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Abstract

In this paper, it is proven that the usual VAR approach may be
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1 Introduction

Vector autoregressive models – VAR here after – have been extensively used
thanks to the seminal work of Sims (1980). Instead of considering a single
random variable explained with many one-dimensional real independent vari-
ables, a vector of random variables is explained by multivariate regressors.
This opens the door to inductive approaches for the study of correlation and
causality between random variables in a system of equations.

As far as we know, VAR models are based on usual estimators such as
generalized least squares, the general method of moments, the maximum
likelihood, and many other ones. The main drawback of such techniques is
their possible close interrelation to the basic Euclidean distance, i.e., the ℓ2
metric.

In their innovative works, Yitzhaki and Schechtman (2013) point out
the difficulty inherent to the estimators lying in the ℓ2 metric. Particularly,
outliers in samples, even for a small percentage of contamination, imply
serious problems on the estimators, for instance explosive variance and/or
sign inversions of the coefficient estimates.

Yitzhaki and Schechtman (2013) explain that the use of the coGini op-
erator, instead of the usual covariance, provides robust estimates. They
argue that the traditional statistical methods may be performed with the
Gini index instead of the variance. We investigate this possibility in order
to propose semi-parametric Gini estimators for VAR models, which have not
been studied before.

In this paper, we show how it is possible to derive robust estimators from
semi-parametric VAR-Gini regressions. We first review the difference be-
tween the variance and the Gini index (Section 2). In Section 3, VAR-Gini
estimators are proposed: standard semi-parametric Gini regression, general-
ized Gini regression, and non-linear Gini regressions. The inference on the
estimators is made with the ℓ2 metric, but it is shown that relaxing the
strong assumption on the existence of second moments, the inference can be
made with the ℓ1 metric via U -statistics (Section 4). Also, impulse response
functions and Gini decomposition for prevision errors are investigated (Sec-
tion 5). Finally, Granger’s (non) causality tests are properly derived with
U -statistics (Section 6). We close the paper in Section 7.
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2 Gini regressions: the standard approaches

We provide in this section a review of the Gini regressions, as it is exposed
in Ka and Mussard (2016), see also Yitzhaki and Schechtman (2013).

2.1 The semi-parametric regression

Consider a simple model y = a + bx with x, y some n × 1 vectors. The
semi-parametric Gini (simple) regression introduced by Olkin and Yitzhaki
(1992), consists in averaging tangents bij (between observations i and j) with
weights vij. Let the values of x be ranked by ascending order (x1 6 · · · 6 xn),
then the semi-parametric Gini estimator of the slope coefficient is given by:

b̂G =
∑

i<j

vijbij, with vij =
(xi − xj)

∑

i<j(xi − xj)
(1)

and bij =
(yi − yj)

(xi − xj)
∀i < j ; i = 1, . . . , n. (2)

Olkin and Yitzhaki (1992) also demonstrate that if the weights vij are re-
placed by quadratic ones such as

wij =
(xi − xj)

2

∑

i<j(xi − xj)2
, (3)

then the standard Ordinary Least squares (OLS) estimator of the slope co-
efficient is obtained:

b̂OLS =
∑

i<j

wijbij. (4)

Since it depends on quadratic weights, the OLS slope coefficient is shown to
be heavily sensitive to outliers.

2.2 The parametric regression

The parametric Gini regression (Olkin and Yitzhaki, 1992) solves the mini-
mization of Gini index of the residuals (ei = yi−ŷi) and provides the following
estimator (only numerically in the multiple regression case):

b̂PG = argmin
b

G(e) = argmin
b

1

N2

N∑

i=1

N∑

j=1

|ei − ej| .
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Based on all pairwise ”city-block” distances, the parametric and non-parametric
Gini regressions are equivalent (b̂PG = b̂G) if, and only if, the linearity of the
model y = ax+ b is assessed.

2.3 OLS vs. Gini

The semi-parametric Gini regression may be defined according to the cogini
operator, i.e. cog(y, x) := cov(y, r(x)) and cog(x, x) := cov(x, r(x)) where
r(x) is the rank vector of x:1

b̂G =
cog(y, x)

cog(x, x)
, whereas b̂OLS =

cov(y, x)

cov(x, x)
.

The semi-parametric Gini multiple regression depends on the rank matrix
of the regressors. Let X be the n×K matrix of the regressors and Rx its rank
matrix, which contains in columns the rank vectors r(xk) of the regressors xk

for all k = 1, . . . , K. For each regressor xk (k = 1, . . . , K), the observations
xik (i = 1, . . . , n) are replaced by their rank within xk (the smallest value
of xik is replaced by 1, the highest one by n). The semi-parametric Gini
multiple regression yields the following estimator (a K × 1 vector):

b̂G = (R′xX)−1R′xy . (5)

The semi-parametric Gini estimator looks like that of instrumental variables
in which the instruments are the rank vectors. Durbin (1954) suggested
this estimator without being aware that it corresponds to a Gini framework,
initiated by Yitzhaki and Schechtman (2004). It is worth mentioning that
the cogini index is closed to the Gini coefficient, the so-called Gini Mean
Difference:

GMD = E |xi − xj| = 4cov(x, F (x)),

where F (x) stands for the c.d.f. of the random variable x. Two main ap-
proaches have been developed in the literature for analyzing the variability of
one random variables. The first one is the variance based on the covariance
operator:

σ2 = cov(x, x) =
1

2
E (xi − xj)

2 .

1The rank vector of x (of size n× 1) is obtained by replacing the elements of x by their
rank, the smallest value of x is 1 and the highest one is n. For ties in the regressors, the
values of the rank vector must be estimated as mid-points, see Yitzhaki and Schechtman
(2013, p. 212-213).
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The second one is based on the covariance between the c.d.f. of x expressed as
cov(F (x), F (x)). This is Spearman’s method defined to be the rank method.
The cogini operator can be seen as a mixture of the variance and Spearman’s
pure rank approach. The difference between the the variance and the GMD
is the metrics: ℓ2 and ℓ1 norm, respectively. Accordingly, the estimator b̂G

is less sensitive to extreme values thanks to the cogini operator based on the
ℓ1 norm.

2.4 Gini-Grenander conditions

Some existence conditions on the matrix R′x have to be imposed. Grenander
conditions used in OLS regressions are modified in order to get a well-defined
Gini regression, see Ka and Mussard (2016).

(i) The first condition postulates that no variable degenerates in a se-
quence of zero, that is, in the Gini sense:

lim
n→+∞

r′(xk)xk 6= 0, k ∈ {1, . . . , K}. (6)

(ii) The matrix X must be a full rank matrix, otherwise R′xX is non
invertible. An additional assumption is necessary for Gini regressions, indeed
the vectors xk cannot be comonotonic. Two vectors x and y are comonotonic
if, and only if, r(x) = r(y). If at least two regressors xk among k = 1, . . . , K
are comonotonic, then R′xX is non invertible. Let Mc be the set of all
comonotonic matrices with at least two comonotonic vectors xk. Note that
the full rank hypothesis is a necessary condition but it is not sufficient. It
is necessary to require in addition the non comonotonicity of the regressors.
Then, a condition of identification is:

X /∈Mc and X is a full rank matrix. (7)

(iii) Another condition has to be added with regard to the second mo-
ments. As explained in the previous subsection, the Gini estimator does not
rely on the second moments of X as this is the case for OLS. Let E(x2

k)
denotes the second moment of regressor xk:

if E(x2
k)→∞ or E(x2

k) = ∅ =⇒ b̂G exists. (8)

Finally, the Gini semi-parametric approach relies on a few assumptions:
- no linearity hypothesis is needed ;
- we can have outliers such that E(x2

k)→∞.
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3 VAR Gini Regressions: Estimation

Starting with a multivariate process yt ∈ (y1t, . . . , ykt) ∈ R
k, it is possible to

define a vector autoregressive of order 1, i.e. V AR(1) as follows:

yt = α +Byt−1 + εt, ∀t = 1, . . . , T ; (9)

with α ∈ R
k a column vector, B a k × k matrix of real coefficients, and

εt ∼ N a column vector representing the error of the model. A V AR(p) for
p ∈ N

∗ (N∗ being the set of positive integer) may be expressed as:

yt = α + Φ1yt−1 + · · ·Φpyt−p + εt, (10)

with Φi being k × k matrices such that i = 1, . . . , p. For instance, for k = 2
and p = 2 we get that:

{
y1t = α1 + Φ11y1t−1 + Φ12y1t−2 + Φ13y2t−1 + Φ14y2t−2 + ε1t
y2t = α2 + Φ21y1t−1 + Φ22y1t−2 + Φ23y2t−1 + Φ24y2t−2 + ε2t,

(11)

with Σε the variance-covariance matrix of (ε1t, ε2t). Or equivalently in a
matrix form: 





y1 = β1X1 + ε1t
...

yk = βkXk + εkt,

(12)

with Xi the matrices with the lagged variables ykt−1, . . . , ykt−p.

3.1 The basic semi-parametric case

The Gini estimation of a V AR(p) may be performed by concatenating the
equations in the system (12) in order to estimate the following,

y = Xβg + εt, (13)

with

y =








y1
y2
...
yk








; X =








X1 0 0 · · · 0
0 X2 0 · · · 0

0 · · · · · · · · · ...
0 · · · · · · · · · Xk








; βg =








β1

β2
...
βk








(14)
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with y a Tk × 1 vector, X a k × (kp + 1) matrix, β a (kp + 1) × 1 vector,
and εt a Tk × 1 white noise. The semi-parametric Gini regression yields an
estimator of βg:

β̂g = (R
′

xX)−1R
′

xy, (15)

where Rx is the rank matrix of X. As in the standard semi-parametric Gini
regression, Gini estimators are of particular relevance when outliers arise in
the data.

3.2 Generalized Gini regressions

Let us now propose a new way of estimating VAR models in the Gini sense.
Let Σε be the variance-covariance matrix of εt. Since it is definite positive,
then it exists a matrix P such that Σε = PP′. In this respect, thanks to the
Cholesky decomposition, the model may be rewritten as:

P−1y = P−1Xβg +P−1εt ⇐⇒ y∗ = X∗βg + ε∗t . (16)

We can check that:

E(ε∗tε
∗
′

t ) = E(P−1εtε
′

tP
−1′) = P−1ΣεP

−1′ = P−1PP′P−1
′

= ITk. (17)

Since the previous model has been purged from autocorrelation and het-
eroskedasticity, then applying the semi-parametric Gini regression we get
the generalized Gini regression:

β̂gg = (R′

x∗X
∗)−1R′

x∗y
∗, (18)

withR′

x∗ being the rank matrix ofX∗. Several special cases of the generalized
Gini regression may be derived from the moel exposed above. For instance,
if we now assume a contemporaneous correlation between the εkt and εht,
that is, σkh := cov(εkt, εht):

Σε = E(εtε
′

t) =







σ11IT σ12IT · · · σ1kIT

σ21IT σ22IT · · · σ2kIT

· · · · · · · · · · · ·
σk1IT σk2IT · · · σkkIT







(19)

with IT the T × T identity matrix, then this model is the well-known SURE
regression, that is in our case, a SURE-Gini regression. In the special case
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where σkh = 0, for all k 6= h, then

Σε = E(εtε
′

t) =







σ11IT 0 · · · 0
0 σ22IT · · · 0
· · · · · · · · · · · ·
0 · · · · · · σkkIT







. (20)

This yields:

P−1 :=









σ
−

1

2

11 IT 0 · · · 0

0 σ
−

1

2

22 IT · · · 0
· · · · · · · · · · · ·
0 · · · · · · σ

−
1

2

kk IT









. (21)

Assuming without loss of generality that the data are arranged such that
σ11 < · · · < σkk, then it follows that:

R′

x∗ ≡ R′(X∗) = R′(P−1X) = R′(X) ≡ R′

x. (22)

Therefore, we retrieve the classical semi-parametric Gini estimator:

β̂gg = (R′

x∗X
∗)−1R′

x∗y
∗ (23)

= (R′

xP
−1X)−1R′

xP
−1y

= (R′

xX)−1PP−1R′

xy

= β̂g.

The same result holds true when the same regressors are used for each equa-
tion, i.e.,

X =







X 0 · · · 0
0 X · · · 0
· · · · · · · · · · · ·
0 · · · · · · X







. (24)

This yields (21) and thereby, as shown above, β̂gg = β̂g.

Finally, it can be noticed that the analytic form of β̂gg is close to that of
instrumental variables (IV) – see Yitzhaki and Schechtman (2004) for the link
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between Gini regressions and IV. Indeed setting the matrix of instruments
Z′ := R′

x∗P−1, we get an IV estimator:

β̂gg = (R′

x∗X
∗)−1R′

x∗y
∗ = (R′

x∗P
−1X)−1R′

x∗P
−1y = (Z′X)−1Z′y (25)

≡ β̂IV .

Off-course, the estimator β̂IV does not rely on the same assumptions com-
pared with the traditional OLS-IV estimator. Thanks to the Gini approach,
there is no need to postulate neither exogeneity of the error term, nor the
existence of the second moments of the regressors, nor linearity.

3.3 Non linearity

Let us introduce a semi-parametric Gini regression by relaxing the linearity
hypothesis. Let us assume the existence of the following regression curve,

y = g(X,β) + εt,

that is, y is a non-linear function of the regressors X in which extreme values
arise. Paralleling the well-known non-linear least squares, we make a Taylor
expansion of g(X,β) on an exogenous vector β0:

g(X,β) ≈ g(X,β0) +
∑

k

∂g(X,β0)

∂β0
k

(βk − β0
k).

Thus:

g(X,β) ≈
[

g(X,β0)−
∑

k

β0
k

∂g(X,β0)

∂β0
k

]

+
∑

k

βk
∂g(X,β0)

∂β0
k

︸ ︷︷ ︸

x0

k

=

[

g0 −
∑

k

β0
kx

0
k

]

+
∑

k

βkxk0

= g0 −X0β0 +X0β.

The model becomes:

y = g(X,β) + εt = g0 −X0β0 +X0β + εt.
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Thus:
y − g0 +X0β0

︸ ︷︷ ︸

y0

= X0β + εt.

Then, we loop the semi-parametric Gini regression (18), where the estimated

vector β̂
t

g in step t will be the vector used in the next step t+ 1 with β̂
0

g the
initial vector at step 0 such that:

β̂
t+1

g = [R
′t
x0X

0t]−1R
′t
x0y

t, (26)

where Rt
x0 is the rank matrix of X0t at iteration t. The algorithm stops when

β̂
t+1

g − β̂
t

g ≈ 0.2

3.4 Selection of the VAR order

For all semi-parametric Gini regressions studied above, the number of lags p
has to be determined. The classical methods may be employed without any
problem such as Akaike (AIC), Schwarz (BIC), Hannan et Quinn (HQ), and
other ones. For instance, the Akaike information criterion may be computed
as,

AIC = log det(Σ̂ε) +
2k(kp+ 1)

T
, (27)

or in the small sample case, see Hurvich and Tsay (1989), as follows

AIC = log det(Σ̂ε) +
2k(kp+ 1)

T − (kp+ 1)
. (28)

The usual discussion on the choice of the desirable criterion is analyzed for
instance in Colletaz (2017).

4 Inference

In this Section it is proven that the inference on the coefficient estimates of
Gini-VAR regressions may be done with or without the existence of second
moments. Before, let us analyze the existence of the bias.

2The same demonstration holds true for generalized Gini regression based on X
∗.
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4.1 Bias

The estimators studied above are proven to be unbiased. Let us start from
the following result. Under the linear approximation εt = y − Xβg with

E(εt) = 0, the estimator β̂g is an unbiased estimator of βg,

β̂g = (R
′

xX)−1R′

xy = (R′

xX)−1R
′

x(Xβg + εt)

= βg + (R
′

xX)−1R
′

xεt.

Thus,
E(β̂g) = βg + E((R

′

xX)−1R
′

xεt) = βg. (29)

4.2 Existence of second moments

A first possibility of inference is to examine the standard approach, i.e., to
consider that second moments of any given distribution exist. Let us assume
that the following matrices have constant terms,

plim
1

T
R′

xRx =: QRR, plim
1

T
X′Rx =: QxR

plim
1

T
R′

xX =: QRx, plim
1

T
R′

xεt = 0, (30)

with QRx positive definite (ans so invertible).3 It follows from (29) that:

plim
[√

T
(

β̂g − β
)]

= plim

[(
R

′

xX

T

)]−1 (
1√
T

)

R
′

xεt = Q−1
RX

(
1√
T

)

R
′

xεt.

With the hypothesis of i.i.d. variables, with no dominated observations
(Grenander conditions), applying the central limit theorem we get,

(
1√
T

)

R
′

xεt
a∼ N

(
0, σ2

gQRR

)
,

with σ2
gIT = E[ε′tεt]. It then follows that:

(
R

′

xX

T

)−1 (
1√
T

)

R
′

xεg
a∼ N

[
0, σ2

g Q−1
RX QRR Q−1

XR

]
,

3See Schechtman, Yitzhaki and Pudalov (2011) for the demonstration of R′
x
εt = 0 in

the standard Gini semi-parametric case.
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in other terms,

√
T
(

β̂g − β
)

a∼ N
[
0, σ2

g Q−1
RX QRR Q−1

XR

]
. (31)

Let us prove this result. Under linearity and the hypothesis that E(ε′tεt) =
σ2
gIT , the variance covariance matrix of the semi-parametric Gini estimator

is defined as follows:

V (β̂g|X) = σ2
g(R

′

xX)−1(R′

xRx)[(R
′

xX)−1]′. (32)

Indeed, we get from (29):

V (β̂g|X) = E[(β̂g − βg)(β̂g − βg)
′] = E[(R′

xX)−1R′

xεtε
′

tRx[(R
′

xX)−1]′].

Then,
V (β̂g|X) = σ2

g(R
′

xX)−1(R′

xRx)[(R
′

xX)−1]′.

We proceed exactly in the same way for non linear models depending on the
matrix X0. In this case,

√
T
(

β̂g − β
)

a∼ N
[
0, σ2

g Q−1
RX0 QRR Q−1

X0R

]
. (33)

It is worth mentioning that results (31) and (33) necessitates strong assump-
tions. If Ri, Xi and εi denotes line i of respectively the matrices R and X

and of the vector εt, then [Ri,Xi, εi] must be a sequence of i.i.d. random
variables. Moreover, the second moments of X and R must exist.

On the other hand, for the generalized Gini estimator:

β̂gg = (R′

x∗X
∗)−1R′

x∗y
∗ = (R′

x∗P
−1X)−1R′

x∗P
−1y,

the necessary hypotheses are similar:

plim
1

T
R′

x∗Rx∗ =: Q∗

RR, plim
1

T
X∗

′

Rx∗ =: Q∗

xR

plim
1

T
R′

x∗X
∗ =: Q∗

Rx, plim
1

T
R′

x∗ε∗t = 0. (34)

Let,

Q∗

xxR := plim

[(
1

T
X∗

′

Rx∗

)(
1

T
R′

x∗Rx∗

)
−1 (

1

T
R′

x∗X

)]
−1 (

1

T
X∗

′

Rx∗

)(
1

T
R′

x∗Rx∗

)
−1

.
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The result follows the one issued from generalized least squares with instru-
mental variables,

β̂gg
a∼ N

[

0,
σ2
g

T
Q∗

xxR plim

(
1

T
R′

x∗ΩRx∗

)

Q∗
′

xxR

]

, (35)

with Ω−1/2 = P−1.4 Again, this is a crude result since strong assumptions
are necessary. Indeed, in addition to the existence of second moments of X
and R, in the case of auto-correlation of the error terms, it is necessary to
postulate ergodicity and stationarity in order to get a central limit theorem,
see Greene (2003, Chapter 12).

In the semi-parametric case, either for generalized Gini regressions or
standard ones, it is also necessary to estimate the asymptotic variance-
covariance matrix. Then, we require an estimator of σ2

g . Let y − Xβg =
y−X(R′

xX)−1R′

xy. Since y = Xβg+εt, we have ε̂t = [I−X(R′

xX)−1Rx] εt.
Thus:

asym.σ̂2
g =

ε̂′tε̂t
T

=
ε′tεt
T

+

(
ε′tRx

T

)(
X′Rx

T

)
−1 (

X′X

T

)(
R′

xX

T

)
−1 (

R′

xεt
T

)

− 2

(
ε′tRx

T

)(
X′Rx

T

)
−1 (

R′

xεt
T

)

.

Since the semi-parametric regression implies R′

xεt = 0, then:

plim asym.σ̂2
g =

ε′tεt
T

= σ2
g .

For small samples, it can be shown, in the same manner than in the OLS
case, that:

σ̂2
g =

ε̂′tε̂t
T −K − 1

.

4.3 Existence of first moments only

As shown in the previous subsection, some strong conditions must be imposed
such as the existence of second moments in order to get the limiting distribu-
tions of β̂gg. Yitzhaki and Schechtman (2013) show that all the estimators

4The matrix Ω is the matrix issued from the singular value decomposition of Ω with

Σε = σ2

gΩ. In this case, Ω = CΛC
′ with Ω

−1 = P
′
P, thus P′ = C

−1
′

Λ
− 1

2 = Ω
− 1

2 .
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used in semi-parametric Gini regressions are U -statistics, which possess de-
sirable and weaker asymptotic properties. Let us show that β̂gg is a function
of U -statistics.

Let x1, x2, . . . ,xm be m i.i.d. random variables, and φ(x1,x2, . . . ,xm) a
symmetric function (the kernel) such that:

φ∗(x1,x2, . . . ,xm) = (n!)−1
∑

i1,i2,...,im

. . .
∑

φ(xi1 ,xi2 , . . . ,xim),

where n is the smallest number of observations needed to estimate φ∗. The
U -statistic for the parameter φ∗, which is an unbiased estimate of φ∗, is
expressed as:

U(x1,x2, . . . ,xm) = (mn )
−1

∑

i1,i2,...,im

. . .
∑

φ(xi1 ,xi2 , . . . ,xim).

The variance of an U -statistics, V ar(U), for the parameter φ∗ of degree m
(degree of the kernel) is,

V ar(U) = (nm)
−1

n∑

i=1

(ni )
(
n−m
m−i

)
ξi,

where,

ξi = V ar[φ∗i (x1,x2, . . . ,xm)] = E(φ∗2i (x1,x2, . . . ,xm))−E(φ∗i (x1,x2, . . . ,xm))
2.

An easier way to estimate the variance of U is the jackknife:

V ar(U) =
n− 1

n

n∑

i=1

[

U−i −
1

n

n∑

i=1

U−i

]2

, (36)

where U−i is the estimator issued from the sample of size n− 1 i.e. without
the ith observation.

In order to prove that β̂gg is a semi-parametric estimator, which is a
function of U -statistics, we start from the estimation of the system (12):







y1 = β̂gg1X1 + ε̂1t
...

yk = β̂ggkXk + ε̂kt,

(37)
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For each equation of the system, we can prove that β̂ggk is an U -statistics.
Let us start with the k-th equation, which as been estimated via generalized
Gini regression, then for p lags and r regressors, we have:

ykt = β̂ggk,1y1t−1 + · · ·+ β̂ggk,ℓyrt−p + ε̂kt. (38)

We follow a technique initiated by Yitzhaki and Schechtman (2013, Chapter
8) for the standard semi-parametric Gini regression. We set the following
identity issued from (38):

cov(ykt, r1) = β̂ggk,1cov(y1t−1, r1) + · · ·+ β̂ggk,ℓcov(yrt−p, r1) + cov(ε̂kt, r1)

cov(ykt, r2) = β̂ggk,1cov(y1t−1, r2) + · · ·+ β̂ggk,ℓcov(yrt−p, r2) + cov(ε̂kt, r2)

...

cov(ykt, rℓ) = β̂ggk,1cov(y1t−1, rℓ) + · · ·+ β̂ggk,ℓcov(yrt−p, rℓ) + cov(ε̂kt, rℓ),

with r1, r2, . . . , rℓ the rank vectors of, respectively, y1t−1, y1t−2, . . . , yrt−p. Di-
viding the previous equations by, respectively, cov(y1t−1, r1), . . . , cov(yrt−p, rℓ)
yields:

β̂01 = β̂ggk,1 + · · ·+ β̂ggk,ℓβ̂ℓ1 + β̂ε1

β̂02 = β̂ggk,2 + · · ·+ β̂ggk,ℓβ̂ℓ2 + β̂ε2

...

β̂0ℓ = β̂ggk,1β̂1ℓ + · · ·+ β̂ggk,ℓ + β̂εℓ, (39)

with, for j = 1, . . . , ℓ,

β̂0j :=
cov(ykt, rj)

cov(yjt−j, rj)
; β̂ℓj :=

cov(yrt−p, rj)

cov(yjt−j, rj)
; β̂εj :=

cov(ε̂kt, rj)

cov(yjt−j, rj)
. (40)

Now, let us set the vectors b̂0 := (β̂01, . . . , β̂0ℓ) and b̂ε := (β̂ε1, . . . , β̂εℓ), then
we get,






β̂ggk,1
...

β̂ggk,ℓ




 =






1 β̂21 . . . β̂ℓ1
...

... . . .
...

β̂1ℓ β̂2ℓ . . . 1






−1 




β̂01 − β̂ε1
...

β̂0ℓ − β̂εℓ




 (41)

⇐⇒ β̂gg = B̂−1
[

b̂0 − b̂ε

]

.
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The estimator β̂gg is a function of slope coefficients of semi-parametric
simple Gini regressions, see (1). Thereby, it is a semi-parametric Gini es-
timator. The estimators β̂0j, β̂εj and β̂ℓj are function of U -statistics, see

Yitzhaki and Schechtman (2013, Chapter 9). If B̂ is a full rank matrix, so
invertible, then β̂gg is a function of U -statistics. By Slutzky’s theorem, β̂gg

is a consistent estimator and it is asymptotically normal:

β̂gg
a∼ N (βgg, σ̂J(β̂gg)), (42)

with σ̂J(β̂gg) the Jackknife standard deviation estimated with (36).

4.4 Testing for linearity

As mentioned by Yitzhaki and Schechtman (2013), in the case of cross sec-
tional data, the parametric Gini regression may be used to test for the linear-
ity of the model. It is worth mentioning that the parametric Gini regression
relies on linearity. Then, it is a tool to test whether the coefficients of the
semi-parametric Gini regressions are coincident with those derived under lin-
earity. Let βpg and βgg be respectively the parametric and semi-parametric
Gini coefficients of any given V AR(p) model. Then, for any given regressor
k the test is the following,

∥
∥
∥
∥

H0 : βpgk − βggk = 0 ∀k
H1 : βpgk − βggk 6= 0 ∀k ⇐⇒

∥
∥
∥
∥

H0 : linearity of the model
H1 : non linearity of the model.

From (42) we know that βgg
a∼ N . On the other hand, if βpg

a∼ N , then

β̂ggk − β̂pgk
a∼ N (βggk − βpgk, σ̂J(β̂ggk − βpgk)), (43)

with σ̂J(β̂ggk−βpgk) the Jackknife standard deviation estimated with (36). If
the null is rejected, then the semi-parametric approach provides a regression
curve. Also, in this case, it is possible to define a specific non-linear form
and use the semi-parametric non-linear Gini regression studied above (26).

5 Impulse Response and Gini Decomposition

In this section, we study the impulse response function of the Gini VAR
model. First, we briefly review the condition of stationarity necessary to
derive the impulse response function. Then, we develop the Gini impulse
response function and the Gini decomposition of the errors.
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5.1 Stationarity

It is well-known that any V AR(p) may be reduced to a V AR(1) as follows,

Yt = c+CYt−1 + εt, (44)

such that,

Yt =








yt
yt−1
...

yt−p+1








; c =








c
0
...
0








and C =










Φ1 Φ2 · · · Φp

In 0 · · · 0
0 In 0 · · ·
... · · · · · · ...
0 · · · In 0










. (45)

As a consequence, if a V AR(p) is stationary or stable then its reduced form
(44) is also stable. It is noteworthy that a V AR(p) is stationary if, and only
if, the eigen values of C are no greater than one in absolute values. Or,
equivalently, defining L the lag operator, then stationarity implies that the
polynomial,

|I− Φ1L− Φ2L
2 − · · ·ΦpL

p|, (46)

has roots outside the complex circle of radius one. On the other hand, it is
well-known that any V AR(p) may be rewritten as a Vector Mooving Average
process VMA. An infinite vector mooving average process, VMA(∞), is
expressed as follows,

yt = µ+ εt +Ψ1εt−1 +Ψ2εt−2 + · · · = µ+Ψ(L)εt, (47)

with µ := E(yt) and εt−i ∼ N . In this case, the coefficients of V AR and
VMA are linked in the following way,

(I− Φ1L− Φ2L
2 − · · ·ΦpL

p)(Ψ0 +Ψ1L+Ψ2L
2 + · · · ) = I. (48)

This provides a well-known result in the literature of V AR models:

Ψ0 = I (49)

Ψ1 = Φ1 (50)

Ψ2 = Φ1Ψ1 + Φ2 (51)

...

Ψi = Φ1Ψi−1 + Φ2Ψi−2 + · · ·+ ΦpΨi−p. (52)
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5.2 The simple impulse response function

Thanks to the VMA(∞) model, it is possible to capture the impact of any
given innovation εkt on the whole system yt. Since the VMA(∞) is given by,

yt = µ+ εt +Ψ1εt−1 +Ψ2εt−2 + · · ·+Ψiεt−i + · · · (53)

then, the simple response function is given by,

∂yt
∂εt−i

= Ψi. (54)

Since Ψi is a k×k matrix, the simple impulse response function provides the
impact at time t of the innovations ε1, . . . , εk on the dependent variable yt+i,
precisely on each y1t+i, . . . , ykt+i.

5.3 The orthogonal impulse response function

As seen in the previous sections, the generalized Gini regression provides an
estimator β̂gg based on the variance-covariance matrix Σε:

Σε := E(εtε
′

t) =







σ11IT σ12IT · · · σ1kIT

σ21IT σ22IT · · · σ2kIT

· · · · · · · · · · · ·
σk1IT σk2IT · · · σkkIT







. (55)

As a consequence, it is of interest to deal with orthogonal innovations in
order to get proper estimates of impulse responses.

For that purpose, the Cholesky decomposition is used in the same manner
than in the generalized Gini estimation (16). The matrix P−1 enables the
the errors P−1εt to be neutral in the sense that,

E(ε∗tε
∗
′

t ) = E(P−1εtε
′

tP
−1′) = P−1ΣεP

−1′ = P−1PP′P−1
′

= ITk. (56)

Consequently, the corrected innovations ε∗t = P−1εt allows for a better esti-
mation of the responses since they are uncorrelated and orthogonal to each
others. Since Pε∗t = εt the VMA(∞) is rewritten as:

yt = µ+ εt +Ψ1Pε∗t−1 +Ψ2Pε∗t−2 + · · ·+ΨiPε∗t−i + · · · (57)

Setting Θi := ΨiP, then

yt = µ+ εt +Θ1ε
∗

t−1 +Θ2ε
∗

t−2 + · · ·+Θiε
∗

t−i + · · · (58)
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The orthogonal response function is given by:

∂yt
∂ε∗t−i

= Θi. (59)

The previous approaches are quite standard. However in the case of outliers
in yt, the standard V AR models would overestimate the innovations and the
same thing for the impulse response functions. In our approach, since the
estimator β̂gg is robust to outliers then robustness is also ensured for the

impulse response functions, which depend on β̂gg.
It is also possible to robustify the variance-covariance matrix by the use

of the coGini matrix:

Gε := E(εtF
′(εt)) =







cog11IT cog12IT · · · cog1kIT
cog21IT σ22IT · · · cog2kIT
· · · · · · · · · · · ·

cogk1IT cogk2IT · · · cogkkIT







(60)

where F is the c.d.f. of εt, and where,

cogij = cov(εit, F (εjt)). (61)

In this case, when outliers occur in yy, even if the semi-parametric Gini
regression attenuates the presence of outliers in the errors terms, the use of
Gε enables to get a higher degree of robustness compared with Σε thanks to
the ℓ1 metric. In this case, the Cholesky decomposition applied to Gε yields
an impulse response function in the Gini sense,

∂yt
∂ε∗t−i

= Θ̃i, (62)

with Θ̃i = ΨiP̃ and with P̃ issued from the Cholesky decomposition of Gε.

5.4 The Gini decomposition of the errors

From the VMA(∞) it is possible to derive the prevision error at period t+ℓ.
For variable yk, this error is, for lags l = 1, . . . , ℓ:

erkt+ℓ = ykt+ℓ − E(ykt+ℓ)

=
ℓ∑

l=1

Θℓ−l,k1ε
∗

1,t+1 +
ℓ∑

l=1

Θℓ−l,k2ε
∗

2,t+1 + · · ·+
ℓ∑

l=1

Θℓ−l,kkε
∗

k,t+1, (63)

19



where Θℓ−l,k1 is the coefficient estimate of variable k associated with innova-
tion ε∗1. The variance of the previous equation is:

Var(erkt+ℓ) =
ℓ∑

l=1

Θ2
ℓ−l,k1 + · · ·+

ℓ∑

l=1

Θ2
ℓ−l,kk. (64)

The contribution of innovation ε∗k to the variance of the prevision error is:

Contk =

∑ℓ
l=1 Θ

2
ℓ−l,kk

∑ℓ
l=1 Θ

2
ℓ−l,k1 + · · ·+

∑ℓ
l=1 Θ

2
ℓ−l,kk

. (65)

For the Gini view, we have to compute the coGini between the prevision
errors and its rank vector rer:

cov(erkt+ℓ, rer) =
ℓ∑

l=1

Θℓ−l,k1cov(ε
∗

1,t+1, rer) + · · ·+
ℓ∑

l=1

Θℓ−l,kkcov(ε
∗

k,t+1, rer).

(66)

Multiplying both sides of the previous expression by 4/n yields the Gini index
of the prevision error G(erkt+ℓ):

G(erkt+ℓ) =
4

n

ℓ∑

l=1

Θℓ−l,k1cov(ε
∗

1,t+1, rer) + · · ·+
4

n

ℓ∑

l=1

Θℓ−l,kkcov(ε
∗

k,t+1, rer).

(67)

The contribution of innovation ε∗k to the Gini prevision error is given by:

Cont-Gk =

∑ℓ
l=1 Θℓ−l,kkcov(ε

∗

k,t+1, rer)
∑ℓ

l=1 Θℓ−l,k1cov(ε∗1,t+1, rer) + · · ·+
∑ℓ

l=1 Θℓ−l,kkcov(ε∗k,t+1, rer)
.

(68)

6 Granger Causality Test

In order to test whether a variable (does not) cause(s) yt, in Granger’s sense,
let us start with a V AR(1) model:

(
y1t
y2t

)

=

(
Φ11 Φ12

Φ21 Φ22

)(
y1t−1
y2t−1

)

+

(
c1
c2

)

+

(
ε1t
ε2t

)

. (69)
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The variable y1t does not cause the variable y2t, at the order 1, then in this

case y1t
(1)
9 y2t. If the variable y1t causes the variable y2t, at the order 1, then

in this case y1t
(1)→ y2t. In the latter case, this means that y2t is a predictor of

y1t, that is, y2t enables to predict y1t with a time horizon of one period. It is
also noteworthy that the non causality test is linear, however the regression
curve issued from the semi-parametric Gini regression does not necessarily
imply a linear model.

The (non) causality tests, between the variables y1t and y2t, stemming
from the V AR(1) model are as follows:

∥
∥
∥
∥

H0 : Φ12 = 0
H1 : Φ12 6= 0

⇐⇒
∥
∥
∥
∥
∥

H0 : y2t
(1)
9 y1t

H1 : y2t
(1)→ y1t,

(70)

∥
∥
∥
∥

H0 : Φ21 = 0
H1 : Φ21 6= 0

⇐⇒
∥
∥
∥
∥
∥

H0 : y1t
(1)
9 y2t

H1 : y1t
(1)→ y2t.

(71)

Since Φ̂ij ≡ β̂gg,ij and since, as seen before,

β̂gg,ij
a∼ N (βgg,ij, σ̂J(βgg,ij)),

then the (non) causality test may be implemented directly by testing the
nullity of βgg,ij.

Things are more complicated for a V AR(p) model. Let us take, as before,
only two variables. Then the V AR(p) is given as,

(
y1t
y2t

)

=

(
Φ11,1 Φ12,1

Φ21,1 Φ22,1

)(
y1t−1
y2t−1

)

+ · · ·+

+

(
Φ11,p Φ12,p

Φ21,p Φ22,p

)(
y1t−p
y2t−p

)

+

(
c1
c2

)

+

(
ε1t
ε2t

)

. (72)

A joint test may be performed to assess whether y1t may (not) cause y2t and
inversely:

∥
∥
∥
∥

H0 : Φ12,1 = · · · = Φ12,p = 0
H1 : ∃Φ12,i 6= 0, i = 1, . . . , p

⇐⇒
∥
∥
∥
∥
∥

H0 : y2t
(1)
9 y1t

H1 : y2t
(1)→ y1t.

(73)

∥
∥
∥
∥

H0 : Φ21,1 = · · · = Φ21,p = 0
H1 : ∃Φ21,i 6= 0, i = 1, . . . , p

⇐⇒
∥
∥
∥
∥
∥

H0 : y1t
(1)
9 y2t

H1 : y1t
(1)→ y2t.

(74)
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In order to perform the joint test, let us compare the model with the restric-
tion imposed by the null H0 and without it. For that purpose, we compute
the goodness of fit of the model with and without restriction. The Gini
R-squared is given by, for instance for the first equation,

GR2 = 1−
(
cov(ε̂1t, rε̂1t)

cov(y1t, ry1t)

)2

, (75)

where rε̂1t is the rank vector of ε̂1t and ry1t the rank vector of y1t. Setting
Gρ20 being the Gini R-squared of the model with constraint (under the null),
and Gρ2 the Gini R-squared without restriction, then (74) is equivalent to
test for:

∥
∥
∥
∥

H0 : Gρ20 −Gρ2 = 0
H1 : Gρ20 −Gρ2 6= 0

⇐⇒
∥
∥
∥
∥
∥

H0 : y1t
(1)
9 y2t

H1 : y1t
(1)→ y2t.

(76)

Let us denote U1 := cov(ε̂1t, rε̂1t) the coGini of the residuals and U2 :=
cov(y1t, ry1t) the coGini of y1t. Then, an estimator of Gρ2 is given by:

U =
U2
2 − U2

1

U2
2

. (77)

Since U is a function of U -statistics it is an unbiased and convergent estimator
of Gρ2. In the same way, we get that U0 is a consistent estimator of Gρ20
issued from the model with constraints on the parameters. Consequently,
the null is tested thanks to the following statistics:

U0 − U
a∼ N (Gρ20 −Gρ2, σ̂J(U0 − U), (78)

where σ̂J(U0 − U) is the Jackknife standard deviation of U0 − U .
It is noteworthy that, in their original paper, Olkin and Yitzhaki (1992)

made use of (75) which is obtained under the parametric approach, i.e., with
the assumption that:

cov(ŷ, rε̂) = 0. (79)

The previous equation is true in the parametric case in which linearity is
imposed. In order to assess the goodness of fit of the semi-parametric Gini
regression, we propose another Gini analysis. Since,

y = ŷ + ε̂, (80)

22



then,
cov(y, ry) = cov(ŷ, ry) + cov(ε̂, ry). (81)

that is,

Gy =
4

n
cov(ŷ, ry) +

4

n
cov(ε̂, ry), (82)

with Gy the Gini index of y. As a consequence the Gini index of the de-
pendent variable (i.e. its variability) is explained by the variability of the
estimated dependent variable ŷ and the variability of the residuals. We de-
duce that the Gini R-squared may be defined as follows:

Gy

Gy

=
cov(ŷ, ry)

cov(y, ry)
+

cov(ε̂, ry)

cov(y, ry)
, (83)

that is,

GR
2
= 1− cov(ε̂, ry)

cov(y, ry)
. (84)

Thereby, relaxing the hypothesis of linearity of the model used by Olkin and
Yitzhaki (1992) implies that the (non) causality test has to be performed as
in (78) thanks to the statistics (84).

7 Conclusion

In this paper, we have shown that taking recourse to inequality measurement,
such as the Gini index, may have interesting features, see e.g. Palestini and
Pignataro (2016) for the use of the Atkinson index.

The semi-parametric Gini regression has been shown to be an alternative
to the usual estimators available in the literature of VAR models. It offers
a wide range of estimators: parametric, non parametric, linear, non linear,
etc. This flexibility enables one to test whether a model may be specified
with linearity or not, as in the usual Gini regression initiated by Schechtman
et al. (2011). Also it allows for dealing with non spherical disturbances
such as heteroskedasticity and auto-correlation, the so-called generalized Gini
regression.

Finally, it is shown that if outliers drastically affect the sample, then it is
possible to make use of other tools: a Gini causality test in Granger’s sense,
a Gini (orthogonal) impulse response functions, and the Gini decomposition
of the prevision errors.
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