences [16], researchers have found
that compared to the North America Whites, Asians usu-
ally have broader faces and noses, far apart eyes, and ex-
hibit the greatest difference in the anatomical orbital regions
(around the eyes and the eyebrows). In the clinical study re-
ported in [35], Alphonse et al. have revealed that Caucasians
have significantly lower fetal Fronto-Maxillary Facial Angle
(FMFA) measurements than Asians. In [65], sixteen anthro-
pometric measurements have been recognized as significantly
different between Asian and Caucasian faces. When studying
the face aging [48, 49], researchers have concluded that the
craniofacial growth is the main change in baby and adoles-
cent faces, which results in the re-sizing and redistribution of
facial features. During this period, generally, the larger is the
age, the bigger is the size of the face. When the craniofacial
growth stops at 18-20 years old, the face contour and tex-
ture changes become the dominant changes. Young adults
tend to have a triangle shaped face with small amount of
wrinkles. In contrast, old adults are usually associated with
a U-shaped face with significant wrinkles on the face. Be-
sides the existence of these Soft-Biometric Traits2 [11, 34]
in the face, gender, ethnicity and age are also correlated in
characterizing the facial shape [65]. For example, according
to the anthropometric studies cited above, the shape of the
nose is influenced by all the three soft-biometric traits. In
human perception, female faces usually look smoother and
younger than male faces, and the Asian faces usually look
younger than Non-Asian faces [50]. In [58], Vignali et al. have

2 A.K. Jain defined Soft-biometric traits as a set of traits providing
information about an individual, though these traits are not suffi-
cient to individually authenticate the subject because they lack in
distinctiveness and permanence [34].
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demonstrated both visually and quantitatively that ethnic-
ity and gender are correlated to some extend in the 3D face.
In [19], Gao et al. have concluded that the gender classifier
trained on a specific ethnicity could not get good generaliza-
tion ability on other ethnic groups. In [58], when the gender
information is removed from the faces, the human ethnicity
classification performance is recognizably lower.

In this paper, we consider the problem of joint gender,
ethnicity and age recognition through the morphological dif-
ferences in the 3D facial shapes. A number of morphology-
driven 3D features are extracted, and then used to train Ran-
dom Forest in Classification/Regression modes for gender
and ethnicity recognition, and age estimation. A quantita-
tive study of the correlations of the three demographic traits
is proposed. In the joint recognition experiments, these cor-
relations are considered, to demonstrate their influences on
the recognition accuracy.

1.1 Related Work

Since the 90s of the previous century, several approaches
have been proposed to solve the problem of image-based
automatic facial Soft-Biometric Traits recognition, e.g. gen-
der [22,26,45], ethnicity [17,26] and age [18,22,26,48].While
the most conventional works have attempted to exploit the
intensity (color) images, a recent trend consists on investi-
gating the use of the 3D shape of the face. According to the
definition given in [62], the face texture represents the reflec-
tion and absorption effects of external illumination caused
by the facial skin, while the 3D face shape defines the solid
border which distinguishes the face and the environment. It
is now well-established that the 3D shape provides a rich de-
scription of the face morphology compared to the intensity
image. From 2D intensity images, the (2D) shape of the face
is usually represented by a sparse set of anchor points de-
tected in the face images (used to define the well-known Ac-
tive Shape and Active Appearance Models), which represent
poorly and incompletely the facial shape, and are sensitive to
the head pose changes during the image acquisition. In the
study presented in [29], Hu et al. have demonstrated that,
with the 3D shapes of the face, human observers perform
better on both gender and ethnicity recognition than with
the 2D images.

With a particular focus on the 3D shape-based methods,
this paragraph provides a brief review of the existing work
in gender, ethnicity and age recognition. We adopt the tax-
onomy proposed recently in [26] which consists of three cat-
egories: (1) anthropometry-based, (2) Image-based, and (3)
Appearance-based in automatic demographic traits recogni-
tion. The recent work of Gilani et al. [21] belongs to the first
category (anthropometry) as it has proposed to automati-
cally detect the biologically significant 3D facial landmarks,
and then calculate the Euclidean and the Geodesic (along
the surface) distances between them as face features. Sim-
ilar studies have been proposed in [58] and [27] where the
3D facial landmarks coordinates [58], and the volume/area
information of facial regions [27] are extracted for gender
and ethnicity classification. Despite their high performance,
these approaches require accurate detection of the anchor
points on the face. The works of Toderici et al. [54], and

Wang and Kambhamettu [59] belong to the second category
where image-based features like the wavelets [54], the Local
Binary Patterns (LBP) [59], and the Shape Index [59] are
extracted from the range images for gender and ethnicity
recognition. With 3D facial meshes, Tokola et al. [55] have
extracted the Correspondence Vectors (CVs) features to rec-
ognize all the three facial traits. Approaches which combine
2D (texture) and 3D (shape) channels form the third cat-
egory (appearance-based). In [30], Huang et al. have com-
bined the Local Circular Patterns (LCP) features of texture
and range images in gender and ethnicity recognition. Also
in [60], Wu et al. have fused shape and texture informa-
tion implicitly with needle maps recovered from intensity
images. In [33], Huynh et al. have fused the Gradient-LBP
from range images and the Uniform LBP features of the gray
image in gender classification. In [44], Lu et al. have fused the
SVM outputs from range and intensity images in gender and
ethnicity classification. Reported results of the appearance-
based demonstrate higher accuracy than using only the in-
tensity or the depth. However, when using the 2D intensity
or range images, manually labeled facial landmarks are usu-
ally required in a pre-processing step to crop and align the
facial regions [26,30,44].

From the analysis above, most of the existing 3D-based
methods have tried to extract conventional features from
range images (such as the 3D landmark coordinates, LBP,
LCP, wavelets, shape index, etc.). No attention has been
paid to reveal the relationship between the extracted fea-
tures and the studied demographic trait. That’s to say, even
an approach achieves high recognition performance, we don’t
know why the extracted features are relevant in the studied
task. Moreover, the study of these soft-biometric traits have
been done separately, in the 3D domain. The correlations
of the soft-biometric traits have attracted little considera-
tion. Although some 2D-based works have investigated the
relationship between ethnicity and gender [15, 19], the rela-
tionship between ethnicity and age [24,38], and the relation-
ship between gender and age [23, 24, 38, 46, 48, 56] in their
recognition tasks, different conclusions have been reported.
For example, experimental results in [15] and [19] have made
different answers to the question whether gender and eth-
nicity are helpful in each others’ recognition. The various
illumination conditions and head poses in different data ac-
quisitions, the dependency on the accuracy of the landmarks
in face alignment, and especially the incomplete facial shape
information in the 2D images, should account largely for this
disagreement. We propose here to explore the morphological
differences in the 3D shape of the face to answer the follow-
ing two questions: (1) Can the 3D shape of the face reveal
our gender, ethnicity and age? and (2) are the correlations
between the demographic traits useful in each others’ recog-
nition task? To the best of our knowledge, this is the first
work in literature that proposes a joint estimation of the de-
mographic traits through the 3D shape differences. It is also
the first work which studies the problem of age estimation
from 3D faces [61].
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1.2 Methodology and Contributions

Our approach consists of a 3D feature extraction step fol-
lowed by a classification or regression step. The 3D face scans
are first pre-processed to extract the facial region, then a
collection of radial curves emanating from the nose tip are
extracted to represent the face. Following four different pair-
wise curve comparison strategies, we compute four types of
3D features, for which each reflects a specific perspective
in face perception. In the classification/regression step, we
present the features to Random Forest in its classification
mode for gender or ethnicity classification, and in regres-
sion mode for age estimation. To enhance the performance,
we have also included two additional steps in our approach,
the Feature Selection and the Fusion. The feature selection
method is used for selecting a salient subset of features which
contains the information of gender, ethnicity and age. The
fusion method merges all the information from the four fea-
tures by concatenation. The main contributions of this work
are the following:
– We propose a set of 3D facial descriptors grounding in

Shape Analysis of facial radial curves, with which we
demonstrate that 3D shapes of our faces can reveal
our gender, ethnicity and age information. These
descriptions are designed to capture in different ways the
morphological difference among the demographic groups.

– We demonstrate that gender, ethnicity and age are
correlated in the 3D face, and their correlations are
helpful in each others’ recognition. Our conclusion is sig-
nificantly different than [15], which claims that gender
and ethnicity are not helpful for each others recognition.

– This is the first work in the literature which investi-
gates the problem of age estimation from 3D shapes
and perform joint estimation of gender, ethnicity
and age in 3D. Extensive evaluations on the challeng-
ing FRGC dataset demonstrate the effectiveness of the
proposed method and its robustness to facial expression
variations.
The rest of the paper is organized as follows. In Section 2,

the computational strategies of the 3D facial morphological
features are detailed, as well as their relationship with the
demographic groups. Section 3 explains the machine learn-
ing techniques adopted in our work for facial soft-biometric
traits recognition. Experiments and discussions are issued in
Section 4. In the end, Section 5 makes the conclusions and
states some future directions.

2 Geometrical 3D Features Extraction

In this section, we describe four different and complementary
morphological face descriptions extracted from the 3D face.
These descriptions are densely computed based on shape
analysis of 3D radial curves of the face. Earlier studies on
3D face recognition [13] and 4D expression recognition [7]
have demonstrated the effectiveness of the proposed geomet-
rical framework in comparing 3D faces and capturing shape
deformations. We point out that although in the common
geometrical shape analysis background with [7], this work
presents several methodological and applicational contribu-
tions, which will be highlighted later.

2.1 Mathematical Background

Following the previous studies [7,13] in 3D face analysis, the
3D scans are first preprocessed by filling the holes, cropping
the informative (face) area and denoising the 3D mesh, to-
gether with nose tip detection and pose normalization. Then,
a collection of radial curves stemming from the nose tip are
defined over the face. The latter step results in S ≈ ∪αβα,
where S and βα,α∈[0,2π] denote the preprocessed facial sur-
face and the radial curves, respectively. To allow appropriate
shape analysis of facial curves, we adopt the mathematical
representation proposed in [51], termed Square Root Velocity
Function (SRVF), which has the merit of allowing the
shape registration and the shape analysis of elastic
curves simply with the same L2 metric.

Formally, we start by considering a given facial curve
as a continuous parameterized function β(t) ∈ R3, t ∈ [0,1].
β is first represented by its Square-Root Velocity Function
(SRVF), q, according to :

q(t) = β̇(t)√
‖β̇(t)‖

, t ∈ [0,1].

Then, with the L2-norm of the q functions scaled to 1 (‖q‖=
1), the space of such representation: C= {q : [0,1]→R3,‖q‖=
1} becomes a Riemannian manifold and have a spherical
structure in the Hilbert space L2([0,1],R3). In virtue of the
spherical structure of C, illustrated in Fig. 1, given two curves
β1 and β2 represented by their SRVFs q1 and q2 on the mani-
fold, the geodesic path connecting q1, q2 is given analytically
by the minor arc of the great circle connecting them on C
(see [51] for further details). Our goal here is to effectively
quantify the shape divergence between β1 and β2, where an
accurate registration is required to match similar morpho-
logical parts between the curves. For example, to capture
the bilateral symmetry on a pair of symmetrical curves in a
face, it is important to accurately match them so that the
peaks match the peaks and valleys go with the valleys. It has
been proofed in [51] that under the L2-norm, the quantities
‖q1− q2‖ and ‖q1 ◦ γ− q2 ◦ γ‖ are same, where the compo-
sition (q ◦ γ) denotes the function q with a new parameter-
ization dictated by a non-linear function γ : [0,1]→ [0,1].
This important property allows curves registration by re-
parameterization, and thus makes the curves registration
easier. In fact, it allows to consider one of the curves as refer-
ence and search for a γ∗= argminγ∈Γ (‖q1−

√
γ̇q2◦γ‖) which

optimally registers the two curves. This optimization is re-
solved by Dynamic Programming, as described in [51] for
general Rn curves.

After the registration (let q2 becomes q∗2 with the opti-
mal re-parameterization function γ∗), we need to quantify
the shape difference of the two curves. Due to the spheri-
cal structure of C, the geodesic path connecting two points
q1 and q∗2 has a constant velocity. Thus, we use the tangent
vector Vq1→q∗2 , element of the tangent space on q1 to the
manifold C, Tq1(C), to quantify the shape difference from q1
to q∗2 . This vector is also the initial shooting vector along
the geodesic connecting q1 towards q∗2 . Again, due to the
spherical structure of C, Vq1→q2∗ is easy to compute using
the inverse exponential map given by:
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Fig. 1 An illustration of the spherical structure of the manifold C,
q1 (blue) and q∗2 (red) are elements of C. The geodesic connecting
them (green path), Tq1 (C) (gray) is the tangent space of C on q1, and
the shooting vector Vq1→q∗

2
obtained by the inverse exponential map

exp−1
q1 (q∗2).

Vq1→q2 = exp−1
q1 (q∗2)

= θ

sin(θ) (q∗2 − cos(θ)q1),

Where q∗2 is q2 re-parameterized by the optimal matching
function γ∗ that provides the best registration of q2 with re-
spect of q1, and θ= cos−1 〈q1, q

∗
2〉 is the length of the geodesic

connecting q1 to q∗2 .
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Fig. 2 Illustration of the deformations needed to fit βα to β2π−α
(|Vqα→q∗

2π−α
|) and inversely (|Vq2π−α→q∗

α
|), on each vertex of the

curve parameterized by t. The quantities qα and q2π−α denote the
SRVFs of the curves βα and β2π−α, respectively, extracted from a
given face.

An illustration of |Vq1(t)→q∗2(t)| between points of two
symmetrical curves on the same face is shown in Fig. 2. Here
|.| denotes the magnitude of Vq1(t)→q∗2(t) on each parameter t.
The arrows shown on the facial curves capture the point-wise
local deformations needed to go from the reference curve β1
to the target (symmetrical) curve β∗2 (or from reference curve
β2 to target curve β∗1). We note that, in general, the quanti-
ties |Vq1(t)→q∗2(t)| and |Vq2(t)→q∗1(t)| are different, due to the
re-parameterization on the target curve in the registration
step.

2.2 Morphology-driven 3D Features Computation

Based on the mathematical framework described above, we
extract four different facial descriptions, to capture the mor-
phological differences among different gender, ethnicity and
age groups. Each of them reflects a perceptible property in
the human face, namely the bilateral Symmetry, the face
Averageness, the global (Spatial) variations and the local
variations (Gradient). These descriptions are illustrated in
Fig. 3, where in each panel, the left part illustrates the ex-
tracted radial curves and the curve comparison strategy, and
the right part shows the extracted features as an interpolated
color-map on the face. On each vertex of the mesh, the colder
is the color, the higher is the magnitude of the shape differ-
ence.

(a)

Template Face

(b)

(c) (d)

Fig. 3 Illustrations of different features on 3D shape of the face S. (a)
3D-Symmetry Description: shape differences from each radial curve
βSα to its symmetrical curve βS2π−α; (b)3D-Averageness Description:
shape differences from radial curve βSα in a preprocessed face to radial
curve βTα in face template (with same angle index α); (c) 3D-Spatial
Description: shape differences from radial curve βSα to the middle-up
radial curve βS0 in the forehead; (d) 3D-Gradient Description: shape
differences from radial curve βSα to its neighbor curve βSα+∆α.

– The 3D-Symmetry Description (3D-sym.) shown
in Fig. 3(a) captures densely the deformation between
bilateral symmetrical curves (βSα and βS2π−α). The col-
ormap shown on the right illustrates this description on
each vertex of the 3D face. Here colder colors stand for
higher feature values. In other words, they highlight the
most asymmetric areas in the 3D shape of the face. This
description reflects the idea that different population has
different bilateral face symmetry. In [42], Little et al. have
revealed that the facial symmetry and sexual dimorphism
are related in humans, and faces of different ethnicity
have different amount of facial asymmetry. In [52], Steven
et al. have found the facial masculinization significantly
covaries with the fluctuating asymmetry in men’s face.
In [10], Clinton et al. have discovered that increasing age
is associated with a higher degree of facial asymmetry in
3D face surfaces.
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– The 3D-Averageness Description (3D-avg.) shown
in Fig. 3(b) compares a pair of curves with the same
angle index α from a face S and an average face tem-
plate T. The average face template T (presented in Fig.
3(b)) is constructed as the middle point of geodesic path
connecting a representative male face to a representative
female face. This description reflects the idea that dif-
ferent population shows different shape size and anthro-
pometric features. Researchers have revealed that facial
sexual dimorphism relates closely to facial distinctiveness
(the converse to averageness) [6]. The male faces usu-
ally possess more prominent features than female faces
[32, 57, 65]. For ethnicity, the Asian and Non-Asian pop-
ulation present significantly different facial morphology
[2, 14, 40, 65], such as the face width, and the nose width
and height. Also, in [1, 12], researchers have found that
exaggerating distinctiveness in the face produces an in-
crease in the apparent of its age.

– The 3D-Spatial Description (3D-spat.) shown in
Fig. 3(c) captures the shape divergence of a curve βα to
the middle-up curve β0, emanating from the nose tip and
goes over the nose and the forehead in S. As the curve β0
is the most rigid curve in the face, the 3D-Spatial descrip-
tion aims to capture the smoothly-changing global defor-
mation from the most rigid part of the face. As demon-
strated in [36, 64], sexual dimorphism exhibits unequal
magnitude in different facial parts. In [3], Ashok et al.
have found that the facial features contribute more than
the nose and head features towards sexual dimorphism.
For ethnicity, Asian and Non-Asian faces exhibit differ-
ent morphological differences in different facial parts. For
age, it’s well-known that different facial parts age differ-
ently [39,53]. The internal facial parts (especially the eyes
surrounding areas) are recognized as the most significant
for automatic age estimation [39].

– The 3D-Gradient Description (3D-grad.) shown in
Fig. 3(d) computes the differences between pairwise neigh-
boring curves (βSα and βSα+∆α). It takes the idea that dif-
ferent population could show different local shape changes
in the face. For gender, it has been revealed that sexual di-
morphism demonstrates the facial developmental stabil-
ity [41] in the face. For ethnicity, the Asians usually have
wider face and nose, and less protruding nose, than the
Non-Asian faces. For age, this description reflects the lo-
cal facial changes (loose of strength and smoothness when
aging) which are very important in age perception [28,41].

It is clear that the 3D descriptors described above reflect
(quantify) different cues of the facial morphology. They allow
to capture densely differences which exist across the studied
demographic groups. The question now is – Can these 3D
morphological descriptions reveal our demographic
traits?

3 Facial Soft-biometric Traits Recognition

We consider now the remaining steps in our facial demo-
graphic traits recognition algorithms. First, we perform a
correlation-based Feature Selection method on our descrip-
tions. Then, we present the selected features to Random For-

est for facial classification/regression. We note that these two
steps are common in many recognition problems, however, we
shall present here in-deep analysis on the correlation between
the facial demographic traits and the extracted 3D features.
In particular, we shall highlight the location of the salient
features on the face for age, gender and ethnicity recogni-
tion.

3.1 Correlation-based Feature Selection

Feature subset selection is the process of identifying and re-
moving as much irrelevant and redundant information as
possible [25]. There are mainly two types of feature selec-
tion methods, the filter methods which use heuristics based
on general characteristics of the data to evaluate the merit
of feature subsets, and the wrapper methods which use an in-
duction algorithm along with a statistical re-sampling tech-
nique such as cross-validation to estimate the final accuracy
of feature subsets [37]. We choose a filter method for feature
selection, named the Correlation-based-Feature-Selection [25],
because the filters operate independently of learning algo-
rithm and are generally much faster than wrappers. The cho-
sen CFS filter comprises of two parts, a feature correlation
measure using the Pearson’s correlation coefficient, and
a Best-First heuristic search algorithm which moves through
the search space by greedy hill-climbing augmented with a
back-tracking facility. In practice, we perform feature selec-
tion for all the three facial attributes, the gender (labeled
as male and female), the ethnicity (labeled as Asian and
Non-Asian) and the age (labeled in two groups, > 22 group
and < 23 group). After Feature selection, we retain 200−400
features for each description. Thus, the feature selection pro-
cedure significantly reduces the size of the features. To illus-
trate this idea and allow analysis of the location of salient
facial areas for each demographic trait, in Figure 4, we show
the magnitude of the correlation between the facial features
and the facial attributes as color map on the face. The corre-
lations are calculated with the 466 earliest scans of FRGCv2
dataset as follows.
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Fig. 4 Correlations between 3D facial features and demographic
traits on each vertex of the face (colder colors indicate higher cor-
relations).
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For all the earliest (466) scans of FRGCv2 dataset, the
ith feature of a face description makes a one dimensional
vector Di = (d1

i ,d
2
i , ...,d

466
i ), where dmi denotes the ith fea-

ture of the mth face. Then, for a given facial demographic
trait, the labels for the same 466 scans make a vector La =
(L1,L2, ...,L466), where Lm denotes the attribute label of the
mth face. The correlation between the ith feature of the de-
scription and the concerned attribute is given by the Pearson
Correlation Coefficient between Di and La. Recall that, for
two variables X and Y , the Pearson correlation coefficient
pX,Y is defined by pX,Y=cov(X,Y )/(σXσY ), where cov de-
notes the covariance and σ denotes the standard deviation.
The absolute value of the Pearson Correlation Coefficient
ranges from 0 to 1. The higher the absolute value, the higher
the linear correlation between the two variables. In our case,
the higher the correlation, the more informative is this fea-
ture for discriminating the concerned demographic trait. In
Figure 4, the correlation between each description and each
facial attribute is shown as color-map on each vertex of the
face. Warm colors indicate low correlations, and cold colors
indicate high correlation. From the figure one can note sev-
eral observations.

Firstly, the green/blue colors show that the facial features
are considerably correlated with the facial soft-biometric traits,
in some particular areas of the face. For gender, the eyes,
nose, cheek-sides, lips and the chin are particularly informa-
tive. It matches with the previous findings of sexual dimor-
phism presented in [9], which claim that males have protu-
berant nose, eyebrows, chin and jaws than females, and the
distance between top-lip and nose-base is longer. For ethnic-
ity, the eyes, nose, cheek-sides and chin are more informative.
This echoes the findings in [16] which have stated that the
Non-Asians have broader faces and noses, farther apart eyes,
and lower fetal fronto-maxillary facial angle (FMFA) mea-
surements than Asians. For both gender and ethnicity, the
forehead gives little information. While for age, the forehead,
together with the nose, the eye corners and the mouth cor-
ners, show the strongest hints. It goes with the public knowl-
edge that wrinkles usually develop in the forehead, eyes, nose
and mouth regions with age.

Secondly, it confirms that the four descriptions give differ-
ent and complementary perspectives for perception of gen-
der, ethnicity and age. They act as four different types of
’eyes’ in face perception. For gender (first row), the 3D-sym
description ’sees’ the inner eye corners, the border area of the
nose and the cheeks, and the chin-side regions. The 3D-ave
description ’looks’ at the eyebrows, the eyes, the nose, the
lips, and gives significant attention to the cheek-sides and the
chin. The 3D-grad description emphasizes the eyes and the
dorsal nasals of the nose, while the 3D-spat description also
emphasizes the chin and the sides of the nostrils. For eth-
nicity (second row), the 3D-sym description ’sees’ the nose
regions and the cheeks. The 3D-ave description ’looks’ at
the border area of the nose and the cheek-sides, and the chin
region. The 3D-grad description emphasizes the inner eye-
corners and the dorsal nasals of the nose, while the 3D-spat
description also emphasizes the chin and the area around the
nostrils. For age (third row), the 3D-sym description ’sees’
the whole forehead, the nose, the outer eye corners, and the
regions besides the mouth corners. The 3D-ave description

mainly ’looks’ at the center part of the forehead, the inner
eye corners, and the nose surrounding regions. The 3D-grad.
description emphasizes the center part of the forehead, the
eye corners, the nose bridge, and the mouth corners, while
the 3D-spat description emphasizes the central part of the
forehead, the regions around the eye corners, and the nose
bridge. According to these observations, the four descriptions
capture different and complementary cues of gender, ethnic-
ity and age in the face.

3.2 Random Forest Classification/Regression

Random Forest is an ensemble learning method that grows
many decision trees t ∈ {t1, .., tT } considering an attribute
[8]. To estimate the attribute from a new instance repre-
sented as a feature vector, each tree gives a decision result
and the forest does the overall estimation. In growing of each
tree, two types of randomness are introduced. First, to make
the training set, a number of N instances are sampled ran-
domly with replacement from the original data. Then at each
node of the tree, a constant number of m (m<<M) vari-
ables are randomly selected, and the best split on these m
variables is used to split the node. The process goes on until
the resulted subsets of the node are totally purified in label.
The performance of the forest depends on the correlation
between any two trees, and the strength of each individual
tree. The forest error rate increases when the correlation de-
creases, or the strength increases. Reducing m reduces both
the correlation and the strength. Increasing it increases both.
Thus, an optimal m is needed for the trade-off between the
correlation and the strength. In Random Forest, the optimal
value of m is found by using the oob-error rate (out-of-bag-
error rate). For making the overall decision, in classification
work, the forest predicts the attribute with majority voting.
The classification mode of Random Forest is designed for
instances with discrete class labels, such as the gender and
ethnicity labels. While in regression tasks, it takes the aver-
age of predictions. The regression mode of Random Forest is
designed for instances with continuous class labels, such as
the age labels. Thus, in our work, we use Random Forest in
classification mode for gender and ethnicity recognition, and
in regression mode for age estimation.

4 Experimental Results

In the following experiments, we use the Random Forest
method [8] in classification mode for gender and ethnicity
classification, and the regression mode for age estimation. For
the experiments in section 4.1-4.3, they are carried out on the
Face Recognition Grand Challenge 2.0 (FRGCv2) dataset
[47]. The FRGCv2 dataset was collected by researchers from
the University of Notre Dame and contains 4,007 3D face
scans of 466 subjects with differences in gender, ethnicity,
age and expression. For gender, there are 1,848 scans of 203
female subjects and 2,159 scans of 265 male subjects. The
ages of subjects range from 18 to 70, with 92.5% in the 18−30
age group. When considering ethnicity, there are 2,554 scans
of 319 White subjects, 1,121 scans of 99 Asian subjects, 78
scans of 12 Asian-southern subjects, 16 scans of 1 Asian and
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Middle-east subject, 28 scans of 6 Black-or-African Ameri-
can subjects, 113 scans of 13 Hispanic subjects, and 97 scans
of 16 subjects whose ethnicity are unknown. About 60% of
the faces have a neutral expression, and the others show ex-
pressions of disgust, happiness, sadness and surprise. All the
scans in FRGCv2 are near-frontal. With this dataset, we
conduct two types of experiments as follow:

– Expression-Dependent Experiment uses the 466 ear-
liest scans for training and testing. The majority of the
scans in this subset have neutral expression. This data
subset leads to a possible study of the facial attribute
recognition when imposing a neutral expression. [5] and
[21] have explored this data subset for 3D gender classi-
fication.

– Expression-Independent Experiment is based on the
whole 4,007 scans of FRGCv2 (about 40% are expres-
sive). This makes possible the study of facial attributes
recognition when varying the facial expressions. The whole
FRGCv2 dataset has been extensively used to test the ro-
bustness of face recognition algorithms against facial ex-
pressions [13]. In [63], the ethnicity classification results
on FRGCv2 dataset are influenced strongly by the facial
expressions.

We use the Leave-One-Person-Out (LOPO) cross-validation
approach in these experiments, where each time the scans of
one subject are used for testing, and the scans of the re-
maining subjects are used for training. Thus, there are alto-
gether 466 folds in the cross-validation. The experiments are
conducted in a Subject-independent fashion. Each subject is
tested only once. The LOPO strategy is similar to real-word
like applications, and it allows training with a maximum
number of subjects. To give consideration to the correlations
of the three attributes, we define the Attribute-specific ex-
perimental settings as following. For Gender-specific setting,
the 466 subjects are separated into Male group (263 sub-
jects) and Female group (203 subjects) first, then we evalu-
ate on each group separately. For Ethnicity-specific setting,
we separate the 466 scans into Asian group (112 subjects,
correspond to the Subjects labeled as Asian, Asian-southern
and Asian and Middle-east) and Non-Asian group (the rest
354 subjects) first, then test on each ethnicity group sepa-
rately. For Age-specific setting, we separate the 466 subjects
into older group (≥26 years, 107 subjects) and younger group
(≤25 years, 359 subjects) first, then perform LOPO exper-
iments on the younger and older groups, separately. Note
that in section 4.5, we will use a different experimental set-
ting which consists on 10-fold cross-validation (10-CV) to
allow comparison to previously published approaches.

4.1 Gender Classification on FRGCv2

In this experiment, we first perform LOPO gender classifi-
cation with Random Forest on the original extracted fea-
tures. Then, we perform correlation-based feature selection
on the original features and carry out the experiments with
the selected features. After that, we perform the experi-
ments in consideration of ethnicity and age in the Ethnicity-
specific and Age-specific settings, respectively. We consider
also Eth&Age-specific experiment, where the experiment is

conducted with the scans of the same ethnicity and age
groups.

The gender classification results are shown as bar-plots in
Fig. 5. The y-axis gives the classification rate in LOPO exper-
iment. The x-axis shows the different experimental settings.
The left panel corresponds to the Expression-Dependent ex-
periments, the right one shows the results when tolerate
facial expression variations (Expression-Independent exper-
iments). With the 466 scans in the Expression-Dependent
experiments, the original features achieve more than 85%
gender classification rate for each description. With the fea-
ture selection step, the results are improved by 2−5%. Now,
when considering the ethnicity information in the Ethnicity-
specific setting, the results are furthermore improved in gen-
eral. The improved results demonstrate that Asian
and Non-Asian exhibit different gender information.
When considering the age information in the Age-specific set-
ting, a stronger improvement is shown, which indicates
that people of different age exhibit different gender
information. When considering both Ethnicity-specific and
Age-specific, termed age&Eth-specific, the accuracy is gener-
ally higher than the Feature Selection and quite comparable
to Ethnicity-specific and Age-specific. We also note that the
fusion of the 3D features always outperforms individual fea-
tures in all the settings. The highest gender classification
rates, 94.64% and 94.21%, are achieved by the Fusion un-
der the Age-specific and Ethnicity-specific settings, respec-
tively. These findings are furthermore confirmed by in the
Expression-Independent experiments, as shown in the right
panel of Fig.5. For each description, the gender classification
performance is always higher when considering ethnicity and
age information. The fusion of these features always outper-
forms each individual description, and achieves an 93.13%
accuracy in the Ethnicity-specific setting. These results show
also that the expressions variations affect slightly the perfor-
mance. Among the four descriptions, generally, the 3D-avg
descriptor, which captures the shape difference to a given
template, achieves the highest performance. It confirms the
studies on sexual dimorphism [9] which claim that Male
and Female faces present different morphological features
in the shape. Also, the 3D-sym descriptor confirms that fa-
cial asymmetry is related to the gender [43]. In addition to
these confirmations, these experiments show the relation-
ship between the gender information and two influencing
intrinsic factors which are the age and the ethnicity. How-
ever, concerns should be raised as the gender distributions
may not be uniform across the demographic subgroups of
FRGCv2, which could cast different prior information in to
the classifiers. To this end, we applied the Two-sample t-
test (with null hypothesis of equal Mean in two samples),
and the Two-sample F-test (with null hypothesis of equal
Variances in two samples) to the subjects’ gender in differ-
ent demographic subgroups. Considering different ethnicity
subgroups, the tests results (t-test: p = 0.1752, F-test: p =
0.8090) suggest there is no significant difference of gender
distributions between the Asian and Non-Asian subjects in
terms of Mean and Variance, at a significant level of 0.05. For
age, results (t-test: p = 0.1565, F-test: p = 0.8061) demon-
strate again that there is no significant difference between
the gender distribution in the Old (>=26) and the Young
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Fig. 5 gender classification results under Expression-Dependent (ED) and Expression-Independent (EI) settings. Features,
3D-avg.: Averageness — 3D-sym.: Bilateral Symmetry — 3D-grad.: Gradient — 3D-spat.: Spatial — Fusion: their fusion by concatenation.
Features processing, Original features: No feature selection applied — Selected features: Correlation-based features selection applied before
classification. Settings, Ethnicity-specific: Selected features within each ethnicity group — Age-specific: Selected features within each age group
— Age&Eth-specific: Selected features within the same ethnicity and age group.
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(a) Expression-dependant gender classi�cation results (b) Expression-independant gender classi�cation results

 

3D−avg. 3D−sym. 3D−grad. 3D−spat. Fusion
 

3D−avg. 3D−sym. 3D−grad. 3D−spat. Fusion

Fig. 6 ethnicity classification results under Expression-Dependent and Expression-Independent settings. Features, 3D-avg.:
Averageness — 3D-sym.: Bilateral Symmetry — 3D-grad.: Gradient — 3D-spat.: Spatial — Fusion: their fusion by concatenation. Features
processing, Original features: No feature selection applied — Selected features: Correlation-based features selection applied before classification.
Settings, Gender-specific: Selected features within each gender group — Age-specific: Selected features within each age group — Age&Gen-
specific: Selected features within the same gender and age group.
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(a) Expression-dependant ethnicity classi�cation results (b) Expression-independant ethnicity classi�cation results

(<=25) subgroups. These statistical tests results reveal that
the gender classification improvements in attribute-specific
settings are unlikely to be linked to the gender distribution
differences in the subgroups. In other words, the improve-
ments are related to the attribute-specific setting itself which
highlights specific gender features in different demographic
subgroups.

4.2 Ethnicity Classification on FRGCv2

Ethnicity classification consists on automatically label a query
instance into its corresponding ethnicity class (Asian or Non-
Asian, in the present study). Similarly to the experiments
conducted in section 4.1 for gender classification, the LOPO
experiments are conducted for ethnicity classification under
the Expression-Dependent and Expression-Independent set-
tings. We have also explored the use of the original features,
the selected features, and then study in Gender-specific and
Age-specific settings. The age partition is the same as in the
Age-specific setting for gender classification. The ethnicity
classification results are shown in Fig.6. As shown in the left
panel, under the Expression-Dependent setting, the results
from the original features are always higher than 85%. The
feature selection improves the results with 2%− 7% com-

pared to the previous results. Under the Gender-specific and
Age-specific settings, the results are slightly higher. The en-
hancements in results demonstrate that the Male
and the Female have different ethnicity information,
and people of different age have different ethnic-
ity information. Again, the highest ethnicity classification
rates of 95.71% and 95.49% are achieved by the 3D-avg de-
scription and the fusion, respectively. Also, the fusion of
these features almost always outperforms each individual
description in each setting. These results are confirmed in
the right panel of Fig. 6 with a higher accuracy of 96.6%.
This demonstrates the robustness of the proposed approach
against the facial expressions in ethnicity classification. Ac-
cording to these results, ethnicity (Asian and Non-Asian)
classification is influenced by the gender and age factors. The
3D-avg. description achieves higher accuracy, compared to
the remaining descriptions. It confirms the findings of previ-
ous studies [16,35] that a significant difference exists between
Asian and Non-Asian faces. In addition, according to the re-
sults in Fig.6, the bilateral asymmetry (3D-sym) can play an
important role in ethnicity classification. Similar to gender
study, we applied the Two-sample t-test, and the Two-sample
F-test to the subjects’ ethnicity in different demographic sub-
groups, to reveal the significance of distributional differences.
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Considering gender subgroups, the tests results (t-test: p =
0.1752, F-test: p = 0.2459) suggest there is no significant
difference of ethnicity distributions between the Male and
Female subjects in terms of Mean and Variance. These re-
sults demonstrate that the observed improvement in gender-
specific ethnicity recognition is unlikely to be linked to the
distributional difference of gender information in Asian and
Non-Asian subjects. However, for age subgroups, tests re-
sults (t-test: p = 7.764e-23, F-test: p = 2.637e-08) demon-
strate that ethnicity distributions in the Old (>=26) and
the Young (<=25) subgroups are of significant difference. It
suggests a confounding factor exists in age-specific ethnic-
ity recognition on FRGCv2, as the distributional difference
could project a more accurate prior information of ethnicity
during the training of classifier in this specific case. While,
due to unavailability of more proper 3D face dataset, the
effect of this factor could not be studied in the current stage.

4.3 Age Estimation on FRGCv2

Given a face image, estimating its age consists on automat-
ically label it with an exact age or an age group/range. In
the following, we use the Random Forest method in regres-
sion mode to estimate the exact age of a query. Similar to
the previous two experiments for gender and ethnicity clas-
sifications, we compare the results achieved with the original
features, results from the selected features, and results re-
ported under Gender-specific and Ethnicity-specific settings.
We note here, in feature selection, we use a different age
group partition than in the Age-specific experiments. The
466 subjects are divided into two age groups, one > 22 years
which represent 162 subjects, and another group < 23 years
which includes 304 subjects. The idea behind this partition
is the fact that the craniofacial growth stops at the age of
18−20, and faces exhibit different aging morphology before
and after this age. In addition, it balances better the number
of scans in the two groups. The age estimation accuracy is
typically measured by the mean absolute error (MAE) and
the cumulative score (CS). The MAE is defined as the av-
erage of the absolute errors between the estimated age and
the ground truth age, while the CS, proposed firstly in [20]
to evaluate age estimation algorithms, shows the percent-
age of cases among the testing set where the absolute age
estimation error is less than a threshold. In this work, the
experimental results are shown as MAEs, in Fig. 7.

As shown in the left panel of Fig. 7, under the Expression-
Dependent experiments, the MAEs for all the descriptions
are always under 4 years. After feature selection, the errors
decrease which confirms again the usefulness of feature selec-
tion to highlight the salient features in our approach. When
testing under the Ethnicity-specific and the Gender-specific
settings, the errors decrease again. When considering both
gender and ethnicity (Gen&Eth setting), the MAEs are even
lower. It demonstrates that the knowledge of gender and
ethnicity can improve age estimation accuracy on the
FRGCv2 dataset, which suggests that different gen-
der and ethnicity could possess different facial aging
patterns. The Fusion provides the highest performance in
each setting. The lowest MAE is achieved in the Gen&Eth-
specific setting, by the Fusion with 2.95 years. These ob-

servations are confirmed by the results of the Expression-
Independent experiments, as depicted in the right panel of
Fig 7. The Fusion always outperforms individual descrip-
tions, and achieves the lowest MAE of 3.24 years in the
Gen&Eth-specific setting. Because of the novelty of this prob-
lem of 3D age estimation, we shall provide later, in Section
4.5, a comparative study of the proposed work (using 3D)
and the recent published work [31] (based on 2D images).

Table 1 MAEs achieved by the fusion for different age groups under
Expression-Dependent (ED) and -Independent (EI) settings.

Fusion/age groups ≤ 20 (20,30] (30,40] > 40 Overall
ED Experiment
Original features 3.93 2.29 7.03 24.45 3.63
Selected features 2.88 2.18 8.80 23.26 3.42
Gender-specific 2.79 1.93 8.64 19.84 3.14
Eth-specific 2.62 2.06 8.37 22.27 3.20

Gen&Eth-specific 2.48 1.86 8.12 19.69 2.95
EI Experiment
Selected features 2.92 2.22 8.15 24.03 3.75
Gender-specific 2.57 2.16 7.76 23.39 3.55
Eth-specific 2.71 2.11 7.36 20.67 3.43

Gen&Eth-specific 2.36 2.03 7.39 20.01 3.24
# of Subjects 185 246 20 15 466

We provide in Table 1 the age estimation accuracy re-
lated to each age group. We note that in both Expression-
Dependent and Expression-Independent experiments, the MAEs
in an age group is always lower when considering gender and
ethnicity information. When considering both gender and
ethnicity in age estimation, the MAEs in each age group
always reach the lowest values (marked in bold). Thus, by
giving consideration to gender and ethnicity, we have success-
fully enhanced the age estimation performance for all the age
groups. Table 1 also shows that our algorithm performs much
better in young age groups, than in old age groups. Consid-
ering the number of training subjects, as shown in the last
row of the table, it is probably due to the unbalanced distri-
bution of the scans across the age groups. A limited number
of scans are available for older age groups.

The age estimation results on FRGCv2 demonstrate that,
knowing the gender and ethnicity information, the improve-
ment of performance is significant. However, like for gen-
der and ethnicity recognition, concerns should be raised on
the age distribution differences in different demographic sub-
groups. With the Two-sample t-test and F-test, considering
gender, the results (t-test: p = 0.045, and F-test: p =3.03e-
13) reveal that the age distributions of Male and Female
subjects are significantly different in terms of Mean and Vari-
ance. For ethnicity, results (t-test: p = 2.761e-12, F-test: p
= 1.722e-05) show that the age distributions of Asian and
Non-Asian subjects are also significantly different. In Fig. 9,
we present the age distribution details for each gender and
ethnicity. It shows the age distributions vary in different de-
mographic groups, especially between Asian and Non-Asian
subgroups. The unbalanced distributions of age for differ-
ent demographic subgroups may have contributed to the im-
provement of age estimation results, by injecting more pre-
cise prior information in training. While, due to the unavail-
ability of more proper 3D face dataset which covers evenly
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Fig. 7 age estimation accuracy under Expression-Dependent and Expression-Independent settings. Features, 3D-avg.: Average-
ness — 3D-sym.: Bilateral Symmetry — 3D-grad.: Gradient — 3D-spat.: Spatial — Fusion: their fusion by concatenation. Features processing,
Original features: No feature selection applied — Selected features: Correlation-based features selection applied before classification. Settings,
Gender-specific: Selected features within each gender group — Ethnicity-specific: Selected features within each age group — Eth&Gen-specific:
Selected features within the same gender and ethnicity group.

Fig. 8 Examples of 3D faces with the ground truth demographic information and the estimation (in red inaccurate estimated attributes).

Ground truth (Non-Asian, Male, 20)
Estimation (Asian, Male, 26) 

Ground truth (Asian, Female, 29)
Estimation (Asian, Male, 28) 

Ground truth (Non-Asian, Female, 20)
Estimation (Non-Asian, Male, 20) 

Ground truth (Non-Asian, Male, 48)
Estimation (Non-Asian, Male, 35) 

Ground truth (Non-Asian, Female, 57)
Estimation (Non-Asian, Female, 32) 

Ground truth (Non-Asian, Male, 23)
Estimation (Asian, Male, 24) 

Ground truth (Asian, Male, 20)
Estimation (Asian, Male, 26) 

the age ranges in different gender and ethnicity subgroup,
further study of this effect is not currently feasible. In this
case, we note that the attribute-specific experimental settings
and the statistical tests introduced in the current work are
still of value for guiding future research when proper dataset
is collected, and the results produced here could also serve
as preliminary references of future study. Also, as far as we
are concerned, there has been no related work in literature
giving explicit statistical analysis on the demographic groups
when applying attribute-specific settings, even in the related
2D studies [23,24,38,46,48,56].

Shown in Fig. 8 are examples of 3D faces with the cor-
responding ground truth demographic information (ethnic-
ity, gender, age). The estimated attributes are also given for
comparison (inaccurate estimations are highlighted in red).
Several factors make the estimation hard as the occlusion
of the face by the hair or the deformations caused by the
expressions, especially when the mouth is open (as nuisance
factors). However, the most challenging factor remains the
intra-groups variations in term of 3D shape differences.

4.4 Cross-database Validation over FU-3D-Faces

To further evaluate the proposed approach, we have designed
another set of gender, ethnicity and age recognition exper-
iments in a cross-dataset settings. Taking the earliest 466
scans of FRGCv2 dataset for training, we perform the recog-
nition on the 53 scans of the Florence 3D face dataset (FU-
3D) [4]. The FU-3D dataset is still under collection in the

Media Integration and Communication Center at the Uni-
versity of Florence. It contains 53 neutral-frontal 3D scans
of 53 Caucasian (Non-Asian) subjects, of which 14 are female
and 39 are male. Each subject’s age ranges from 22 to 61,
with 24 subjects above 30 years old. In these experiments, the
scans from the FU-3D are used as sequestered data (never
used in the training). The experimental results are shown in
Table 2. We point out that even the 3D scanning devices are
based on optical triangulation, a laser rangefinder is used to
collect faces in FRGCv2 and a multi-cameras (stereo) system
is used to capture 3D faces of the FU dataset. The two sys-
tems are comparable in terms of resolution. While the face
meshes in FRGCv2 are generally smoother, and the FU-3D
dataset preserves more local shape changes than FRGCv2.

Table 2 Cross-dataset experiments results (train with the 466 ear-
liest scans of FRGCv2 dataset and test on the FU-3D dataset, with
the selected DSF features in each description

3D-avg. 3D-sym. 3D-grad. 3D-spat.
gender 81.13% 88.67% 83.01% 84. 90%
ethnicity 100% 100% 100% 100%

age (MAE) 5.68 3.60 5.06 6.85

As shown in Table 2, our gender classification method
achieved always a classification rate higher than 80% (with
the 3D-sym description, it achieved 88.67%). These results
demonstrate that our gender classification approaches have
a good generalization performance on the FU-3D-Faces. For
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Fig. 9 Age distributions in different gender and ethnicity subgroups of the FRGCv2 dataset. (In each subplot, the horizontal axis denotes the
age of subjects, and the vertical axis shows the normalized frequency. The title above each subplot denotes the underlying gender/ethnicity
group, and the legend describes the number of subjects in that particular demographic subgroup. Age distribution differences are observed
between demographic subgroups, especially for Asian and Non-Asian subjects, shown in subplot (C) and (D))

ethnicity, all the subjects (Caucasians) of the dataset are cor-
rectly classified. In age estimation, the best achieved MAE is
3.6 years obtained using the 3D-sym description. This con-
firms the strong relationship between the age groups and the
facial asymmetry. Overall, the results reported in Table 2
demonstrate the good generalization capability of our recog-
nition methods on other datasets. Because of the small size
of the FU-3D dataset, we point out that these results are
obtained under age-, gender- and ethnicity-general settings
(no joint recognition performed here).

4.5 Comparison to previous work

In the literature, several studies have investigated the prob-
lem of demographic traits (gender, ethnicity and age) recog-
nition, with each trait considered separately. The use of the
3D shape is relatively new and the majority of the pub-
lished papers have reported results on the FRGCv2 dataset
[47], the largest dataset which includes the gender, ethnicity
and age meta-data. While the tasks of gender and ethnicity
classification from 3D facial scans have been explored, this
work presents (1) the first study on age estimation using 3D
shapes; and (2) the first investigation of joint demographic
traits recognition based on 3D shapes. Through the extensive
experiments, it brings new valuable conclusions in terms of
the correlations between facial soft-biometric traits. In this
section, we provide a comparative study of the proposed ap-
proaches and previous studies. For age estimation, as shown
in Table 3, Huerta et al. [31] have performed age estimation
experiments on the 2D part of the FRGCv2 dataset. Fol-
lowing a 5-fold cross-validation setting, they achieved 4.17
years MAE. In this work, we achieve a much lower MAE of
3.24 years. We point out the following differences between
the 2D and 3D parts of FRGCv2 dataset – (1) 2D part con-
tains 100 subjects more than the 3D part; and (2) Number of
images in the 3D part (4,007) is 10 times lower than in the
2D part (44,278). Considering these differences, this com-
parison demonstrates the interest of using the proposed 3D
morphology-driven features in age estimation.

Several recent studies have proposed 3D-based gender
and ethnicity classification, as shown in Table 4 and Table
5. The results are reported mainly under the 10-Fold Cross-
Validation (10-CV) setting, for which the subjects are first
partitioned equally into 10 groups, then each group is used
for testing once with the rest 9 groups used in training. To
compare directly with the state-of-the-art, in Table 4 and
Table 5, we generate and present the Ethnicity&Age-specific
gender classification results, and the Gender&Age-specific
ethnicity classification results, under the (10-CV) protocol.
As shown in Table 4, for 3D gender classification, the works
closely related to ours are presented in [54], [5], [21], [59],
which are also tested on the FRGCv2 dataset. Our gen-
der classification rate on the 466 earliest scans of FRGCv2
(95.28%) outperforms significantly the results of Ballihi et
al. in [5] (86.05%). Our result is 1.77% lower than Gilani et
al. in [21] (97.05%). With all the 4,007 scans of FRGCv2,
we achieve 93.61% gender classification rate. This results is
comparable to the results of Toderici et al. in [54] (93.5%),
Wang et al. in [59] (93.7%), and is 2.51% lower than the result
of Gilani et al. in [21] (96.12%). Overall, the proposed ap-
proach achieves competitive results with existing works. The
approach of Gilani et al. in [21] based on 3D landmarks on
the face outperforms remaining approaches (including ours),
however, their model depends on the accuracy of 3D the land-
marks localization algorithm. For ethnicity classification, as
shown in Table 5, the most comparable works are proposed
by Zhong et al. in [63], and Toderici et al. in [54]. With the
466 earliest scans of FRGCv2, we achieve 95.92% ethnic-
ity classification rate following the 10-fold cross-validation
protocol. Using all the 4,007 scans of FRGCv2, we achieve
96.60% ethnicity classification rate. This result is higher than
the result of Zhong et al. in [63] (82.38%). Compared to
Toderici et al. in [54], our ethnicity classification rate is 2.4%
lower. However, their result was reported on only the 3676
Asian and White scans of FRGCv2. The scans of the re-
maining subjects were not considered, which correspond to
the 28 scans of 6 Black-or-African American subjects, the
113 scans of 13 Hispanic subjects, and the 97 scans of 16
subjects whose ethnicity is unknown. Thus, compared to the
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Table 3 Comparison of age estimation results with [31]. (Experiments conducted on 3D and 2D parts of FRGCv2 dataset, respectively.)

Authors Imagery Method Regressor Database # of subjects/images MAE (years)
Huerta et al. [31] 2D HOG+GRAD+LBP+SURF CCA FRGC (2D part) 568/44,278 4.17

This work 3D SYM+AVE+GRAD+SPAT Random Forest FRGC (3D part) 466/4,007 3.24

Table 4 Comparison of the proposed gender classification approach with state-of-the-art.

Author Dataset Auto Features Classifiers Setting Results Imagery
Ballihi et al. [5] 466 scans of FRGCv2 Yes Facial curves Adaboost 10-CV 86.05% 3D

Toderici et al. [54] 3,675 scans of FRGCv2 Yes Wavelets Polynomial-SVM 10-CV 93.5% 3D
Huang et al. [30] 3,676 scans of FRGCv2 Yes LCP Adaboost 10-CV 95.5% 2D+3D
Wang et al. [59] 4,007 scans of FRGCv2 No 3D coordinates RBF-SVM 5-CV 93.7% 2D+3D
Gilani et al. [21] 466 scans of FRGCv2 Yes landmark distances LDA classifier 10-CV 97.05% 3D

4,007 scans of FRGCv2 Yes landmark distances LDA classifier 10-CV 96.12% 3D

This work 466 scans of FRGCv2 Yes 3D features Random Forest 10-CV 95.28% 3D
4,007 scans of FRGCv2 Yes 3D features Random Forest 10-CV 93.61% 3D

Table 5 Comparison of the proposed ethnicity classification approach with state-of-the-ar.

Author Dataset Auto Features Classifiers Setting Results Imagery
Zhong et al. [63] 4,007 scans of FRGCv2 No LVC features Class Probability No-CV 82.38% 3D
Lu et al. [44] Subset of UND and MSU No Grid elements SVM 10-CV 98% 3D + 2D

Toderici et al. [54] 3,676 scans of FRGCv2 Yes Wavelets Polynomial-SVM 10-CV 99.5% 3D
Huang et al. [30] 3,676 scans of FRGCv2 Yes LCP Adaboost 10-CV 99.6% 2D+3D

This work 466 scans of FRGCv2 Yes 3D features Random Forest 10-CV 95.92% 3D
4,007 scans of FRGCv2 Yes DSF features Random Forest 10-CV 96.60% 3D

work of Toderici et al., we have encountered significantly
more complicated ethnicity challenges.

Based on the comparative study presented above, we have
presented several contributions – (1) We have proposed novel
morphology-driven features extracted from 3D faces, they
are designed based on a number of studies in the biological
and clinical studies. We underline the novelty of these 3D fea-
tures compared to the widely used conventional features used
in 2D face analysis, such as the BIF (Bio-inspired Features),
or the texture features (Gabor, LBP, Haar, etc.); (2) The
proposed framework is quite generic to be used in individ-
ual (or joint) age, gender and ethnicity recognition. We have
demonstrated that considering the correlations between the
demographic traits can improve the recognition results than
taking them individually, thus reveal the interest of estimat-
ing them jointly; (3) We have demonstrated through the sev-
eral presented experiments the effectiveness of the proposed
approach and its competitive results with the state-of-the-
art. In addition, processing 3D facial meshes is often time
consuming compared to processing intensity or color images.
However, through the approximation by a collection of 3D
radial curves and the use of an efficient shape analysis frame-
work [51], developed in C++, the proposed approach shows
time efficiency in 3D curves extraction and feature extraction
as presented in Table 6. All our experiments are performed
on an Intel Core 2 Duo 2.53 GHz processor, with 4 GB of
memory. This demonstrates the effectiveness of the process-
ing pipeline for 3D feature extraction for soft-biometric traits
recognition.

5 Conclusions

This paper presents a set of new morphology-driven features
extracted from the 3D shape of the face and investigates

Table 6 Processing time for face pre-processing and features extrac-
tion.

Step Details time (s)
Pre-processing holes filling, cropping, smoothing < 1

Curves extraction 200, 100 vertex/curve 0.8
3D features shape analysis 4×0.05
Overall 4 × 20K 3D shape features 2

the joint demographic (gender, ethnicity and age) estima-
tion based on them. It provides also a comprehensive study
on their relevance and highlights the most informative areas
of the 3D face for age, gender and ethnicity. The proposed
3D features are used individually (and fused) to perform in
the same time gender, ethnicity and age estimation which
makes them applicable for the three problems as well as
the joint estimation. Results reported on FRGCv2 (follow-
ing LOPO and 10-fold cross validation settings) are competi-
tive compared to the state-of-the-art with the advantage that
the proposed approach is fully automatic and presents inter-
esting execution time. The cross-database validation experi-
ment conducted on the FU-3D-Faces dataset confirms the ob-
tained good results. The problem of age estimation from the
3D shape of the face is investigated for the first time in the
literature. However, the datasets used in the study present
some limitations – (1) compared to some 2D face datasets
recently used to evaluate the age estimation algorithms such
as MORPH II and PCSO [26], the 3D datasets are limited in
number of subjects and images; (2) the age distributions are
biased as the majority of participants were Caucasian stu-
dents. We note in particular that, at the current stage, the
unbalanced distribution of subjects’ age in different gender
of ethnicity, remains an unmeasured confounding factor for
demonstrating the usefulness of attribute-specific age estima-
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tion. Thus, one important item to promote 3D-based demo-
graphic information estimation (including the age) will be
to collect new 3D face datasets to handle these limitations.
Also, when proper 3D face dataset is available, quantitative
studying these soft-biometrics’ correlations would also be of
research interest, which could promote the understanding of
their co-existence and co-exhibition in 3D faces.
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